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1. Simple ideas

Evolution of large scale flow in the oceans or atmosphere,
thought of as interactions among a large but finite number of
degrees of freedom, has been modelled in a variety of numerical
simulations. The statistical behavior of these numerical models,
though a considerable simplification of reality, remains poorly
understood. Ideas from tufbulence phenomenology such as similarity
subranges and cascade mechanisms have only limited application
over the relatively limited wavenumber ranges available to numerical
models. Analytical closure theories require uncertain hypotheses
and then apply only to the most idealized cases, e.g. to statistically
homogeneous flow, and even then at considerable labor. The situation
invites more simpleminded interpretation.

In this papér, we show how simple ideas of temperature equili-
bration, the bringihg together of hot things and cold things to
make warm things, can provide a reliable qualitative understanding
of much that is seen in numerical simulations. Here we refer not
to the physical temperature of seawater but rather to generalized

statistical mechanical "temperatures" of the fluid flow. A curiosity



is that such temperatures may be negative as well as positive.
However, we deemphasize the sometimes mystique of "negative temp-
erature flow".

Consider not the oceans but the oft-used box of red and blue
marbles initially segregated red on left, blue on right. The box
is .subjected to a prescribed mechanical agitation. A deterministic
calculation of the trajectories of marbles, even aSSuming rigid
spheres, is implausible. A statistical calculation, perhaps in
terms of diffusive fluxes, can be quite complicated. The simple
thing to say is that, averaged over some sufficiently long time,
each.species of marble will tend to become spread uniformly about
the box. Of course, for any given agitation one may choose‘some
very special initial arrangement of marbles which will not lead to
mixing. Howevér, all such non-ergodic initial conditions are
presumed to occupy zero measure in a suitably defined'initial condition
space.  (On the other hand, the human mind displays a frightening '
ability to draw examples from this zero measure set.)

The box of marbles is the archetypal example of reversible
dynamics leading to irreversible statistical evolutiqn. Unhappily,
the Navier-Stokes equations, because of dissipation (a statistical
process at molecular scale), are already irreversible and it is this
fact which,in large part, ultimately makes oceanography more difficult

than the box of marbles. For the moment, we pursue the marbles..
2. Some definitions

A statistical mechanical system is defined in terms of a

limited number of external pafameters and a much larger number of
intérnal parametefs. External parameﬁers are those given for the
problem which the system in its evolution cannot change, e.g. the
energy or volume of a contained system or the numbers of molecules

of different species (non-reacting). Internal parameters are the

set of generalizéd coordinates required to specify each distinguishable
state of the system. |

If, because of guantization, the states of the system are



countable, then entropy S is defined a3 proportional to the logarithm
of the number of states available for given ranges of values of
the external parameters. More usefully, entropy is defined in terms
of probability integrals over ensembles of like systems in a way
that practically coincides with the number of states definition but
doesn't depend on quantization.

Now it is interesting to-ask how entropy depends upon the external
parameters. The variations of S with respect to external parameters
bring in the useful thermodynamic quantities: temperature, pressure,

chemical potential, etc. Ordinary temperature © is defined
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where E is the total energy of the system and the partial derivative
is evaluated holding all other external parameters constant. Rather
than going on to abuse a whole list of thermodynamic concepts, we
will generalize temperature as follows: Let the set of external
parameters be X= {xi; i=1,...,n} . Define a "temperature of the
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where the only caution required is that the reader avoid any inclina-
tion to equilibrate temperatures of different types. Different
temperature types are totally different guantities though they may
be related by an eguation of state, as are the ordinary temperature

and pressure of a gas.
3. Inhibitions and pseudo-temperatures

The box of marbles doesn't suggest very many interesting
external parameters—-perhaps the chemical (color?) potentials.
However, we may'apply’an inhibition in which we suppose that we
may fix some internal parameter of the system, creating in effect
another external parameter. Suppose we inhibit the value of the
j=th internal parameter yje’zj g; {ij k=l,...,n{g. By adding
yj to the list of external-paramgters, we may obtain a pseudo-
temperature | EE? \
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For the marbles, let y be the distance from the left
end of the box (of unit length) to the center of mass of
the red marbles. If the marbles are equally apportioned
and fill the box, y has a minimum value y=.25, a maximum
value y=.75 and an expected value y=.5. By assuming an
inhibition on y (as:'could be accomplished by means of
semipermeable membranes passing only red or blue marbles),
we obtain a pseudo-temperature é. For y=.25, the filled
box of marbles is in an unique configuration, S=0, and
é=0° absolute. Allowing y to increase slightly, say by
pairwise exchanges of marbles, entropy increases rapidly
so that é has a small positive value. Near y=.5, entropy
becomes a stationary function of y and §-9+00. Constraining
y to values greater than .5, é is at first large and
negative becoming small and negative until as y;7.75}
é~%-—0° absolute. |

The idea of temperature may seem contrived in this
simple example. But observe how quickly the idea becomes
interesting if we allow gravity to act from one end of
the box and suppose the red marbles to be of more dense
composition than the blue marbles. Also, a laboratory
example of a system much like our box of marbles, and in
which negative temperature states can be constructed, is the
case of a paramagnetic dielectric in an impressed magnetic
field (Landau and Lifshitz, 1958).

4. Temperature and fluid flow

Onsager (1949)'considers the representation of an
inviscid two-dimensional fluid flow in a bounded domain in
terms of interactions among a collection of isolated line
vortices. If the positive and negative vortices are quite
spread about and nearly paired off, tﬁeir velocity fields
tend to cancel and the system has some near minimum kinetic
energy. (The interaction energy but not the "self energy"

associated With line vortices .is here considered.) If



positive and negative vortices are segregated into large clumps
of like signed vorticity, their velocity fields add, approaching
some maximum attainable kinetic energy of the system. At either
extreme energy, the possible configurations of the vortices are
gquite restricted. At 'a special value‘E0 the number of configura-
tions, or entropy, is a maximum. Now the addition of a small
energy near E . allows a large increase.in'entr0py.v The
temperature (with respect to energy) is small and positive.
Addition of more energy causes the temperature to increase until
at E=EO the temperature is singular;-‘Still more energy results
in a temperature which is large and negative becoming small and
negative as E approaches E ax
Motion of the line vortices is identical to the motion of
massless line charges oriented along an uniform magnetic field.
As a model of plasma interactions, this problem has enjoyed:a
considerable literature which largely emphasizes the occurrence
of negative temperature states.
| For our purpose, it is useful to Fourier: transform the
vorticity field. However, this requires an infinite number
of Fourier modes togéther with an infinite number of implicit
constraints which preserve the isolated line vortex nature of
the flow. Presumably the actual number of (complex) degrees
of freedom among the Fourier modes is just the number of line
vortices. Thus we truncate,<§§ hoc, the Fourier modes above

some wavenumber k retaining a number of'complex Fourier

’
coefficients equaTaio the number of line vortices. Although
the problem is now fundamentally altered, behavior remains
gualitatively much the same, with definite minimum and maximum
attainble energies for given mean square vorticity ("enstrophy")

and exhibiting negative temperature behavior.
5. Oceanographic apblications

Large scale flow in the oceans and atmosphere is often

depicted as two-dimensional  or as consisting of a relatively sth\



number of layers of two-dimensional flow. Prima facie we hope

to apply some of the above ideas. The appropriate disclaimers
are discussed later.

Barotropic flow over topography

Let the velocity streamfuhction'be VY (x,y,t), the vorticity
f==<727J, and let the Coriolis parameter times fractional height
of topography (relative to mean depth) be h(x,y). Then

< 3(~F, S+ W)
ot 3 O = O

Integrals of the motion are

energy

'§7AP\Z and "total enstrophy" (“%4'“\)2
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where overbars dehote integration over the bounded domain of the
flow. We inguire how statistics of the flow may relate to
staistics of the topography.

Energy and total enstrophy are external parameters of
the system relative to which we define first- and second-
temperatures 91 and @2, respectively. For any given topography,
Fourier coefficients of h are also external parameters though
these will not interest us as such. Internal parameters could
be the Fourier coefficients of 7Y, though it is useful to
recast these in terms of spectral shapes'and correlations between,
say, § and h. Finally we seek expected values of some of these
internal parameters. |

We hypothesize an inhibition on the overall. correlatlon
EiEL_ggpalnlng a pseudo- -external parameters 'ﬂh and’ 3 since
(‘§+h) remains fixed. We have pseudo-temperatures (93“ and

3T Suppose we fix Sh=0, so the flow is uncorrelated from h

and hence in a maximum entropy condltlon with respect to 'Sh
Thus Eiai.icé_ If there were no restriction on f the flow
could evolve to energy equipartition as a max1mum_ggﬁropy state.
At energy equipartition, $° has some value, say 320, for which
i=%Xod. 1In fact, geophysical spectra are far from energy o

equipartition, tending to have much more energy in low than in |



high w wavenumbers. Thus 1t is approprlate to consider values
of ‘ﬁ much less than ‘S g’ SO that €> 7 should be thought of
as positive but small (cold).

Upon lifting the inhibition on :fh or effectlvely brlnglng
the flow into thermal contact.with the topography, 693h and Eyf”
begin to equlllbrate. Yh becomes negatlve, allow1ng an increase
in ﬁz. Thus 9" is cooled from + o while @gz is warmed from
its initial chllly value. Equlllbratlon is attained at the
value of the external temperature @

Actual values of 91 and 9 can be calculated in terms of
the external parameters, the energy, the total enstrophy and the
statistics of the topography, in what is effectively an equation
of state. However, we gain more intuition by characterizing

C)ghas the temperature of a reservoir, call it the "topography",
and (9 % as the temperature of another reservoir, the "flow".
The equlllbratlon temperature then depends upon the relative
heat capacitiee of the flow and of the topography. Heat
capacity is here an imprecise idea which must really depend
upon all of the external parameters. However, we can loosely
characterize the heat capacity of the topography by the overall
topographic variance h%_gnd the heat capacity of the flow by
the kinetic enstrophy ‘52 which would occur if the flow could
go to energy equlpartltlon. ' ’

In summary, the evolutlon of barotroplc flow over topography
from a random 1n1t1al condition is seen as the bringing into
thermal contact of a infinitely hot topographic reservoir of
finite heat capa01ty and a quite cold flow reservoir of different

heat capacity to produce a warm (or cool) mix of flow+topography.
Equilibrium spectrum of linear topographic waves

A particularly 1nterest1ng case results when we simply
neglect the heat capac1ty of the flow. Then, with no change
in ﬁh—O the 1nf1n1tely hot topography just brlngs the flow to
infinite temperature, i.e. to energy equipartition. A paradox
appears if we note that for any glven reallzatlon of 'h(x,y)

the linear equation of motion’
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subjected to finite wavenumber truncation, admits some normal

mode representation

\S(x\/,’c\) = Z A \S (%, \,,‘*:\
Thus we have found the tlme—averaged wavenumber energy spectrum
of ‘almot every normal mode Si’ name}y energy equipartition. If
this is not so, then we must say that the linear topographic wave
equation, finitely trunceted, is non-ergodic. However, discarding
the usual zero-measure sets of special topographies and special
initial flows, it is hard to see why the evolution should not

be ergodic.
Flow on a beta plane

Consider rigid 1lid, inviscid, barotropic flow on a laterally
bounded @ -plane, i.e.

g,g N D(ﬂ’"%+BY\ = 0
ot D (YD
spectrally truncated External parameters are energy - FV”V‘and

total enstrophy - (‘% + ﬁ 13

Some useful internal parameters are the correlation :€§ and
the energy spectrum. Agaln let us focus on the correlation,
assumlng an 1nh1b1t10n on '§y and so creatlng pseudo-temperatures
Gg\l and ég'—r Pick ‘Sy—O hence 9"‘—"'60 The appropriate
choice of Gac,ls, again, that it be small and positive. »

Upon lifting the inhibition, we bring the "flow" into thermal
contact with the "basin", the latter having a heat capacity
dependent on @.2. A cold flow in an infinitely hot basin evolVes
to a warm or cool "flow+basin", here characterized by $y <0,
i.e. a tendency to sort negative (CW) vorticity into the northern
basin and positive (CCW) vorticity into the southern basin. If
the net circulation ?E is zero, the equilibrium flow has a steady
mean component: a broad westward drift in the interior with
swift eastward returning currents along the north and south
boundaries. Nonzero choices of ;E may shift the eastward current

e



more to either the north or south boundary.

In this problem, a most interesting feature is the:mechanism
of the approach to equilibrium. The decrease\ih 3?; with
increase in '§2, which is the cooling of the basin and the
warming of the flow, is accomplished by intensification of
currents along the western boundary. Western intensification
here follows from the Second Law of Thermodynamics as surely as
that the red and blue marbles, initially segregated, will tend
to mix. Of course, in equilibrium the marbles will be mixed

and the western intensification will vanish.
Two-layer flow

In a first order representation of the vertical structure
of ocean flow, one may consider coupled equations for the
evolution of two immiscible fluids contained between two rigid

flat surfaces, without B, viz.

> (v, ey
ot Q‘ - d C%,v\/\ = 0
ot Q?' DY

where @, = § + F (—’\P‘z,’\k.\ , (;22: '"SL“\- F’l ("P‘»"{’z\ N ‘SL: (I?‘{/i
and Fq and F2 are coupling coefficients depending on the thick-
nesses of each layer and the density difference between the two
fluids. Subscripts are layer indices. F, and F, are nondimension-

1 2
alized by a length scale, the internal radius of deformation,

which is given in dlmen51onfull form by
R =\ //'\!T: + F
, \ 2

External parameters are the sum kinetic energies plus the

potential energy of the interface

E__‘;-\vwn#\v\y\ +(4P “P\

i _..-———

2
and the total enstrophy in each layer, separatelyw CQ Cand _C;L.
Relative to these external ‘parameters,: we have three external

temperatures Gl’ 492 and ég respectively..
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Once again our attention is drawn to the correlation
between‘layers, ‘SCQL, on which we will assume an inhibition.

However, the problem has become much more complicated because

changes'in “Q;Sbvﬁg}.gg%se sigg%taneous changes among the
terms appearing in E, Qq and‘Q2 .

Suppose we fix §:§L=0 creating a reservoir, the "interface",
distinct from another reservoir, the "flow". Lifting this
inhibition brings the flow into contact with the interface.
However, we must think of this conta¢t in either of two ways:
we may say that the reservoirs exchange three different species
of things until three different kinds of pseudo-temperatures
equilibrate; or we may assume a simple thermal contact but with
some difficulty determining what "heat" is exchanged. The
latter interpretation, though awkward, turns out to be the

easier one and follows more nearly our earlier examples.

.T‘TL=0 puts the temperature of the interface at infinity.

But what is the temperature of the flow in terms of the "heat"

that the interface may provide? The problem is that the inter-

face is a source éimultaneousiy of kinetic energy as well as
kinetic enstrophy in each layer. This brings us to the question
how, in each iayer, does entropy vary with kinetic energy? The
answer is that, if there is no constraint on kinetic energy, a
flow will evolve to enstrophy equipartition which therefore
corresponds to Gl=t“2 Typical geophysical spectra are more
"red" than enstrophy equipartition implying that any increase

in kinetic energy will only further restrict the flow. Hence

‘Ea:<0. Thus entropy change in the flow depends on the competing

effects of negative el and positive 92 and 93.

The tradeoff between increasing entropy with increase in
kinetic enstrophy and decreasing entropy with increase in kihetic
energy is dependent on the length scale under consideration.

Near a wavenumber k, changés in 'ngi_cause_changes in kihetic

enstrophy and kinetic energy in approximately the ratio
v
\41.(\_\_ /k-:_K‘L}

2R2$>1; the ratio is just k2 which corresponds to

For k

increasing excitation in a spectrum which merely retains its



shape. However, entropy is more’dependentIOn the shape‘than
amplltude of the spectrum and therefore remains nearly stationary
to exchanges with the interface. Thus for short length scales,
we can consider a 81ngle temperature of the flow which is positive
at any length scale and which is quite hot.

For szzéKl, the ratio of enstrophy to energy production
goes to l/R2 and so does not decrease as k2 gets small. Thus
a positive correlation ?:EL in‘larger length scales acts
preferentially as a source of kinetic enstrophy, allowing the
spectrum to‘shift to higher wavenumbers thereby generating
substantial entropy.A Large scale flow acts as a reservoir at
positive but low temperature. Clearly the contrivance is that
we are assigning different temperatures to different portions
of the spectrum in lieu of considering simultaneous transfer
of different properties. ' |

At last the picture becomes simple. Fixing Tgﬁi'=0 creates H

an interface at infinite temperature and a flow which, relative

to changes in 'S 3 is quite hot for length scales shorter than
the deformatlon radlus R but which is much colder in scales
larger than R. In thermal contact, the interface is cooled

only slightly at short length scales but is chilled substantially
in large scales. Thus in scales larger than R, motion in the

two layers locks together becoming‘barotropic. Shorter length
scales remain poorly correlated, a mixture of barotropic and

baroclinic modes.
6. A plasma application

As noted earller, the equatlons of inviscid two—dlmen51onal
flow also describe the two—d1mens1onal motlon of a plasma in an
uniform normal magnetic field. If the charge density is ‘ .
P(x‘\,){—\ _-_._’Kf} (x‘\,;(-\' where ¢ is the electric potential, the
motion is g 2 3 (¢, I74)

I - -0 | :
+ D(x\/)

Consider thls motlon in a fleld of bound (1mmob11e) charges of

density < = —,V 7( . Now the motlon is
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= V¢ +

with integrals of ‘the motion:

t A Z B ’ - . V, . 1
energy e IT_Z'GH 4+ Y /X and charge variance (V 4"\

By placing an inhibition on'FQE We‘create a reservoir,
the "bound charge distribution” and another reservoir, the
"free charge motion". The temperature>of the bound charge
reservoir at‘FE'eo is infinite. The temperature of the free
charge motion is given by the change of entropy with respect
to electric fleld variance \<74\ .. Because the electric
field variance'isbthe energy of this system,.wevare using
“temperature" in“itS ordinary meaning.

The 51ngnlar temperature of the plasma occurs when the
spectrum of the electric field variance corresponds to equiparti-
tion of charge variance. .An electric field which is less
energetic than charge eqnipartition has a positive temperature
while a more energetic field goes to negative temperature.

It is the occurrence of these negative temperature states which
has attracted the interest of plasma physicists. In fact though
it appears that the physics of negative temperature plasmas is

a straightforward extension‘of‘positive temperature physics.

At positi&e temperature;'the'presence of a poSitive charge
at a point (x,y)0 produces an enhanced probability of finding
negatlve charges near (x,y) At 1nf1n1te temperature this
probability becomes unlform over all space while for negatlve
temperature it becomes more probable that positive charges will
be found near (x,y) If this "shielding" and "anti-shielding"
effect is described in terms of a Debye length, one must say
that the Debye length is finite at positive temperature becoming
infinite then imaginary at negative temperature. But Debye length.
is a derived idea rather than a deScriptionﬂof the motion.

Another negative temperature demon is macroscopic varlablllty:'
At positive and cold temperatures, the energy spectrum is
dominated by variance at short length scales which could be
called microscopic or thermal fluctuations. As temperature

increases, these thermal fluctuations grow in size until, at



singular temperature, the largest lehgthvscales of the bounded
motion dominate the energy spectrum. Going on to negative
temperature, still greater fractions of the total enerqgy condense
into the largest scales of motion. Although this certainly
constitutes macroscopic variability, it proceeds directly from
tendencies observed in the positive temperature state with no
abrupt onset in passing to negatlve temperature.v ‘ o »
Now we consider the free charge motion, at some p051t1ve or
negative temperature, to be brought into thermal contact with
the bound charge distribution. If the free charge motion is
initially at negative temperature, it is cooled toward the
singular temperature while the correlation fﬁ becomes p051t1ve,
warming the bound charge reservoir to negative temperature.
If the free charge motion is initially at positiﬁe temperature,
it is warmed while the bound charge reservoir‘is cooled to some
()_G < 0. For _61>_0, free charges tend to shield the bound
charges. For 6i<10, free charges tend to antishield the bound

charges.
7. Thermometers

An entertaining use either for topography under ocean
currents or. for bouhd charges in a plasma is their posSible
roles as thermometers. In its colloquial'meaning, a thermometer
is a device of small heat capac1ty and hav1ng as an internal
parameter some readily observable quantity like the length of a
mercury column.. | -

A barotropic flow over a flat bottom has temperatures 6:1
and 62 given by the energy and enstrophy of the motion. If
we suppose the problem with an irregular topography of quite o
small amplitude, the effect on @ and 6 will be guadratic in
the amplitude of ‘the topography._ However,:the resultlng
normallzed correlatlon coefflclent “§V\/J-g y\ is proportlonal
to the amplitude of the topography and 1nversely proportional
to C) Thus we may insert a thermometer (the topography)
which has an arbitrarily small effect on the temperatures of

the flow but from which we may readlly read off the second

temperature.
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These same comments apply to the introduction of a very
weak bound charge distribution into a plasma, except that we
then read the first temperature (the ordinary temperature) of

the plasma.
8. Observations

We have talked mostly about correlation---with topography,
with latitude, between layers, etc. The discussion can be
extended to questions of spectral shape but only at considerable
labor and even greater abuse of concepts. Instead we ask whether
this whole construction should have any relation to reality. _

In extensiﬁe humerical simulations of oceanic flow, including
direct dissipation to produce more realistic dynamics, Rhines
(in prep.) has observed and discussed a number of tendencies
which are guite like the qualitative behavior we have discussed.
For example, random flow in the presénce of irregular topography
is observed to relax quite rapidly into a streamfunction pattern
which visibly resembles the topographic map. We also have
observed this result under vaiious kinds of dissipation (Holloway
and Hendershott, 1974). The same event ié observed again with
still another kind of dissipation by Bretherton and Haidvogel
(in prep.). '

Rhines further discusses flow in two layers, initially
eithervuncorrelated or barqclinic at large scales. The flow
evolves rapidly by a kind of baroclinic instability, producing .
eddies at near the internal deformation radius. These eddies
lock together and grow in size until the larger scale flow
becomes strongly barotropic. Evolution is strikingly like our
previous discussion which might be termed a "thermodynamic"
account of baroclinic instability.

The real world also appears to tend to barotropic flow in
scales larger than the deformation radius. = Another observation
from reality is that ocean currents are more swift at the
western margins of ocean basins than at the eastern margins.

We have seen that without wind stress or dissipation of any
kind, random bcéan currents will become western intensified in

an effort to move toward thermal equilibration with the ocean




basin. Nonetheless we are mindful that there are other theories
of western intensification.

Is our qualitative agreement with observations only
fortuitous? Or have we somehow manipulated these verbal
arguments around to achieve known results? The answer to the
latter question is no. All of the results given gqualitatively
above have been obtained (Salmon et al., 1975) as asymptotic
expectation values of the time-averaged evolution of the
inviscid spectrally truncated equations of motion.

The question of fortuitous agreement remains. In particular,
we recognize that inviscid truncated equations cannot, in any
consistent way, be taken as an approximation to realistic flow.
Dissipation, on whatever length scales it may occur, is always
and essentially a part of the statistics of nonlinear flow.

Here "dissipation" need not necessarily mean molecular viscosity
though in principle one ultimately has viscosity (or infrared
radiation loss) in mind. However, we are discussing a gquasigeo-
strophic model of oceanic flow, and so our interpretation of
dissipation is really a kind of parameterization of the failure
of the model assumptions. Also, although there may be scales

of motion to which dissipation, real or parametric, is indeed
negligible, these nondissipative scales are coupled to other
scales and ultimately to dissipative scales.

In all, it seems surprizing that we appear to find agreement
with reality. More strikingly we find agreement with a variety
of numerical models employing a variety of different dissipative
méchanisms.‘ How a tendency toward thermal equilibration can
survive the demands of dissipation is the subject of our
concluding section. ‘

9. Caveats, disclaimers and excuses

The preceding discussion has passed by a number of fine
points. The admixture of statistical mechanical concepts is
imprecise or even inconsistent, e.g. as the assigning of
temperature to an isolated system. Although éach of these

errors can be set-right by more careful treatment, this kind



of precise discussion of the inviscid truncated problem is

just what will not carry over to the real dissipative problem.
It is valuable ‘to know how to do the inviscid truncated problem
precisely, as:a check against misapplication of ideas. However,
the object of this paper is to develop an intuition so simple
and so sturdy, albeit imprecise, that it may survive the carry
over to real flow.

Ideas of dissipation and forcing can be introduced into
the box of marbles, for example by replacing the righthand end
of the box with a semipermeable membrane allowing red marbles
sometimes to escape. The supply of red marbles is made up
elsewhere, e.g. by injection through the left end or random
injectioh over the interior. Now the stationary state departs.
from an uniform mix of marbles. How much is the departure?

A precise answer isn't easy. A rough answer is given by comparing
the residence time (average number of red marbles divided by
injection rate) and the equilibration time ( a characteristic

time for relaxation of nonuniformities in a conservative box).
When residence time is much longer than equilibration time, the
mixture comes near to equilibrium. 'When residence time is

shorter than equilibration time, substantial departure from
equilibrium is expected in the stationary state.

Even in cases of relatively short residence times, some
internal parameters may come nearly to their equilibrium values
while others remain far from equilibrium. Although the longi-
tudinal (left-right) gradient of red marble density may be
significantly non-zero, the transverse gradient stays nearly at
the equilibrium value, i.e. vanishing gradient, despite the
overall state of diéequilibrium.

One can go to some detail at making the non-conserving box
of marbles mimic fluid turbulence, e.g. setting up cascade
subranges. The serious difficulty however would arise in
attempting to quantify the residence and equilibration times. '
Very roughly though, we may think of fluid flows in either two .

or three dimensions as critically damped, i.e. as having residence: ..

times (ofrenstrophy in 2D, energy in 3D) the order of, or

somewhat less than, equilibration times. Apparently this results



from dissipation or failure of the model equations acting ever
increasingly effectively at higher wavenumbers. Processes which
would bring about equilibration among different regions of the
wavenumber spectrum ultimately cannot compete with dissipation.
This failure at high wavenumbers in turn places a demand for
transfer across'the.wavenumber.Spectrum“until‘the'flow is brought
overall nearly to critical damping.

We expect the spectral shape to depart substantially from
equilibrium as excitation cascades across scales of motion in
analogy to the longitudinal gradient of red marbles. - On the
other hand, correlations with topogréphy or between layers of
flow may persist in the presence of a cascade, like the zero
transverse gradient of marbles. However, for the fluid flow,
existence of transfer depends upon maintaing triple correlations
across scales of motion. This is expected to compete with, and
éomewhat to relax,.equilibrium correlations.

_ Dissipation -and forcing also act to sustain in the stationary
state certain processes which otherwise would vanish in the
approach to thermal equilibration. Intensification of currents
at a western margin becomes a permanent feature of the dissipative
flow, analogously to the rightward flux of red marbles. A -large
scale source of potential energy maintains ongoing baroclinic
conversion as the "flow" attempts to thermalize with the
"interface". ‘

At ‘a more fundamental level, the appearance of viscbsity
in the Navier-Stoke& equations represents a bringing into contact
of the flow with yet another reservoir, the field of molecular
agitation. By any commensurétion, changes in entropy associated
with flow variables are insignificant compared to increases in
entropy due to heating the'molecular field. Although we have
characterized the flow as hot or cold, by the same measure, the
molecular field is a very nearly infinite reservoir at very
nearly 0° absolute.. Dissipation in the two dimensional model
equations is parametric and presumed to act most effectively on
higher wavenumbers, thereby dissipating enstrophy more strongly
than energy. (Note that Ekman surface drag acts equally

effectively on all scales.  However, this form of dissipation
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does not obviate the need for a special high wavenumber form that
must be provided in addition.). ‘

Schematically we identify dissipation with an infinite
reservoir at the absolute zero of the second temperature. The
effect is to .cool the second temperature of the flow towards
positive 0¢ absolute. The equation of state simulatneously
moves thée first temperature toward negative. 0° absolute..
Interestingly, it is this state of double absolute zero which‘
Bretherton and Haidvogel (in prep.) recommend, though in quite
different words, as a model of flow over topography.

Just as dissipation is seen as a cooling of the flow,
forcing mechanisms are seen as. sources of warming, providing
enstrophy and so bringing the second (and third) temperature
up from near 0° absolute. Forcing also injects energy, warming
the first temperature ever nearer to negative 0° absolute
until bounded perhaps by Ekman drag. Heating with respect to
second temperature (second heat?) is injected mainly to the
interface, topography and basin reservoirs whereas dissipative
cooling acts on the flow. This results in flow second tempera-
tures far colder than equilibrium in thermal exchange with
interface, topography and basin temperatures usually much
hotter than equilibrium. ;

- Summing up, the statistics of ocean currents are divided
among a number of reservoirs identified nominally with the
topography, the interface between two layers, the ocean basin
and, what's left, the "flow". 1In isolation the reservoirs are
at different temperatures. Nonlinear interaction brings the
reservoirs into thermal contact, allowing the system to evolve
toward equilibration. An inviscid, spectrally truncated model
system achieves thermal equilibrium. Real flow however must
involve forcing and dissipation mechanisms. These appear as
sources of heating and cooling, applied differently to the
different reservoirs, which drive the system away from equilibrium.
Still, the real flow retains considerable internal freedom
which is resolved by entropy maximization. The resulting
tendency toward thermal equilibration is quite evident in

numerical simulations and also suggests some observed real



processes.

Lastly, we remark again that this discussion is only
qualitative.“'ThisfpartiCular format is probably inappropriate
to gquantification. On the other hand, résults of numerical
simulations can be, and often are, taken as ends in themselves.
Also we expect that quantitative theories will be developed
in terms of analytical closure hypotheses. 1In any case though,
the likely complexity of such developments will still call
for some manner of simple interpretation, which is the object

of this paper.
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