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Abstract 

Principles for incorporating the upstream effects of deep sills into numerical ocean circulation 
models using nonlinear analytical hydraulic models are discussed within the context of reduced 
gravity flow. A method is developed allowing the upstream influence of a numerically unresolv- 
able deep sill or width contraction to be reproduced. The method consists of placing an artificial 
boundary in the numerical model's overflowing layer at some distance upstream of the actual sill 
or width contraction of the deep strait. Given the model state at time t, the dependent flow 
variables are then predicted at the artificial boundary at time t + A t  by using the method of 
characteristics in combination with quasi-steady hydraulic laws. The calculation requires the use 
of Riemann invariants and examples are given for a simple nonrotating flow and for rotating 
channel flow with uniform potential vorticity. The computation is considerably simplified by 
linearizing the relevant equations in the vicinity of the artificial boundary, resulting in a linear 
wave reflection problem. The reflection coefficients for the two cases are calculated and these can 
be used directly to numerically satisfy the boundary condition in a straightforward way. 

1. The problem 

Deep overflows are difficult to reproduce in global models of  ocean circulation. Not 
only are the rapidly varying flows difficult to resolve, but the numerical model equations 
may be unable to faithfully reproduce the peculiar dynamics--hydraul ic  control, down- 
stream mixing, etc.--characteristic of  overflows. Hydraulic control may be an important 
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regulator of the circulation and stratification of the deep flow upstream of the sill, while 
mixing has obvious consequences for the downstream flow. At least two simplified 
models of the downstream mixing have recently appeared (Jungclaus and Backhaus, 
1994 and Price and Baringer, 1994) and these could, in principle, replace the local GCM 
treatment. In this paper we discuss how analytical hydraulic models may be used to 
reproduce the upstream effects of the sill without actually resolving the sill flow itself. 
Although this substitution is straightforward in purely steady models, it is not so in the 
presence of time dependence. 

Referring to Fig. 1, which shows a deep overflowing layer of density P2 underlying a 
layer of density p~, we propose to remove the flow 0 < x < x d from the numerical 
model. We must therefore provide boundary conditions on the numerical model at x = 0 
and x = x d. Our primary area of focus will be the boundary at x = 0, which is 
fundamental to the hydraulic control of the upstream flow. The boundary condition at 
x = x d, which specifies the degree of mixing taking place in the out flowing region in 
lee of the sill is not discussed and the reader is referred to recent 'outflow' models cited 
above. 

Our aim is to discuss general principles and methodology rather than detailed 
procedures, as the latter will vary from one numerical model to the next. In some cases, 
implementation may even require further advances in rotating hydraulic theory. We 
therefore illustrate our methods using results from two idealized systems, both utilizing 
the 1½-layer approximation. The first involves simple nonrotating flow controlled by a 
sill and/or side contraction. Although not directly applicable to most deep passages, this 
model can be analyzed with minimal algebra and nicely demonstrates our main points. 
The second example is based on rotating flow with uniform potential vorticity which is 
hydraulically controlled in a deep passage with rectangular cross-section. Although 
idealized, this second model might be used to approximate the upstream effects of actual 
deep sills or width contractions where the overlying fluid could be considered locally 
inactive and the cross section locally rectangular, 'locally' meaning within a few grid 
points of the sill. For more general conditions, our guiding principles may still apply as 
detailed in Section 6. 

Hydraulic control implies a relationship between the geometry of the control section 
(usually the most constricted section of the deep strait) and the variables characterizing 
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Fig. 1. Definition sketch. 
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the upstream flow. For example, a single-layer, nonrotating flow in a channel with 
uniform width and a sill of height d s is constrained by the relation 

2 
1 3 -~ 
-~ u 2 + gh - ~ (guh)  = gd, (1)  

where h is the depth and u the velocity of the upstream flow. (This relation is derived in 
Section 2.) In a noncontrolled flow h and u may be varied independently of each other; 
in a controlled flow they are linked by Eq. (1). 

The property described above can be illustrated by the following experiment. Start 
with a steady, hydraulically controlled flow [with upstream values h and u therefore 
satisfying Eq. (1)]. At some location far upstream of the sill, generate a disturbance 
which attempts to establish new values u and h which do not satisfy Eq. (1). By doing 
so, one is attempting to establish a new flow inconsistent with the hydraulic control. As 
shown in Fig. 2(a), the disturbance will propagate and eventually reach the sill in the 
form of a wave front, with the initial flow downstream and the new flow upstream. 
When the wave reaches the sill a reflected wave is generated (Fig. 2(b)) which 
establishes yet another flow with depth h 2 and velocity u 2 and it can be shown that 
these new values satisfy Eq. (1). For the case of a noncontrolled flow the same 
experiment can be performed with the result (Fig. 2(c)) that the reflected wave is 
isolated and does nothing to alter the upstream state u and h. (The schematic diagrams 
of Fig. 2 are based on actual integrations of the full shallow water equations by Pratt 
(1984)). In conclusion, hydraulic control is a process exercised through wave reflection, 
an idea central to its incorporation into GCMs. 

Now suppose that the flow upstream of the obstacle has more complicated time-de- 
pendence, with many incident and reflected signals. We also assume that the wave 
lengths of all disturbances are large compared with the half-length L of the sill (Fig. 1), 
so that the flow over the obstacle is quasisteady and Eq. (1) may be applied at any given 

Incident Wave 

h h ~ 

(a) 

Reflected Wave Reflected Wave 

Co) (c) 

Fig. 2. Reflection of incident bore-like wave showing (a) the incident wave, (b) the reflected wave for the case 
of critically controlled flow and (c) the reflected wave for the case of no control. 
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instant in time. Suppose further that the time-dependent and possibly nonlinear upstream 
state is calculated using a GCM with an artificial boundary at x = 0 (Fig. 1). From a 
computational standpoint, the problem is this: Give u and h for all x < 0 at some initial 
time t 0, what is the boundary condition (at x = 0) at time t o + At? Once this condition 
is known it should be possible to compute the remainder of the interior (x  < 0) solution 
at t o + At using the applicable finite-difference or spectral scheme. Of course, certain 
time-stepping schemes may require the boundary conditions at t o + 2 At or t o + A t / 2  
say, but this does not greatly alter the procedure outlined below. 

Since Eq. (1) provides only a relationship between u and h, and not individual 
values, additional information is required to calculate the individual values u(0,t 0 + At) 
and h(O,t o + At). To proceed, one must rely on the property that hydraulically con- 
trolled flows can be influenced only by information originating upstream of the control 
section (here the sill). In terms of the flow at x = 0, signals propagating in the 
downstream direction may be regarded as being independent while upstream propagat- 
ing signals depend on Eq. (1) and provide no further information. The separation of up- 
and downstream propagating information is particularly straightforward, even under 
nonlinear conditions, when the governing equations are locally hyperbolic. One may 
then use the method of characteristics and Riemann invariants to project incoming 
signals forward in time at x = 0. 

One can generally force the equations of motion to be hyperbolic near x = 0 by 
making the approach from the upstream basin gradual and sufficiently narrow that all 
scales of x-variation, including wave lengths, are large compared with the channel width 
(see Fig. 3). In practice, imposing this geometry may lead to some local departures from 
actual bathymetry. Even when the flow has strong cross-channel variations, it is 
generally possible to separate this dependence from the x- and t-dependence and define 
a hyperbolic system in terms of certain bulk characteristics. This procedure is well 
known in hydraulic theory and an example is given later in this paper. 

In practice, the fluid overlying the lower layer will be partitioned into a number of 
layers or levels, the motion within computed numerically. If the bottom layer velocities 
developed at the sill are relatively large compared with the overlying fluid, it may be 
acceptable to decouple the lowest layer from the overlying fluid. One then imagines an 
artificial boundary to exist only within the lowest layer, so that the flow from x = 0 to 

approach 
~ \ \ sill or width 

~ , ~  contrac~on 
deep basin 

(artificial boundary) 

Fig. 3. P|an view of deep strait, th¢ side wall boundaries corresponding to an isobath. 
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the sill is removed from numerical treatment only in the lowest layer. Overlying motion 
is calculated using the normal numerical procedure or a modified form thereof. 

Section 2 describes the procedure outlined above when the flow in the deep channel 
is nonrotating and uniform in cross-section. We then demonstrate the procedure using a 
problem for which a full analytical solution is known: linear wave reflection from the 
sill (Section 3). In Sections 4 and 5, this plan is repeated for the case of rotating channel 
flow with uniform potential vorticity in the cross-stream direction, a model we believe to 
be suitable for incorporation into GCMs. Aside from their intrinsic physical interest, the 
linear wave reflection calculations lead to an algebraically simple, approximate method 
for numerically satisfying boundary conditions. 

2. Nonrotating c h a n n e l  

For purposes of illustration we first consider a nonrotating channel with rectangular 
cross-section and containing a flow with depth and velocity uniform in the cross-axis 
(y) direction. Upstream of the artificial boundary (x < 0) we assume that the channel 
width and bottom elevation have constant values W and 0. (The procedure for variable 
width and bottom elevation is included in the rotating model of Section 4.) Downstream 
of the artificial boundary x > 0 the channel contains a sill of elevation d s and side 
contraction at which the width is W s, here assumed to lie at the same value of x. The 
flow in this region is assumed quasisteady. 

The equations governing the time-dependent flow in the approach are 

Ou Ou Oh 
- -  + u - -  = 0 ( 2 )  
Ot Ox + g-~x 

Oh a(uh) 
+ - -  = 0  (3) 

Ot Ox 

where g denotes gravitational acceleration (l-layer model) or reduced gravitational 
acceleration (1½-layer model). 

Using a procedure described by Whitham (1974)it is possible to write Eq. (2) and 
Eq. (3) as 

d±R+ 
0 (4a) 

dt 

where 

d± 0 0 
+ u + (4b) 

dt Ot -~x 

and  

1 

R+-= u + 2(gh) ~- (4c) 
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R± are the Riemann invariants corresponding to the two gravity waves of the system 
(identified by ' + '  or ' - ' )  one of which propagates with speed u + (gh) ½ and the other 
with speed u - (gh)~. In the absence of width or bottom elevation variations, R+ and 
R are conserved following these signals. The local velocity and depth can be related to 
R-:t by 

1 
u = ~ ( R +  + R_) (5a) 

1 
g h =  ] - ~ ( R + -  R_) 2. (5b) 

In the quasisteady region immediately downstream of the artificial boundary, the 
energy (Bernoulli function) and volume transport are approximately uniform over x at 
any t, and we may therefore write 

2 
U s 

u~ + ghb= + g( hs + ds) T T (6) 

and 

U~hbW= u,h,Ws (7) 
where the subscript b denotes values at x = 0 and s denotes values at the sill/width 
contraction. At the sill the flow is critical: 

1 

us = (gh~) ~ (8) 

Eliminating u s and h s between Eq. (6) and Eq. (8) yields the relation 

2 
1 3 

"~u 2 - ~ (gUbhbW/W, )  3 + gh b = gd s (9) 

which is essentially Eq. (1) generalized to include width variations. Substitution of Eq. 
(5a) and Eq. (5b) into Eq. (9) yields 

(lo) 
in which R+ and R are evaluated at x = O. 

The computational procedure for determining the values of ub(t o + At) and hb(t o + 
At) from the known u(x,to) and h(x , t  o) over x < 0 is straightforward. First, calculate 
the characteristic speed u(x, to) + [ gh(x,  to)]½ at several grid points to the immediate left 
of the artificial boundary x=O.  From these estimate the origin ( x = x  0) of the 
characteristic curve d x / d t  = u ( x , t ) +  [gh(z,t)] ½ which passes through x = 0 at time 
t o + At. (Since the numerical scheme will generally prevent information from propagat- 
ing more than one grid point in one time step, the interpolated value will lie between the 
last two grid points.) Next, compute the value of R+= U(Xo,t o) + 2[gh(xo,to)]½ which 
corresponds to this curve. Since R+ is conserved, it follows that the value of 
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u(0,t 0 + At)+2[gh(O,to+ At)]" has been established. Third, calculate the value of 
R(0 , t  0 + At) from Eq. (10). The boundary values of both R+ and R are now known at 
t o + At and the corresponding u and h can be computed from Eq.-(5a) and Eq. (5b). 
Once the interior flow field at t o + At has been numerically determined, a corrective 
procedure can be implemented if desired by re-estimating the path of the original 
characteristic curve. 

3. Wave reflection 

We now turn our attention to an example of the procedure just described, namely, 
linear wave reflection from a sill. There are several reasons for choosing this particular 
calculation, one being its use as an illustration of the numerical procedure in a familiar 
setting where the analytical solution can also be found. Second, the result of the 
calculation, the reflection coefficient R c, can be used as a basis for a substitute to the 
procedure described in the previous section. If the approach flow can be approximated 
as the sum of a slowly varying background (h = H, u = U) and linear perturbations 
(~l(x,t), u'(x,t)) then the characteristic curves are straight lines and Eq. (10) is replaced 
by a simple linear relation between incident and reflected wave fields. Although the 
simplification in the procedure for forecasting the boundary conditions is modest, the 
simplification of the procedure described later for rotating channel flow is enormous. 
Finally the linear reflection problem is of intrinsic interest from the standpoint of 
time-dependent sill flow and, in fact, leads to some unexpected results. 

Suppose now that the approach region of the channel has uniform width W and 
extends a great distance upstream of the artificial control. Downstream the channel may 
narrow, reaching its minimum width W, at the sill section. At some initial instant the 
upstream flow is steady and uniform with depth and velocity H and U except for the 
presence of an isolated wave of small amplitude propagating towards the artificial 
boundary. The object is to calculate the reflected wave. 

As a starting point, consider an incident or forward propagating disturbance moving 
into a steady region with velocity U and depth H. If we denote the disturbance velocity 
and depth by U + u t and H + ~11 then 

1 

R+= U +  u , +  2 [ g ( H +  rh)] ~-, 

1 

R_= U + u , -  2[ g( H + rl,)] ~ 

1 

= U -  2 (gH)  2 . 

From the second relation we have 

1 1 

u, = 2[ g( H + ~,)]  ~ - 2 ( g H )  -~ 
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and therefore 

1 1 1 

R+= 2 u t +  U +  2(gH) 7 = 4 [ g ( H + ' o t ) ]  2 + U -  2 (gH)  3- ( l l a )  

The same procedure can be carried out with a backward propagating wave with 
velocity U + u R and depth H + "qR, leading to 

1 1 1 

R_ = 2u R + U -  2(gH) 7 = - 4 [  g ( H +  ~TR)] ~ + U +  2 (gH)  ~ ( l l b )  

For backward and forward propagating disturbances moving through each other we 
may simply regard u t and ~Tt as proxies for R+ with the interpretation that they 
represent the actual velocity and displacement when the backward propagating distur- 
bance is absent. The same interpretation applies to R ,  u R, and r/R. For (7/<< H,u << U) 
Eq. (1 la), Eq. (1 lb) reduce to 

1 1 

ul=g2H 2711 (12a) 

1 1 

u R = - g 2 H  27/R. (12b) 

In addition Eq. (5a), Eq. (5b) can be used to show that u t + u R and r/t + r/R are the total 
perturbation velocity and depth associated with two linear waves passing through each 
other. 

In the numerical version of this analytical calculation Eq. (12a), Eq. (12b) would be 
hidden. The algorithm would simply identify the values of R+ contained in the incident 
wave, project them along characteristic curves to the artificial boundary, and calculate 
the R values determining the reflected wave from Eq. (10). Alternatively, one could 
analytically calculate the reflection coefficient 

R c = ~R(O,t) /Tl t(O,t)  

by substituting Eq. (lla),  Eq. ( l ib )  into Eq. (10), linearizing, and using Eq. (12a), Eq. 
(12b). After some algebraic simplification the result 

[ l ( I + F d )  1 - F 3 a ( W , / W )  3 

R~ = (13) 

is obtained, where F a is the Froude number of the background approach flow: 

1 

= e / ( g n )  2. 

An alternative numerical procedure, then, would be to identify u I and r h from the 
calculated upstream values of R+ and the relation Eq. (1 la), project their values to the 
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artificial boundary along straight characteristic curves d x / d t =  U +  ( g H ) ' ,  compute 
71e(O,t) using the reflection coefficient Eq. 0 3 ) ,  and find ue(O,t) using Eq. (12b). The 
projected boundary values of  depth and velocity would therefore be H + (1 + Rc)Tli and 
U + ( g / H ) ' ( 1  - Rc),lt. Such a procedure would be valid as long as the variations in u 
and h in the region immediately upstream of the artificial boundary are small compared 
with the mean or background values H and U. Note that U and H can be redefined at 
the start of  each time iteration to account for a background with slow temporal 
variations. 

Fig. 4(b), Fig. 4(c) shows plots of  the reflection coefficient Rc for subcritical 
upstream flows 0 < F d < 1 and for various values of  the width constriction ( W , / W ) .  
(The analysis is invalid and would probably be of  little geophysical relevance for 
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Fig. 4. (a) The relationship (14) plotted for three values of W s / W. (b) The reflection coefficient R c 
various W~ / W. All but the HI, / W = 1.0 curve grow without bound as F a --* 1. (c) R c 
but the curve W, / W = 1.0 go off to + oo or - ~. 

vs. F d for 
vs. d s / H. Again, all 
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F d > 1 .) To interpret the results it is helpful to keep in mind the relation between F d and 
the relative obstacle height 

2 
1 3 - 2 

7 F f  - ~F3  ( W , / W ) - - 3  + 1 = d , / H  (14) 

which is nothing more than the dimensionless version of Eq. (9). This relationship is 
plotted in Fig. 4(a) for several values of Ws/W.  For near zero values of F d, where the 
obstacle occupies most of the depth range of the approach flow ( d s / H  --- 1), waves are 
almost completely reflected (R  c ---> 1). For larger values of F d the behavior of R c is 
more subtle, particularly for cases of width contractions or expansions (values of 
W J W ~  1), and we therefore describe the case W J W =  1 first. As F d increases from 
zero, the portion of the total layer depth occupied by the obstacle decreases (middle 
curve in Fig. 4(a)) and it is not surprising that the value of R c decreases as well (middle 
curve in Fig. 4(b) and Fig. 4(c)). However, as the obstacle height vanishes, which occurs 
in the limit F d ~ 1, the reflection coefficient does not vanish, approaching the value 

I 
R c = ~ instead. This unexpected result is a consequence of the fact that the upstream 
flow becomes critical as F d ~ 1, creating a near resonant state in which the reflected 
waves become stationary. Even the slightest variation in topography is able to produce a 
finite reflection. In fact, the only feature that keeps the reflected amplitude from blowing 
up is the fact that the sill height vanishes as F d ~ 1. Nonlinear theories for small but 
finite d,, (e.g. Pratt, 1984; Grimshaw and Smyth, 1986) have shown that no steady 
solutions with the given uniform upstream conditions exist as F d ---> O. 

For cases of finite width contractions the behavior of Rc is more complicated. If the 
sill section is constricted ( W J W <  1) the value of d J H  decreases from unity (at 
F d = 0) to a negative value (at F d = 1), indicating that the sill elevation has become 
negative (lower curve in Fig. 4(a)). In the limit F d = 1, critical flow exists upstream of 
the control section of the channel, the latter consisting of a width contraction and a 
depression in the bottom. As shown by the W/W~ = 0.5 curve in Fig. 4(b), R~ decreases 
from a value of unity at F d=O to a minimum of R~-=-0.7 at F d---O.1 and then 
increases without bound as F a ~ 0. The W/W~ = 0.5 curve in Fig. 4(c) shows corre- 
sponding behavior as d s / H  decreases. A range of upstream flows therefore exists for 
which the reflected wave has larger amplitude than the reflected wave, possible 
whenever W J W  ~ 1. 

Cases of width expansion are even more intriguing, as demonstrated by the W J W  = 
3.0 curves of Fig. 4. The plot of d J H  versus F d, in Fig. 4(a) has a minimum at 
F d -- 0.5, showing that a given upstream depth does not necessarily determine a unique 
upstream flow. Thus the plot of R c as a function of d s / H  (e.g. the Fig. 4(c) curve with 
W s / W  = 3.0) does not yield a single valued relation. As d J H  is decreased from unity, 
R~ also decreases until the minimum d J H  is encountered. Proceeding further down- 
wards along the curve causes d J H  to increase as Rc ~ - ~ .  The relationship between 
R~ and F d continues to be single valued in this case as shown by the W s / W  = 3.0 curve 
in Fig. 4(b). Note that situations in which no reflected wave is generated (Re = 0) is 
possible whenever ( W J W ) >  1. In such cases, the relationship between velocity and 
displacement in the incident wave exactly satisfies the hydraulic relation. 
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Values of IRe1 > 1 do not imply wave overreflection of energy, a finding which 
would imply flow instability. As we now show, the increase in reflected wave amplitude 
is accompanied by a sufficient decrease in wave length that the total reflected energy is 
less than the incident energy. Suppose that an isolated incident wave approaches the 
artificial boundary at t = 0, resulting in an isolated reflected wave at t = t o. Following 
Hayashi and Young (1987) or Ripa (1989) we define the incident disturbance energy as 

1 
Et = _ fo=( Hu 2 + g~7~ + 2Uutrll)t=o dx. (15) 

2 - 

For a flow containing only an incident wave, E t is the difference between the total 
energy of the disturbed and undisturbed upstream flow (neglecting terms of order 
amplitude cubed). A similar definition may be made of the reflected disturbance energy 
E R. Using Eq. (12a), Eq. (12b) the ratio of the two energies may be written as: 

ER /°_®(1 + Fd)r l2(X, to)dx  

R e = ~ =  fo®( l + F d ) n ~ ( x , 0 ) d x .  

The two x- integrals may be converted to time integrals at x = 0 by projecting the 
values of r/I and ~R along characteristics. Hence 

1 2 2 

(1 ~ Fd~2 f ~ O ~ t ~  dt (1 
- - - - R  E= - . (16) 

Re = ( I  + Fa)E f~n~(O,t)dt  = -(1 - Fd) 2 ¢ I 2 2 

( I + F~d ( W s / W )  "~) 

The value of R e is thus __ 1. It is worth noting that if the cross term (Urlru t in Eq. 
(15)) is incorrectly left out of the definition of energy the resulting quantity, commonly 
referred to as wave energy, can increase during the reflection process. Note that the 
disturbance energy flux can be obtained by dividing Eq. (15) by the wave period. Since 
the reflected and incident periods are identical, R e can be interpreted as a disturbance 
energy flux coefficient. 

It may sometimes be desirable to formulate a reflection coefficient in terms of mass 
or volume. Again consider an isolated incident wave at t = 0 which partially reflects 
resulting in an isolated reflected wave at t = t o. The net displacements associated with 
each disturbance are 

M t = f °=nt  (x ,O)  dx M R = fo  ®~IR(X,to) dx 

and it can be shown through integration of the linearized form of Eq. (3) over 0 < t < t o 
and -oo  < x  < 0 that 

1 2 

M R 1 - F d 1 - F ~ d ( W , / W )  ~ 
R v =  M t I + F a R c =  ' 2 • (17) 

1 + F j ( W J W )  7 

Fig. 5 contains plots of R,, as a function of d , / H ,  where again Eq. (14) has been 
used to write F d in terms of d , / H .  As can be seen directly from Eq. (17), IRvl < 1 for 
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nm 
1.0 

Ws/W = o.1 

. - -  0.8 

0.6 

, i 

I 
Fig. 5. The volume reflection coefficient R,. as a function of d , / H  using (14) and (17). The W s / W  values 
for each curve are (from top to bottom) 0.1, 0.5, 1.0, 1.5 and 3.0. The upper two curves continue to the left of 
d , /H  = - 0 . 7 8  where they have been discontinued. The curves W~ W, = 1.5 and 3.0 terminate as shown. 

all 0 < F d < 1 and therefore the reflected wave carries less absolute displacement than 
the incident wave. Also note that M R = 0 if M t = 0 so that no transport rectification is 
possible. (Rectification would require that we consider nonlinear effects in the upstream 
wave field, as done by Helfrich (1995), in connection with a two-layer flow.) 

Finally, we take a few lines to formalize the 'quasisteady' approximation. The 
general idea is that over the obstacle, the hydraulic balance between terms like 
u(Ou/Ox) and gOd/Ox continues to dominate the shallow water equations despite the 
induced time dependence. If  we partition the flow over the obstacle between basic 
(U,H) and wave induced (u',r/) fields, the x-momentum equation reads 

O u O u' O U Orl 
- - + U - - + u ' - - =  
3t 3x 3x g 3x 

If the first term is small with respect to any of the remaining three, the quasisteady 
assumption is valid. The ratio of the first to the second is L/UT,  where L is the 
obstacle half length. For an incident wave of length A, the period T is h / [u  + (gH)½], 
and thus L / U T =  (L/A)(1 + F d) = 0(L/A).  A good rule of thumb, then, is that the 
incident wave length be >> L for quasisteadiness. This rule breaks down if F d --* 1, for 
then the wave length h R of the reflected wave becomes smaller than L and the above 
scaling arguments must be reconsidered. As mentioned earlier, such situations are 
unlikely to occur in the deep ocean. Our calculations also assume that bores or other 
nonlinear disturbances which might be generated downstream of the sill cannot reach the 
sill. The conditions under which this assumption holds involve analysis of possible 
hydraulic jumps in the lee of the sill and are more difficult to formulate in simple terms. 
For further discussion of the above assumptions in connection with a two-layer flow the 
reader is referred to Helfrich (1995) or Baines (1995). 

4. Deep sill with rotation 

We now consider the case of rotating channel flow with uniform potential vorticity, 
q. 'Uniform' means that q does not vary with x or y over the region extending from the 
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artificial boundary (x = 0) to the sill, whereas slow variations in t are permitted. Thus 
the numerically calculated value of q just upstream of x = 0 at time t is assumed to be 
the value from that position to the sill. Although y-variations in this numerically 
calculated q would lead to a dilemma, the resolution afforded by most current GCM's 
makes it difficult to distinguish uniform from nonuniform potential vorticity across deep 
passages as narrow as the Denmark Strait, Faroe Bank Channel or Vema Channel. 

The assumption of spatially uniform q with slow temporal variations specifically 
means that a wave propagating from the artificial boundary to the sill and being 
reflected back to the boundary sees a fixed value of q. If c i and c r are the average 
speeds of the incident and reflected wave and L is the boundary-to-sill distance, then the 
travel time of the signal over the path just described is approximately L / c  r + L / c  i = 
O(L/cr) (since Icrl is normally < Icil). The time period of change of q within the 
region is the advection time L/U ,  where U is a typical x-velocity. Our approximation 
thus requires that U/c  r << 1, or roughly that the average Froude number of the 
approaching flow be small, a situation typically satisfied. 

We continue to assume a rectangular cross-section, although width and bottom 
elevation changes in the approach region are now formally included. Although Riemann 
invariants can, in principle, be found for channels with continuous y-variations in 
bottom elevation the technical details are more difficult (e.g. Boren~is and Lundberg, 
1986). Though somewhat artificial, the rectangular-cross-section model does provide the 
basic ingredients for critical control of an abyssal flow. For numerical purposes the 
cross-section need only be rectangular only one grid point upstream of x = 0. 

The development of the unsteady rotating-channel equations for uniform potential 
vorticity is laid out in Pratt (1983) and is based on the formalism introduced by Gill 
(1977) for steady hydraulics problem. Due to the increased number of dimensional 
parameters it is easiest to present the results in dimensionless form using A, the typical 
wave length, as a scale for x-variations, D as a depth scale, g t - ~ / f  as a width scale ( f  

being the constant Coriolis pardmeter), A / (gD)  ~- as a time scale, (gD)/ fA as scale for 
v (the y-velocity) and (gD) ~- for u. Under the assumption of gradual variations along 
the channel (A >> (gD)½/f )  the potential vorticity is approximated by 

1 - Ou/Oy 
q =  h (18) 

all quantities now being dimensionless. Furthermore the along-stream velocity is approx- 
imately geostrophic: 

Oh 
u = - - -  (19) 

Oy 

a fact which allows Eq. (18) to be rewritten as 

02h 
OV 2 qh = - I .  (20) 
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The solution to Eq. (20) and the corresponding geostrophic velocity can be written in 
the form 

h = q-l + 8h(x,t) 

1 I sin I:y ) cos (qq 
+ [h(x, t )  - q- 

sinh[ q½ W( x)/21 coshl q½ W ( x) /2]  

(21) 

and 

[ i ] [ 11] cos (:y) si (q y) 
u = - q 2  8h(x,t) , + ( - h ( x , t ) - q - 1 )  l " 

sinh q~W( x ) / 2  cosh qTW( x ) / 2  

(22) 

The integration 'constants' 8h and h have been chosen to represent half the difference 
and sum of the depths along the side walls lying at y = ___ ½ W(x), that is 

-h = h[ x,W( x)/2, t]  + h[ x , -  W( x) /2 , t ]  
2 

hi x,W( x)/2, t]  - h[ x , -  W( x) /2 , t ]  
8h= 

2 
The x- and t-dependence of the solutions are obtained by evaluating the x-momen- 

tum equations on both side walls, applying the boundary conditions v[ x, + ½W(x),t] = 
+ u[ x, + W(x),t]d(W/2)/dx and substituting the expressions Eq. (21) and Eq. (22) for 
u and h. Taking the difference and sum of the two results leads to 

O~(Sh)-q-iT-l 'ShTx ( ~h) + q T T S ( q - ~ - - h ) -  rq- -~x 

,__[ aa(x) l dW 1 
= Tq-2[  -d.x- 4q(u+h+-u-h-) '---~j  (23) 

Oh l_ _ O 1 0h  1 1 
Ot - qET- lh~x(Sh)  - q-gT-18h-~x = ,+ qTT-l(u+h+ + u_h_) (24) 

where 

T= tanh[q½ W( X)/21,  

d(x) denotes the bottom elevation, and the subscripts ' + '  and ' - '  denote quantifies 
evaluated at y = + W(x)/2.  
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Using the method described by Whitham (1974), Eq. (23) and Eq. (24) may be cast in 
the form 

d + R ±  d[d(x)] +[q('f i6h+-h6u) 
dt dx 

- q i r - I  q : r - ~ 6 h - c ±  - h - ~ ( ~ + S u S h )  dx 

where 

d +  

dt 

and 

0 0 

Ot + c± Ox 
1 1 1 

c±= -q:T-lSh+-h:[l- T2(I- qh)] :, 
I 

R ±= -q2T-16h + fhr( ot)da, 
1 

= - r (l - q:)] :, 
1 

"fi = - q2 T- :6h 

(26) 

(27) 

(28) 

1 

6u=q2T(q  - '  --h). 

As with the nonrotating case, R ± are conserved along characteristic curves dx/dt = c ± 
provided d(x)/dx = dW/dx = 0. If the approach section of the channel (upstream of 
x = 0) converges, then the rate of change of R± obeys Eq. (25). 

There are several points to be made about these relations. First, the term -q½T-~6h 
appearing in the signal speeds c ± is nothing more than the average fi of the x-velocities 
at the two side walls. Second, the signals are essentially nonlinear Kelvin waves 
modified by the cross-channel shear and depth variation. In the limit of slow rotation, 
T ~ 0, Eq. (26) reduces to 

1 

c±=f i  +7~ 7 , 

the dimensionless form of the nonrotating result. Third, the governing equations are 
valid only as long as the fluid depth remains finite across the entire channel width. It is 
well known that rotating channel flow can separate from the wall at y = W/2 forming a 
free edge. As argued by Stern (1980) and supported in the laboratory experiments of 
Pratt (1987) the presence of a free edge in rectangular geometry implies supercritical 
flow, which is inconsistent with the upstream state of a hydraulically controlled flow. 
This result is tied into the fact that Kelvin waves no longer exist along the wall at 
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y = W/2 once separation occurs. We will therefore consider only nonseparated flow in 
the upstream sections. Finally, the indefinite integral in the definition (Eq. (27) and Eq. 
(28)) of the Riemann invariant R _+ can be evaluated in closed form, the result being 

1 1 

f-hr ( a)dt~ = ~ 7 [ 1 _  T 2 ( 1 -  q~)] 7 
l l 1 

+ I T _ , q _  ½( 1 _ T2)ln{2Tq~-hT[1_ T 2 ( 1 -  q~)] 2 

+ 2r2q  + 1 - r }. (29) 

The dimensional forms of the Kelvin wave speeds and Riemann invariants are 
1 1 

c ~ =  ~ A  = fi* _+ ( g h ' ) 7 [ l -  T = ( I - q * - h * / f ) ]  T- 

'I[ R*+_=~g-DR=fi* ±(g-h*) 7 l - T Z ( 1 - q * - h * / f ) ]  7 

{(q t 1 *Tt" ) ' 2 In  +-T-t(f /q2 2T ----7- z [ 1 - T 2 ( 1 - q * h ' / f ) ]  ~ 

(30) 

2T2q *-h* }] 
+ f + 1 - T z (31) 

At the artificial boundary x = 0 the conditions to be satisfied stem from conservation 
of mass and energy between x = 0 and the sill as well as the condition c_ = 0 of 
criticality at the sill. By the geostrophic relation the quantity 

Q = - r h h  (32) 

which is one-half the total volume flux is conserved, as is the quantity 

1 1 
~= .~qT_ 2( Sh) 2 + .~qT2( q_ , _~)2  + ~ ,  (33) 

the average of the Bernoulli functions evaluated at each wall. As shown by Pratt (1983) 
(specifically his (4.2) and (4.3) as adapted from Gill, 1977), combining these relation- 
ships with the statement of sill criticality lead to the following constraints 

~4 + q- , (T72  _ l)h~ - T74Q 2 = 0 (34) 

and 

1 3 _  
-- -~qT~2(q -l - h s ) ( q  - t  - 2h~) - ~h,. = d s. (35) 
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One can now set the machinery of Section 2 in motion. In principle the average depth 
hs, over the sill could be eliminated from_Eq. (34) and Eq. (35), forming a single 
equation (analogous to Eq. (6)) for Q and B. By evaluating Q and B at the artificial 
boundary one would then have a single equation relating 8h(O,t) to h(0,t). In principle 
the desired relationship between R+ and R could be found by writing 8h and h in 
terms of R+ and R_ using Eq. (27) and Eq. (28) and substituting into the former result. 
The algebra involved would be nightmarish and one would be better off writing a 
numerical algorithm to accomplish the task. An attractive alternative would be to use the 
results of the linear reflection coefficient calculation presented next. 

If a boundary condition on v is required, the approximation v = 0 might suffice since 
the artificial boundary is within the deep strait where the flow is nearly unidirectional. 

5. Kelvin wave reflection 

The calculation of the reflection coefficient for linear Kelvin waves parallels the steps 
laid out in Section 3 for the nonrotating case and, since the algebra is much more 
tedious, we only outline the steps. To start with, denote the background values of h and 
8h by H and 8H, and let U = -q~-T-18H. It is now assumed that dW/dx = dd/dx = 0 
at x = 0, though the channel may widen or shoal elsewhere. Next, using the definitions 
Eq. (27) and Eq. (28) for the rotational Riemann invariants, define ~I.R and rb. R by 

R + = 2 f i , + U + f ~ r ( a ) d c ~ = 2 f n + ~ ' r ( e e ) d a + U - f ~ r ( c e ) d o e  (36a) 

and 

R = 2 ~ R + U - - f H r ( a ) d o e  = - 2 f H + - ~ " r ( a ) d a + U + f u r ( a ) d a  (36b) 

where again U + fit.R and H + ~t,R can be shown to be the average of the side wall 
velocity and depth for incident or reflected waves moving into regions of undisturbed 
(background) flow. For "~t.R <</~ we have the linear approximations 

= 

= + 

(37a) 
- r( H)'~! 

I 

=/~-½[  1 -  T2(1 - qH)] 2.~, 

and similarly 
I 

To calculate the reflection coefficient, one first uses Eq. 
substitute for B and 

(37b) 

(32) and Eq. (33) to 
Q in Eq. (34) and Eq. (35). Next, substitute U +  ~t + uR for 
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- q ~T- 18h, H + ~s + ~R for h, and H~ +_h's for h~, in the new version of Eq. (34) and 
Eq. (35) and linearize. Finally, eliminate h'~, between the two resulting expressions and 
rearrange, obtaining 

"~R (1 - G ) ( I + F )  
Rc = _ - -  = ( 3 8 )  

'r/t (1 +G) (1  - F )  

where F is the Froude number of the approach flow: 

U 
F =  

I 1 ' 

r2(1- q )l 

(39) 

G is defined by 

F-' 

and the subscript s denotes values evaluated at the sill. One can recover the nonrotating 
result by  reducing either W or q to zero, corresponding to T--+ 0, in which case 
G --+ F ' ( W s / W ) +  and Eq. (13) is obtained. Also, one can obtain a reflection coefficient 
for displaced volume in the same manner as done in the nonrotating case. The result is 

1 - F  

where R,, is the ratio of displaced volume of the reflected and incident waves. 
The simplicity of the formula for Re is deceptive. In addition to the p__otential vorticity 

q, the geometric parameters T and ~ ,  and the dynamical quantity H at the artificial 
boundary, the formula depends on H s, the critical value of H at the sill. In order to 
express R c entirely in terms of geometrical and upstream dynamical information H, 
must be related to the upstream_ base flow. To do so one must solve the quartic equation 
obtained by replacing hs by H~ and Q by HSH in Eq. (34), namely H~ + q-l(T~-2 - 

1)t7, 3 -- T;4(_HS/-/) 2 -- 0. The end result is that Rc depends on the five quantities q, T, 

T,, 6H and H. Alternatively, the sill elevation d, may be substituted for any of the five 
through the use of Fx 1. (33) and Eq. (35). 

To display the results (see Figs. 7-10) the values of R~ are plotted in (H, 6H) planes 
corresponding to particular values of q, T, and T r In addition to the contours of constant 
R~ (thin solid lines) the constant d~ contours (dashed lines) are also shown in each 
plane. Thus the potential vorticity and geometry are completely specified by moving 
along a dashed line in any of the figures. One must take caution with this approach as 
not all portions of the H, - 6 H  plane correspond to acceptable background flows. If the 
flow is separated at the sill section, which occurs when 

r4 
-- a H H  < ( 4 0 )  q2(, +V)2 
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(Gill, 1977) or at the artificial boundary, corresponding to 

- 8 H  > f i ,  ( 4 1 )  

one may wish to disregard the solution as being inconsistent with critical control as 
argued earlier. Although the final word on the acceptability of separated flows in 
rectangular geometry has yet to be written, we will at least identify the regions in which 
the flows occur. In addition, the approach flow must be subcritical F < 0, which leads to 

1 | 1 

- # n  < q - 7 T H T ( 1 -  T 2 + T2qH) 2 (42) 

in view of Eq. (39) and the relation U = -q'T-I#H. The three boundaries implied by 
Eq. (40), Eq. (41) and Eq. (42) are plotted in Fig. 6 for q = 1, T = 0.5 and T s = 0.25, the 
shaded region corresponding to acceptable solutions. 

Figs. 7-9 show Re for geometries with sills but no width contraction (T = T,) and 
with q = 1. For Fig. 7, T and T, have been assigned the value 0.8, corresponding to a 
channel width of 2.2 deformation radii. (The nondimensional deformation radius is q-  ~, 
as suggested by the arguments of the hyperbolic functions in the formula Eq. (21) for the 
cross-channel structure.) The effect of rotation is thus quite strong in this case as the 
incident Kelvin wave, trapped on the 'fight' wall (y  = - W / 2 ) ,  barely 'feels' the 
reflected Kelvin wave, trapped on the opposite wall. As shown in Fig. 7, 0 < R c < 1 
over most of the subspace of acceptable solutions although some cases of Rc > 1 occur 
near the boundary corresponding to critical flow. This is a departure from the nonrotat- 
ing case, where R~ > 1 occurred only for geometries with both width and elevation 
variations. In the present case R~ ~ ~ as the critical curve is approached. 

If the values of T and T s are simultaneously reduced, ostensibly reducing the effects 
of rotation, a remarkable change in the behavior of R~ occurs. A threshold value 

0 

-0.1 

-0.2 
5H 

-0.3 

-0 .4  

-0.5 

A 
0 O~ 0.4 0.6 0.8 1.0 

i ,.avur l u a l  y supercritical 

Fig. 6. The shaded region in the space (H,  8H)  of the upstream flow space indicates solutions which  are 

critically controlled at the sill, subcritical upstream, and attached to the side walls at both the artificial 
boundary and the sill. The three bounding curves correspond to Eqs. (34)--(36) with q ffi 1, T = 0.5 and 
L = 0.25. 
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Fig.  7. Ref lec t ion  coef f ic ien t  for ro ta t ing  channe l  f l o w  wi th  u n i f o r m  po ten t i a l  vor t i c i ty  q = 1 and T = T~ = 0.8. 

The  dashed  l ines  are  contours  o f  d i m e n s i o n l e s s  si l l  e l e v a t i o n  d , .  The  b o u n d i n g  cu rves  (bo ld)  represen t  cr i t ica l  

f l ow at the ar t i f ic ia l  boundary  ( F  = 1) o r  separa ted  f l o w  at the  si l l .  

T = T s = 0.5 is first encountered at which R c becomes finite at all points of  the solution 
subspace (Fig. 8). Moreover, no cases of  R c > 1 exist and 0 < R<. < 0.3 over most of  the 
plane. If T and T+ are increased slightly above the value 0.5, which corresponds to a 
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Fig.  8. S a m e  as Fig.  7 but  w i th  T = T+ = 0.5. 
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Fig. 9. The same as Fig. 7 but with T = T~ = 0.46. 

channel width of 1.1 deformation radius, the singularities in R~ reappear and the 
solution takes on the general appearance of Fig. 7. 

For T and T s below the threshold value 0.5, both positive and negative values of R~ 
appear, with R,. --* - ~ near the boundary of critical flow. Fig. 9 shows an example with 
T = T~ = 0.46 corresponding to a channel width of 1.0 deformation radius. A contour 

-0.4 ~ 

-0.6 ~O 

-0.8 _- . .},.~. 

= o \  \ o  \ ~ ' -  \ ; ,  

-1 .0  - I I I I I I I Ik Ik I M I I~-~ I '1  
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A 
Fig. 10. The same as Fig. 7 but with T = 0.8 and T s = 0.46. 
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R c = 0 separates negative values below from positive and finite values above. Compar- 
ing this plot with Fig. 7 leads to the conclusion that IRcl is smaller for weaker rotation, 
at least over most of the solution space plotted. This result runs counter to the intuition 
that wider channels (with incident and reflected Kelvin waves isolated from each other) 
should produce small values of IRc[. However, wider rotating channels also require 
higher sills for critical control and this contributes to higher values of I Rcl. 

When width contractions are allowed in addition to sills, a wide range of behavior is 
possible. Here we simply describe a case which is typical of ones likely to arise in 
geophysical situations. The channel narrows from a width W = 2.2 deformation radii (or 
T = 0.8) at the artificial boundary to W s = 1 deformation radius at the sill. As shown in 
Fig. 10 the R c values lie in the range 0 < R~ < 0.25 over most of the domain with 
Re > 1 only in a narrow strip near the boundary for critical flow. This strip also lies 
within a region corresponding to negative sill elevations, d, < 0. In summary, GCM 
simulations for a deep channel with this width structure and with positive sill elevations 
would encounter small, positive R c values. 

6. Discussion 

Since the primary thrust of this work is establishing guidelines for imbedding deep 
hydraulic controls in numerical models, we summarize the procedure for doing so using 
the rotating channel model with uniform potential vorticity. One must first identify a 
layer or level of the numerical model which corresponds to overflowing fluid and one 
must be prepared to treat it locally as a reduced gravity layer (with 12-layer dynamics). 
One must further arrange the local bottom topography so that the approach to the sill has 
the configuration of a deep channel with gradually narrowing rectangular cross sections. 
This topography terminates at an artificial boundary (at x = 0) a short distance upstream 
of the actual sill. The investigator must choose the sill width (W s) and elevation (ds,) 
and the width W at the artificial boundary as deemed consistent with the actual 
topography. 

The artificial boundary exists only in the lowest layer (or level) of the model and only 
this layer is removed from explicit numerical resolution and treatment over the rapidly 
varying sill topography. The numerical model generally spans both the upstream and 
downstream basin and the lowest layer must somehow be joined back in with the 
downstream numerics. We suggest doing so with an outflow model of the type 
introduced by Price and Baringer (1994) or Jungclaus and Backhaus (1994). Numerical 
treatment of the overlying fluid between the two basins can be carried out using 
something like the normal algorithm, provided that this fluid is decoupled from the 
overflow. Further remarks on the situation where the layers are not decoupled are made 
below. 

Given the entire model state at time t o , incorporation of the hydraulic control 
amounts to the prediction of the state at the artificial boundary at time t o + At. To do so, 
one calculates the Riemann invariant R÷ (Eq. (27)) at one or two grid points upstream 
of x = 0 by estimating the potential vorticity q, and the one half the sum and difference 

and 8h of the side wall layer thicknesses. These values of R+ are then projected 
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forward in time along characteristic curves dx/dt= c+ (Eq. (26)) to the artificial 
boundary and the value of R+(O,t o + At) is interpolated from the results. (If the channel 
width is constant the characteristic R+ remains constant as well, otherwise Eq. (25) is 
used to calculate its rate of change.) The potential vorticity q is assumed constant along 
the characteristic. 

OnceR+(0,t 0 + At) is known one can solve for R (0,t 0 + At) and hence 8h(0,t 0 + 
At) and h(O,t o + At) as described at the end of Section4. This procedure would give the 
fully nonlinear result. An alternative procedure requiring considerably less complexity 

- -  I I 

would be to define a background state H and 7( = - q t T - B H )  at the artificial 
R 

boundary. From H, U, and R+(O,t + At) one calculates perturbation average velocity ~1 
associated with incident signals using Eq. (36a). A corresponding ~t is computed from 
Eq. (36b). At this point the definition of the background should be checked to be sure 
that I~tl "~luI and I~tl <<lnl so that linear wave reflection theory can be applied. 
Finally, the reflected signal T,/R and Ur is computed from Eq. (37b) and Eq. (38) and the 
resulting total boundary values are 

~(0,t0 + At) = ~ + ~r +-~, 

1 

8h(0,t0 + At) = - q - - ~ T ( ~  + r~R + ~,). 
The background flow may be varied from one time step to the next. 

We have identified a number of situations in which the reflection coefficient may 
become invalid. The first of these is the occurrence of hydraulically critical flow at 
x = 0. For realistic forcing and bathymetry, such an event would be a severe departure 
from reasonable views of the abyssal circulation that one would have to call the 
numerical model physics into question. The second situation corresponds to separated 
flow at x = 0. For the parameter range explored in Section 5, this condition implies that 
the approach flow is either supercritical or only slightly subcritical (e.g. compare the 
corresponding curves in Fig. 6 for example), and the same comments apply. Finally it is 
possible that separated flow at the sill might be encountered, which is much more likely 
than the first two possibilities. Here we simply note that the (H, BH) space occupied by 
such a regime in any of Figs. 7-10 is small and that the variation of R c over that area is 
weak. Thus, one might simply attribute separated sill flow to a slight error in the model 
physics and continue to use the value of R¢ as determined by Eq. (38) knowing that the 
result is insensitive to the state of separation. 

The above remarks propose imperfect solutions to the difficulties presented by 
separated flow. In principle, a better approach would be to develop a theory for 
time-dependent rotating channel flow with continuously varying topography, so that the 
distinction between separated and nonseparated flow would be lost. Such a model could 
build on the work of Boren~is and Lundberg (1986) in an attempt to find Riemann 
invariants. 

Often, the local representation of the overflow as a single, reduced-gravity layer will 
be inadequate. For example, Hogg (1983) has attempted to model the Vema Channel 
using 2½-layer stratification. In such cases, the governing principles described herein 
may or may not be applicable. If the controlling wave mode can propagate in both 
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directions (i.e. the flow is subcritical with respect to that mode) at all points on one side 
(say x < 0) of the sill, then our methods can be applied in x < 0. An example would be 
the 'submaximal', two layer exchange flow solutions identified by Farmer and Armi 
(1986) in which the lower layer spills over a sill from left to right and forms an internal 
hydraulic jump (also see Dalziel, 1990, 1991 and Pratt and Armi, 1990). The upper layer 
flows right-to-left but forms no jump after it passes the sill. Waves approaching the sill 
from the left are partially reflected in a manner analogous to our simpler model and left 
is therefore the 'upstream' direction. This flow could be treated using our methods, 
although the artificial boundary would span both layers. Conversely, the two-layer flow 
might contain 'virtual' or 'approach' controls or hydraulic jumps to the left of the 
obstacle, with associated subcritical/supercritical transitions. In this case incident waves 
would never reach the sill and our method would fail. 

Finally, we point out that an alternative procedure for approximating the effects of 
rotating hydraulic controls in numerical models might be to apply transport bounds 
recently developed by Killworth (1994). Here the physics of critical control would be 
present only to the extent that the deep transport would be prevented from exceeding 
certain limits. The procedure for implementation has not been established. One advan- 
tage of this approach is that the bounds are valid for much more general topography and 
potential vorticity than considered herein. 
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