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Abstract

A standard part of any oceanic pressure gauge or current meter analysis is the separation of tidal from non-tidal

components of the signal. The tidal signal can either be discarded, or its characteristics described in some fashion useful

for further analysis. Although tidal signals can be removed by standard high or bandpass filtering techniques, their

relatively deterministic character and large amplitude make special techniques more effective. In classical harmonic

analysis, the tidal signal is modelled as the sum of a finite set of sinusoids at specific frequencies related to astronomical

parameters. A set of programs has been written in MATLAB to (a) perform classical harmonic analysis for periods of

about 1 year or shorter, (b) account for (some) unresolved constituents using nodal corrections, and (c) compute

confidence intervals for the analyzed components. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

As the earth rotates on its axis, spatially varying

gravitational forces from the moon and the sun act on

the ocean, generating a forced elevation and current

response primarily (but not solely) at diurnal and semi-

diurnal frequencies. Body forces act directly on deep

oceanic waters. Tidal effects in coastal regions are not

directly forced by these astronomical forces. Instead

they arise as a side-effect of deep oceanic variability,

propagating through shallower coastal waters as a wave

or a combination of waves. In a typical oceanic time

series, tidal variability is often the largest signal. Power

spectra for such time series are often characterized by

a broad hump with a low-frequency maximum and a

decline at higher frequencies. Superimposed are a

number of sharp tidal peaks near diurnal and semi-

diurnal frequencies, and sometimes a broader peak

associated with Coriolis or inertial effects. Dynamical

analysis requires the separation of the tidal signal from

sub or super-tidal variations, or in some cases separation

of tidal effects from inertial effects at a nearby

frequency. The tidal information is either discarded or

kept for further analysis.

Standard high/low/bandpass filtering techniques (e.g.,

Jackson 1986) can be used but in general these are

inefficient because fairly narrow filters with a great deal

of rejection are needed. Also, although these are useful

in analyzing non-tidal variability, they provide no

compression of the tidal information. Specialized

techniques have been devised to take advantage of the

‘‘deterministic’’ nature of tidal processes. In classical

harmonic analysis, the tidal forcing is modelled as a set

of spectral lines, i.e., the sum of a finite set of sinusoids

at specific frequencies. These frequencies are specified by

various combinations of sums and differences of integer

multiples of 6 fundamental frequencies arising from

planetary motions (Godin, 1972). These fundamental
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parameters represent effects of rotation of the earth

(lunar day of 24:8 h), the orbit of the moon around the
earth (lunar month of 27 days) and the earth around the

sun (tropical year), and periodicities in the location of

lunar perigee (8.85 years), lunar orbital tilt (18.6 years),

and the location of perihelion (E21 000 years). The set

of 6 signed integers required to describe a particular

frequency are called the Doodson numbers. Many of the

more important frequencies have names such as ‘‘M2’’,

‘‘K1’’, etc. From astronomical considerations alone, an

‘‘equilibrium’’ response can be predicted; this is the

phase and amplitude that would be observed if

the response of the earth was fast enough that the

surface deformation was effectively in equilibrium with

the forcing at all times. The real ocean is definitely not in

equilibrium with the tidal forcing. However, as tidal

amplitudes are small compared with the total ocean

depth, the dynamics are very nearly linear, implying that

the forced response contains only those frequencies

present in the forcing. A least-squares fit can be used to

determine the relative phase and amplitude of each

frequency in the response. This phase/amplitude data

thus provides a compression of the data in the complete

time series, which can then be compared with similar

data at other locations to understand the characteristics

of tidal dynamics, or can be used to synthesize time

series of tidal effects at other times for predictive

purposes.

There are several drawbacks to classical harmonic

analysis. The first is that, ignoring the modulation of

perihelion which is effectively constant over historical

time, an E18:6 year time series is required to resolve all
of the listed frequencies (that is, the number of

wavelengths of each constituent in the record is at least

1 different from all other constituents). In practice,

record lengths are often 1 year or shorter. In order to

handle this issue an assumption is made that the phase/

amplitudes of response sinusoids with similar frequen-

cies (i.e., those whose first three Doodson numbers are

identical) are in the same proportion as those of the

equilibrium response under the reasonable premise that

the ocean response should be similar at similar

frequencies. In such a cluster large equilibrium peaks

are surrounded by small subsidiary peaks in frequency-

space which provide ‘‘nodal modulations’’ (or more

correctly, ‘‘satellite modulations’’) to the main peak.

The appearance of the total signal will be a sinusoid

whose phase and amplitude varies slowly with time.

These changes are slow enough to be considered

effectively constant for record lengths of up to 1 year.

At much shorter record lengths another problem arises.

The frequency resolution further degrades until even

dissimilar constituents are unresolvable. The best solu-

tion is to apply inference. This technique for finding the

absolute phase/amplitude requires that the relative

differences in phase/amplitude between the two unre-

solved constituents is known from other nearby data. If

this is not the case, it is thought best to either discard the

smaller constituents and fit only to the largest in a given

frequency interval, or to use the equilibrium response to

establish the desired differences.

Another drawback of classical analysis is that it

provides no easy way to determine whether the resulting

phase/amplitude of a given sinusoid is meaningful in a

deterministic way (i.e., it is truly a tidal line), or whether

it results from fitting to a component of the non-tidal

broad-spectrum variability. In general a fit is likely to

include elements of both and some kind of confidence

interval for the deterministic part is useful. To address

this issue, the ‘‘response’’ method was invented (Munk

and Cartwright, 1966). Although this provides better

results than classical harmonic analysis, it has not found

widespread use.

Further problems with classical harmonic analysis

arise in coastal regions where the tidal response is in the

form of a wave propagating onshore. In large estuaries,

the seasonal change in salinity and flow may change the

dynamic response but as these changes can vary from

year to year the tidal process is not really stationary.

Instead spectral peaks are broadened so that they are no

longer pure lines, but, depending on the situation, such

variations may be treated as lines in the analysis. Within

smaller estuaries, tidal height variations may be sig-

nificant compared to water column depth and a variety

of non-linear effects can occur. For example, flood

periods shorten and intensify and ebbs lengthen. As long

as these effects are reasonably deterministic they may be

handled by adding extra ‘‘shallow water’’ constituents

which occur at sum/difference frequencies of the major

constituents. More problematic in these regions are the

effects of internal variability. Tidal interactions with

varying topography can produce large internal waves

and bores whose characteristics are highly sensitive to

ambient stratification. In such cases the assumption of

‘‘line’’ frequencies becomes questionable and other

techniques such as wavelet analysis have been suggested

(Jay and Flinchem, 1999). More comprehensive descrip-

tions of analysis techniques, their use, and their

limitations is given in, e.g., Foreman et al. (1995) and

Godin (1991).

Here, we describe T TIDE, a package of routines that

can be used to perform classical harmonic analysis with

nodal corrections, inference, and a variety of user-

specified options. Predictions can also be made using the

analyzed constituents. There are several novel features.

First, although the harmonic analysis algorithm with

nodal corrections, etc., itself is not original (other than

conversion to complex algebra), it is implemented in

MATLAB, an analysis package widely used by oceano-

graphers. This allows for easy use within the framework

of a complete analysis involving plotting of raw data,

scatter plots, and so forth. Second, the code is written
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directly in matrix terms and thus relatively easy to

understand and modify if required. Finally, in order to

differentiate between true deterministic (line) frequencies

and broad-spectrum variability, confidence intervals for

the estimated tidal parameters are computed using one

of several user-selectable algorithms. The package is

made up of a number of files each of which contain one

or more functions. User-callable functions generally

have a ‘‘t ’’ prefix to prevent namespace collisions.

The paper is composed of four parts. In the first the

form of the equilibrium potential is described. In the

second part the mathematical basis of the technique for

making phase/amplitude estimates is described. In the

third part the generation of confidence intervals is

outlined. Finally an illustrative example is discussed.

2. Tidal potential

The effect of gravitational force vectors from the sun

and moon, F; can be written as the gradient of a scalar
potential V ; F ¼ �rV : The magnitude of this potential
at the earth’s surface at any time obviously is dependent

on the relative positions of the earth, moon, and sun. In

Doodson’s development (Doodson, 1954, described in

Godin, 1972) the potential is written as a function of

lunar time t (defined to begin at ‘‘lunar midnight’’) and
other astronomical variables (which are also functions

of time):

s is the mean longitude of moon, h the mean longitude

of sun, p the longitude of perigee, N 0 the negative of

the longitude of the ascending node, and p0 is the

longitude of perihelion, where all terms are in units of

cycles. These variables can be evaluated for a given

Julian date using the function t astron which implements

formulas in Seidelmann (1992). Their effects are

combined with the Doodson number set for a particular

constituent fi0; j0; k0; l0;m0; n0g into the astronomical

argument Va ¼ i0tþ j0s þ k0h þ l0p þ m0N 0 þ n0p0: Sets

with a common i0 are called a species (thus the slow,

diurnal, and semidiurnal species for i0 ¼ 0; 1; and 2;
respectively), and sets with common i0j0k0 are called a

subgroup. The constituent frequency s is defined as s ¼
2p dVa=dt: The tidal potential is then written in the form

V ¼
X3
i0¼0

Gi0 ðyÞ
X

j0k0l0m0n0

A0
i0j0k0l0m0n0 cosð2pVaÞ

"

þ G0
i0 ðyÞ

X
j0k0l0m0n0

B0
i0j0k0l0m0n0 sinð2pVaÞ

#
: ð1Þ

For a given Doodson number set either A0 or B0 is non-

zero, but not both. These constants are tabulated and

stored in data structures that can be loaded using

t getconsts. The geodetic functions Gi0 and G0
i0 vary with

species i0 and latitude y; and also depend on such

constants as the radius of the earth and the masses and

separations of the earth, moon, and sun. The equili-

brium amplitude for a constituent is defined as

GA0=g or G0B0=g; where g is the gravitational accelera-

tion, and can be generated for a particular latitude using

t equilib.

3. Phase/amplitude estimates

The algorithm used here for making phase and

amplitude estimates is based on algorithms and FOR-

TRAN code described by Godin (1972), Foreman

(1977), and Foreman (1978). However, unlike those

authors we use complex algebra directly rather than deal

with sine and cosine fits separately. This has the

advantage of unifying the treatment for scalar (e.g.,

pressure) and vector (e.g., horizontal currents) time

series which are represented as complex numbers u þ iv:
Note that the complex form for currents is based on a

physical model of a rotating current vector, and is only

valid for linear or nearly linear tidal waves. In some

cases it may be better to treat, e.g., along and across-

channel currents as two separate scalar time series.

Consider a time series of observations yðtÞ; t ¼
t1; t2;y; tM arranged in a vector, where the observation

times are regularly spaced at an interval Dt (default 1 h)

and M is an odd number (an endpoint is discarded if

required). The time axis is defined such that the origin

(or central time) is at tðMþ1Þ=2: Some missing observa-
tions can be handled by using a ‘‘missing data’’ marker

in the input vector (by MATLAB convention this is

NaN, the IEEE arithmetic representation for Not-a-

Number). This regular interval restriction does not arise

from the least-squares fit itself but rather from the

automated constituent-selection algorithm and is also a

requirement when spectra are estimated in one of

the confidence interval algorithms. This time series

may be composed of either real or complex numbers.

The time series is passed to the analysis program t tide

along with a variety of (mostly optional) parameters.

The tidal response is modelled as

xðtÞ ¼ b0 þ b1t þ
X

k¼1;y;N

ake
iskt þ a�ke

�iskt; ð2Þ

where N constituents (each with unique Doodson

number sets) are used. Each constituent has a frequency

sk which is known from the development of the

potential, and a complex amplitude ak which is not

known, although if yðtÞ is a real time series ak and a�k

are complex conjugates. A possible offset and (optional)

linear drift is handled by the first two terms. The

traditional approach uses real sinusoids:

xðtÞ ¼ b0 þ b1t þ
X

k¼1;y;N

Ak cosðsktÞ þ Bk sinðsktÞ ð3Þ
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and is related to Eq. (2) by Ak ¼ ak þ a�k and Bk ¼
iðak � a�kÞ: The real representation is more convenient
for the linear error analysis described later.

Constituents can be chosen from a list of 45

astronomical and 101 shallow-water constituents. Data

structures containing names and other information

about these constituents are loaded using t getconsts.

There are several alternatives for selecting constituents.

For general use, an automated selection algorithm

(following Foreman, 1977) is in place, which works as

follows. A basis of all astronomical and 24 of the most

important shallow-water constituents are gathered

together. All constituents are listed in order of pre-

defined importance based on equilibrium amplitudes.

Less important constituents whose frequencies are less

than a Rayleigh resolution limit aðNDtÞ�1 (with default
a ¼ 1) apart from more important constituents in

frequency are discarded. Additional shallow-water con-

stituents can be specified if required. If the relative

phase/amplitude of two constituents that are otherwise

unresolvable is known from other sources, then an

inference procedure can be carried out. Alternatively,

constituent lists can be explicitly specified.

The least-squares fit are the coefficients minimizing

E ¼
X

m

jxðtmÞ � yðtmÞj2 ¼ jjTa � yjj2; ð4Þ

where y ¼ ½yðt1Þ; yðt2Þ;y; yðtM Þ�0; a ¼ ½b0; b1; a1; a�1; a2;
a�2;y; a�N �0; and T is an M  2N þ 2 matrix of linear

and sinusoidal basis functions evaluated at observation

times. The solution is found using the Matlab ‘‘W’’

matrix division operator.

Once the fit has been performed, various corrections

are applied. These are generated in t vuf. First, the phase

of the constituent response is usually reported as

‘‘Greenwich phase’’ gk; that is, phase referenced to the
phase of the equilibrium response at 01 longitude (the

Greenwich meridian). This can be interpreted as

reporting the phase of the response at the time when

the equilibrium forcing is at its largest positive value at

01 longitude. It is simplest to find the fitted phase at the

central time of the record ðt ¼ 0Þ; the equilibrium phase

vk is then just Va for the given constituent computed at

the Julian date corresponding to this central time, with

possible adjustments of 1
4;

1
2; or

3
4 cycle depending on

whether A or B is non-zero, and their signs.

Second, if a latitude is specified, then nodal or satellite

corrections are computed as follows. Consider a main

peak of index k with satellites with indices kj: The effect
of the different satellites will be to slowly modulate the

phase/amplitude of the main peak over various periods,

usually more than 8 years. Our fitted response #ak over

some period can then be written as a modification of the

‘‘true’’ response of the main constituent ak; in which the
amplitude is changed by a factor fk and the phase by an

angle uk due to the presence of the satellites. fk and uk

are called the nodal correction amplitude and phase,

respectively. That is,

#ake
iskt ¼ fkake

isktþiuk ¼ ake
iskt þ

X
j

akje
iskj t: ð5Þ

Cancelling common terms, we have

fke
iuk ¼ 1þ

X
j

akj

ak

eiðskj�skÞtE1þ
X

j

akj

ak

: ð6Þ

The final approximation will hold as long as ðskj � skÞt
remains ‘‘small’’ (i.e., Ndt58 years). In general the true

phases and amplitudes of the satellites are not known.

However, since their frequencies are very similar to that

of the main peak it is standard to assume the ratio of

true amplitudes is the same as the ratio of amplitudes in

the equilibrium response, and the difference in true

phases will be equal to the difference in equilibrium

phases. The nodal corrections are thus computed from

the equilibrium response Eq. (1). A latitudinal depen-

dence arises from the geodetic functions. G0
1 is zero at

the equator and a crude limiting is used to prevent some

diurnal corrections from getting overly large. The

validity of using the latitude-dependent equilibrium

response to predict an aspect of the dynamic behavior

in one part of an ocean basin in such a simple way is not

clear. If the record length is longer than 1 year the

comparison of successive 1 year analyses with and

without nodal correction can be used to test the validity

of this process. Note that if the time series to be analyzed

is longer than 18.6 years in length then the ‘‘true’’

satellite amplitude/phase terms can be estimated directly

(Foreman and Neufeld, 1991) but this is not currently

possible in T TIDE.

The products of the analysis above are a pair of

complex values fak; a�kg; possibly corrected for nodal
modulation, for each constituent k: These are converted
into standard parameters:

Lk ¼ jakj þ ja�k j; ð7Þ

lk ¼ jak j � ja�k j; ð8Þ

yk ¼
angðakÞ þ angða�kÞ

2
mod 180; ð9Þ

gk ¼ vk � angðakÞ þ yk: ð10Þ

For horizontal currents, these parameters describe the

features of an ellipse traced out by the tip of the velocity

vector: the length of the semi-major and semi-minor axis

of the ellipse (Lk; lk; respectively), the inclination of the
northern semi-major axis counter-clockwise from due

east yk; and the Greenwich phase gk: If lk > 0 ðo0Þ then
the ellipse is traced in a counter-clockwise (clockwise)

direction. For scalar time series, the parameter Lk is the

amplitude, and lk; yk � 0 (the ellipse degenerates to a

line along the positive axis). Note that the restriction of

the definition of inclination to the northern axis (via the
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modulo operator) means that analyses of constituents

whose ellipses are aligned in an east/west direction may

have inclinations that fluctuate between close to 01 and

nearly 1801 due to noise. These apparently large jumps

are an artifact of the restriction but do not represent

similarly large changes in the physical behavior.

Once ellipse parameters are found, these can be used

for further analysis. They can also be used to generate

predictions at other times using t predic. Nodal correc-

tions in t predic are computed at the time series mid-

point so that it is an exact inverse of t tide.

4. Confidence intervals

One drawback of classical harmonic analysis is that

the degree to which a given constituent represents true

tidal energy as opposed to the energy of a broad-band

non-tidal process is not determined. This is useful

information for two reasons: first, it allows one to make

better estimates of the tidal behavior, and second, it can

allow one to quantitatively compare different analyses.

There are two steps to producing confidence intervals.

First, we must form an estimate of the characteristics of

non-tidal or residual ‘‘noise’’ affecting the ak (or Ak;Bk).

Second, we must convert these estimates into confidence

intervals for the standard parameters through a non-

linear mapping. We discuss the situation of real time

series first.

4.1. Residual noise (real)

After the harmonic analysis for an N-point real time

series yðtÞ is performed, we examine the structure of
the residual series. In the simplest situation, the residuals

are statistically Gaussian and uncorrelated in time. If

this is the case then the total residual power PT ¼ s2x ¼
P=Dt; where P is the two-sided spectral density. The

amplitude of the fit to sine and cosine terms (A and B;
respectively) will be contaminated by errors arising from

unresolved noise components within a frequency inter-

val of Df ¼ ðNDtÞ�1 around the line. Thus s2A ¼ s2B ¼
PDf ¼ s2x=N: It is unlikely that a geophysical series will
be spectrally flat, and a more sophisticated approach

used in t tide is to find a local value of P suitable for

constituents in that neighborhood by making a spectral

estimate from the residual time series (i.e., after the

removal of all fitted constituents) and averaging

the power over frequency bins in a window around the

frequency of any constituent, neglecting bins in which

fitted constituents reside. Here we chose a sequence of

windows of width 0.4 cpd centered on 1; 2; 3;y cpd

(actually on multiples of the M2 frequency, see the code

for details). The value of P appropriate to, say, semi-

diurnal constituents would be estimated from the second

of these bins.

4.2. Conversion to standard parameters (real)

A conversion from errors in the cos/sine amplitudes to

errors in standard parameters (amplitude and phase) can

be done using a linearized analysis. Consider a

constituent k: Let x ¼ F ðAk;BkÞ be a non-linear function
of these parameters, either the amplitude or the Green-

wich phase. Then if fAk;Bkg are independent random
variables, we can find a linearized estimate of the

standard error of x in terms of the standard errors of the
sinusoid amplitudes:

s2x ¼
@F

@Ak

� �2

s2A þ
@F

@Bk

� �2

s2B; ð11Þ

where the partial derivatives can be derived exactly (but

tediously) from Eqs. (7)–(10).

Alternatively the non-linear mapping can be handled

directly using a ‘‘parametric bootstrap’’ (Efron and

Tibshirani, 1993). In this situation the residual variance

estimates are used by the code to simulate a number of

realizations or replications of the analysis by taking the

estimates of the sinusoid amplitudes and adding

Gaussian noise with the appropriate variance to them.

All of these realizations are then converted non-linearly

to standard parameters using Eqs. (11)–(10) and an

estimate of the standard error computed from this

replicate data set directly.

Once a standard error is determined, 95% confidence

intervals can be estimated using standard techniques.

Alternatively, a signal-to-noise power ratio (SNR) can

be computed based on the square of the ratio of

amplitude to amplitude error. Simulations performed in

t synth (and described in the text file t errors) in which

the variability of analyses carried out on a fixed data set

with different noise realization are compared with

estimated confidence intervals show that the linear

procedure appears to be adequate for real time series

(e.g. tidal height), as long as the SNR > 10; and is

probably not bad for SNR as low as 2 or 3. The non-

linear procedure gives similar results to the linearized

procedure at high SNR, and is more accurate at low

SNR.

4.3. Residual noise (complex)

A complex residual time series u þ iv can be modelled

as bivariate white noise and variances s2u; s
2
v and

covariance suv computed. If we assume further that the

noise in both components is not correlated ðsuvE0Þ; then
a coloured bivariate noise model can be used and

variances assigned to real and imaginary parts of

constituent amplitude separately on the basis of local

spectral densities as described above. If it is suspected

that suva0 then it is recommended that the time series

be rotated into a coordinate system in which this is true
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Fig. 1. Tuktoyuktuk analysis example. (A) Raw time series. (B) Upper curve is residual time series after removal of tidal signal. Lower

curve is synthesized tidal series using significant constituents. (C) Amplitude of all analyzed components with 95% significance level.

Note frequency dependence. Significant constituents are marked with solid circle. (D) Phase of significant constituents with 95%

confidence interval.
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Table 1

Analysis results for Tuktoyuktuk data set

File name: PAPEROUT.txt

Date: 17-Aug-2001

Nobs ¼ 1584; ngood ¼ 1510; record length (days)¼66.00

Start time: 06-Jul-1975 01:00:00

Rayleigh criterion ¼ 1:0
Greenwich phase computed with nodal corrections applied to amplitude and phase relative to center time

x0 ¼ 1:98; x trend ¼ 0

VarðxÞ ¼ 0:82196 varðxpÞ¼ 0:21224 varðxresÞ ¼ 0:60972
Percent var predicted ¼ 25:8%
Tidal amplitude and phase with 95% CI estimates

Tide Freq Amp Amp err Pha Pha err Snr

MM 0.00151 0.2121 0.503 263.34 161.41 0.18

MSF 0.00282 0.1561 0.526 133.80 188.82 0.088

ALP1 0.03440 0.0152 0.044 334.95 150.82 0.12

2Q1 0.03571 0.0246 0.044 82.69 106.21 0.31

Q1 0.03722 0.0158 0.045 65.74 160.30 0.12
* O1 0.03873 0.0764 0.055 74.23 43.35 1.9

NO1 0.04027 0.0290 0.035 238.14 74.68 0.69
* P1 0.04155 0.0465 0.045 71.88 70.96 1.1
* K1 0.04178 0.1405 0.059 64.81 23.49 5.7

J1 0.04329 0.0253 0.050 7.32 129.76 0.25

OO1 0.04483 0.0531 0.059 235.75 72.96 0.81

UPSI 0.04634 0.0298 0.055 91.73 137.06 0.29

EPS2 0.07618 0.0211 0.030 184.59 104.65 0.51
* MU2 0.07769 0.0419 0.034 83.23 48.82 1.5
* N2 0.07900 0.0838 0.035 44.52 25.54 5.9
* M2 0.08051 0.4904 0.035 77.70 4.51 1.9eþ02

L2 0.08202 0.0213 0.037 35.22 113.22 0.33
* S2 0.08333 0.2197 0.038 126.72 9.14 34
* K2 0.08356 0.0598 0.043 149.12 46.60 2

ETA2 0.08507 0.0071 0.033 246.05 207.25 0.048
* MO3 0.11924 0.0148 0.014 234.97 67.38 1.1

M3 0.12077 0.0123 0.014 261.57 62.11 0.81

MK3 0.12229 0.0049 0.012 331.60 144.92 0.18

SK3 0.12511 0.0023 0.010 237.69 219.86 0.054

MN4 0.15951 0.0092 0.011 256.47 69.76 0.68
* M4 0.16102 0.0126 0.011 291.78 65.09 1.4

SN4 0.16233 0.0083 0.011 270.85 91.22 0.54

MS4 0.16384 0.0010 0.008 339.35 248.82 0.015

S4 0.16667 0.0047 0.010 299.56 142.32 0.23

2MK5 0.20280 0.0013 0.005 310.10 181.03 0.067

2SK5 0.20845 0.0045 0.006 104.00 99.71 0.64

2MN6 0.24002 0.0035 0.007 271.24 133.30 0.22

M6 0.24153 0.0017 0.006 158.88 197.43 0.093

2MS6 0.24436 0.0056 0.008 306.10 90.03 0.54

2SM6 0.24718 0.0023 0.007 298.92 175.13 0.11
* 3MK7 0.28331 0.0086 0.006 212.25 44.21 2.1

MS 0.32205 0.0030 0.004 42.43 75.29 0.55

M10 0.40256 0.0009 0.003 198.23 209.99 0.089
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(e.g., into along/across channel axes or into the principal

axes).

4.4. Conversion to standard parameters (complex)

The linearized analysis now involves functions of four

variables, since both Ak ¼ Ar þ iAi and Bk ¼ Br þ iBi

have real and imaginary parts, and analytic expressions

for partial derivatives

s2x ¼
@F

@Ar

� �2

s2Ar
þ

@F

@Ai

� �2

s2Ai
þ

@F

@Br

� �2

s2Br

þ
@F

@Bi

� �2

s2Bi
ð12Þ

become large. Some analytical simplification is possible

by assuming that all four variables are independent.

The bootstrap approach can also be applied to the

complex coefficients ak: One minor complication that

arises is that unless the noise is circular ðs2u ¼ s2v ; suv ¼
0Þ; the errors in ak and a�k are correlated with each

other. The bootstrap process requires the generation of

correlated noise replicates.

5. Example

The analysis of an example data set provided in

Foreman (1977) is shown in Fig. 1 and Table 1. This

example is included in datafile t example.mat. The

example data set consists of 66 days of hourly elevations

with a 3 day gap. A tidal variation is visible super-

imposed on subtidal variability. The time series can be

loaded and analyzed using the demonstration script

t demo. Code within this script illustrates how the

programs are called. In this example, the automated

constituent selection algorithm is used and it selects 35

constituents. In addition, one shallow water constituent

ðM10Þ is manually added and two other constituents

analyzed via inference. The P1 constituent is inferred

from K1; and K2 is inferred from S2: Nodal corrections
are performed. A linear trend is not included in the

analysis. The coloured bootstrap analysis is used to

determine significance and confidence intervals. Table 1

gives the output of the program. In the first column the

name of the constituent is given. Significant constituents

(those with SNR in the last column > 1) are marked with
a ‘‘*’’. The SNR is the squared ratio of amplitude (third

column) to the error in amplitude (fourth column). The

error factors (and hence SNR) will change slightly in

repeated analyses due to the stochastic nature of the

bootstrap procedure but amplitudes and phases them-

selves will be invariant. Frequencies (first column) are

listed in cph and Greenwich phase/phase error (fifth and

sixth columns) in degrees. Eleven constituents were

judged to be significant (only 6 would be significant at

an SNR cutoff of 2). Fig. 1B shows the residual series

and an elevation series synthesized from the significant

constituents (note that it spans the 3-day gap). Results

of the analysis are shown in a spectrum in Fig. 1C. Most

of the significant constituents are in the diurnal and

semidiurnal bands (E0:04; andE0:08 cph; respectively)
although several higher-frequency constituents also

appear to be marginally significant. In spite of the large

amount of energy in the fortnightly band ðE0:002 cphÞ
the fitted constituents there are apparently not signifi-

cant. The analyzed phases of significant constituents are

shown in Fig. 1D. The significant constituents generally

have reasonably small phase errors.

6. Summary

Separation of tidal and non-tidal energy is an

important task in any analysis of oceanic time series.

Here, we discuss the theoretical foundation and im-

plementation details of a MATLAB package for

classical harmonic analysis. The package can also

compute confidence intervals for the tidal parameters

using one of three different sets of assumptions about

the structure of residual noise. An example is provided

to show typical results. The code is available at http://

www.ocgy.ubc.ca/~rich, or the IAMG Server.
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