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A simple “laboratory” flow is described which exhibits the bistable behavior observed
in more complicated geophysical flows. The behavior is present in a blocking
experiment involving a shallow, homogeneous flow over an obstacle. It is
demonstrated that within a certain parameter space, the blocking tendency depends
not only on the height b, of the obstacle but on the history of the flow as well. The
implied hysteresis confirms. behavior predicted by Baines and Davies (1980, p. 239). It
is further shown that the hysteresis is associated with & nonuniqueness in steady
solutions which is, in turn, attributed to the existence of stationary blocking bores

_ upstream of the obstacle,

In the study of nonlinear fluid flow over topography, a common
experimental procedure is to place an obstacle in an initially uniform
flow and note the adjustment that takes place and the asymptotic
state reached after long time. This is essentially the approach taken
by Long (1954, 1970) and Houghton and Kasahara (1968), among
others, hereafter referred to as L1, L2, and HK respectively.
Although the sudden appearance of the obstacle in the fluid is not a
realistic forcing mechanism for geophysical flows, the experiments
are of value in developing intuition into the nonlinear adjustment to
other types of forcing and, in particular, the mechanism of blocking.
The intuitive value of the results is greatly enhanced if robustness
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can be shown with respect to the initial conditions. For example, the
asymptotic state should depend upon the height of the obstacle but
not, say, on the details of the way in which the obstacle is placed in
the fluid. This consideration becomes particularly relevant in view of
the nonuniqueness of steady nonlinear solutions whereby several
steady states may exist for the same upstream conditions and
obstacle height. This note deals with a case in which such lack of
robustness ocours within a certain parameter space as a consequence
of nonuniqueness.

Consider a shallow, inviscid, homogenecous stream of fluid w1th
uniform velocity u, and depth h, above a flat bottom. At time =0
an obstacle of height b, appears on the bottom and the fluid is
forced to adjust. The nature of the adjustment and the asymptotic
state depend upon bo/h, and the initial Froude number F,=
uolgho) ¥> in a way indicated by the well-known diagram
reproduced in Figure 1. If (b, /hy, F,) lies to the left of the curve BAF
then the asymptotic state (as t—oc) retains the essential features of
“the initial flow. To the right of the curve BAE the initial state
becomes partially blocked and the asymptotic state consists of a
hydraulically controlled flow which is critical (F=u(gh)”t2=1) over
- the obstacle’s sill. The curve BAE represents the threshold beyond
which the initial flow has insufficient energy (o surmount the
-obstacle without a decrease in flow rate and is given by HK as

bo/hy=1—3F33+1F3.

To the left of BAE continuous, steady solutions can be found which
have upstream Froude number F, and which are not hydraulically
controlled.

The experimental results of L1, L2 and HK indicate that the
blocking process described above is accomplished by excitation of a
bore which moves upstream from the obstacle leaving behind a
partially-blocked flow. However the speed of an  upstream-
propagating bore can be zero if the initial flow is supercritical
(Fo>1), a fact which lead L2 to define a separate threshold AF given
by :

bo_(SF(Z)+1)3'[2_1_§F3/2
2+ 0 -

hy,  16F2
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FIGURE 1 Simplified version of Baines and Davies (1980) .Figure 2 showing
asymptotic states for initial Froude number F,=u,/(ghy)> and relative obstacle
height by /hg.

Along AF a ‘bore which connects a supercritical upstream flow to a
bydraulically controlled flow over the obstacle will have zero
propagation speed. To the right of AF such bores propagate
upstream. Thus, two asymptotic states are possible along AF, the
first being a continuous supercritical flow and the second a flow
which is supercritical upstream of the obstacle but connected
discontinuously to a hydraulically controlled flow. Similarly, two
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asymptotic states—an (unblocked) supercritica! flow and a (partially
blocked) controlled flow—are possible within the region EAF. The
question of interest here concerns which asymptotic state will arise
in a given experiment. According to L1 and 1.2, the flow in EAF
should be partially blocked. According to HK, it should not.

To investigate this dilemma the following initial-value calculation
was performed. Starting with a uniform, supercritical flow an
obstacle was slowly grown from zero height to a height b, and the
fluid response computed numerically using a shock-resolving Lax-—
Wendroff method identical to the one used by HK. For by/h, lying
to the left of AF, the initial flow is unobstructed, as expected. More
interestingly the flow remains unobstructed when by /h, lies in region
EAF—a result that runs contrary to what might be inferred from L2.
. Indeed, partial blockage occurred only after by /h, is increased so as
to lie to the right of AE. The bore formation and resulting blockage
is shown in Figure 2(a). If, however, after raising b,/h, to lie to the
right of AE, the obstacle is slowly lowered to the point where b, /h,
lies again in EAF, the bore continues to move upstream and the
partially blocked asymptotic state is established (Figure 2(b)), this
time in agreement with L2. To reestablish the supercritical state, it is
necessary to lower the obstacle so that b,/h lies to the left of AF as
shown in Figure 2(c,d). A similar chain of events can be produced
for a fixed obstacle height by slowly varying the upstream Froude
number, )

We note that the hysteresis apparent in the above chain of events
was intuitively predicted by Baines and Davies (1980) but, to the
knowledge of the author, has never been verified. The results point
out the danger in using the region AEF of Figure 1 to predict
shallow flow response to more realistic forcing. Similar behavior will
undoubtedly occur in experiments with more complicated rotating
and/or stratified fluids in which the presence of blocking waves can
lead to nonuniqueness of steady solutions. The presence of “bistable”
states in currents (such as the Kuroshio south of Japan) have been
well documented. it should also be noted that the dependence of the
solution on the history of the flow may not follow the above
scenario if the obstacle is introduced into the fluid impulsively. The
nonhydrostatic effects of such an introduction may, for example, lead
to partially blocked flow in region EAF, whereas slow introduction
of the obstacle would lead to an unobstructed flow there.
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FIGURE 2 Hysteresis of surface of initial flow with Froude number F,=1.5. The
critical values of the obstacle height (from Figure 1) are 0.160 {from curve AF) and
0.112 (from AF). (a) The obstacle is grown so that b,=0.3 causing a blocking bore to
be generated. (b) b, is lowered to 0.135. However, the bore comtinues upstream,
leaving behind a hydraulically controlled flow. (c) b, is lowered to 0.75, causing the
bore to reverse. (d} The bore passes back over the obstacle.
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