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ABSTRACT

The so-called thin-jet approximation, in which variations along the jet axis are assumed gradual in comparison
with variations normal to the axis, allows the calculations of along- and cross-axis structures to be decoupled.
The result is a2 nonlinear equation, with one lesser spatial dimension, governing the meandering of the jet. Here
a new such “path equation” is constructed in the context of a one-layer, reduced-gravity model. The formalism
retains two distinct physical processes: a vortex-induction mechanism, originating from the jet curvature, that
causes meanders to travel downstream (i.e., usually eastward), and the planetary (beta) effect, induced by
meridional displacements, that gives the meanders the allure of Rossby waves and generates a westward (i.c.,

usually upstream) propagation.

After a brief comparison with previous path equations, analytical solutions of the new equation are explored,
including solitons and other exact nonlinear wave forms. The presentation concludes with numerical experiments

and a brief application to the Guif Stream.

1. Introduction

Thin-jet models have been employed by a number
of investigators in the study of meandering and eddy
detachment processes (¢.g., Warren 1963; Robinson
and Niiler 1967; Robinson et al. 1975; Flierl and Rob-
inson 1984; Pratt 1988). The thin-jet approximation,
in which variations along the jet axis are assumed
gradual in comparison with variations normal to the
axis, allows the calculations of along- and cross-axis
structures to be decoupled. The consequent mathe-
matical simplifications often allow a semianalytic de-
scription of nonlinear meandering in which the motion
of the axis is governed by a “path equation.” Appli-
cations include eddy detachment in currents such as
the Gulf Stream, where the ring-forming meanders of-
ten have wavelengths much larger than the stream
width.

The most recent advancements in thin-jet theory
have occurred along two lines of investigation. The
first, more traditional, approach involves manipula-
tions of the equations of motion in a natural coordinate
system. The path equation is obtained by formulating
a vorticity equation and integrating it over a section
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normal to the jet axis. The most comprehensive treat-
ment, that of Flierl and Robinson (1984, hereafter FR),
describes a Boussinesq, 3-plane jet flowing over a hor-
1zontal bottom.

The second approach is based on the formulation
of equations describing potential vorticity fronts in
quasigeostrophic flows. Pratt and Stern (1986, hereafter
PS) consider a single front separating two semi-infinite
regions of uniform potential vorticity in an equivalent
barotropic (1 /2-layer) system. When the typical radius
of curvature of the front is large compared to the
Rossby radius of deformation, the integro—differential
equation describing the motion of the front can be re-
duced to a relatively simple (looking) differential
equation. In this limit the horizontal velocity field takes
the form of a thin jet whose axis is the potential vorticity
front. Pratt (1988) has shown that an equation of the
same form will govern the long-wave behavior of any
front whose motion is invariant to rotation or trans-
lation and whose position is independent of z.

A further advance in the long-wave theory of poten-
tial vorticity fronts has recently been made by Pedlosky
(1990). Using 11/-layer stratification and semigeo-
strophic 3-plane dynamics, he analyzes a front with
initial north-south alignment. A fundamental differ-
ence between this and other calculations, including the
present, is that velocity discontinuities (equivalent to
delta function in the potential vorticity field) are al-
lowed in the former. A new time scale, inversely pro-
portional to the velocity jump, is introduced, and the
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system is governed by a first-order hyperbolic equation
that admits classical wave steepening. In the present
calculation, where velocity continuity is assumed, the
time scale is proportional to the cube of the character-
istic meander wavelength. Associated with this longer
scale is a more delicate dynamical balance governed
by a higher-order equation.

It is natural to ask whether the equation obtained
by Pratt (1988) is a special case of the (apparently)
more general result of FR. Mysteriously, the former
contains a term not present in the final equation of
FR, and it is apparently not possible to perform the
reduction. Since the derivations of the two results are
so dissimilar, the basis for this disparity has not been
obvious. Here we present several new results that gen-
eralize the theory of Pratt (1988), clarify the connection
with FR, and suggest a concrete procedure for obtaining
analytical solutions for a large class of initial conditions.
Specifically, we extend the equivalent barotropic cal-
culation of Pratt (1988) to S-plane and nonquasigeo-
strophic dynamics, including outcropping of the den-
sity interface. The results, presented in section 2, show
that the equation of PS is obtained with the addition
of a Doppler-shift term due to the § effect. Furthermore,
the new result can be transformed into the modified
KdV (Korteweg-deVries) equation, with path curva-
ture the dependent variable and time and arc length
the independent variables. When transformed back to
Cartesian coordinates, the soliton solutions to this
equation may contain “loops” associated with self-in-
tersections of the path. Since the number and size of
solitons arising from isolated initial disturbances can
be predicted using an inverse scattering transformation,
a method for predicting eddy detachment can be de-
vised (section 5). Finally, we show that the present
11/>-layer model contains a vortex-stretching effect that
is absent in FR and that accounts for the novel term
in our path equation. The details of this dichotomy
and the implied physics are described in section 3.

2. A semigeostrophic model

As a model of the upper ocean away from lateral
boundaries and without bottom influence, consider a
reduced-gravity system on the beta plane. With a ref-
erence depth H, such as the depth of the interface in
a quiescent region, the reduced-gravity constant g’ and
the reference Coriolis parameter f, combine to provide
the horizontal length R; = (g'H)'/?/f, (none other
than the deformation radius) and the velocity ¢
= (g'H)"* (the gravity-wave speed). Using these
quantities as scales, the primitive equations can be ex-
pressed in dimensionless form as follows:

U+ uuy +vu, — (1 + By)v=—h, (2.1)
v+ uv, + oo, + (1 + BY)u=—h, (2.2)
h, + uhy, + vhy + A(u, + v,) = 0. (2.3)
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In these equations # and v are the velocity components
in the x (eastward) and y (northward) directions, & is
the interfacial depth, subscripts denote derivatives, and
the coefficient 3, defined by
_Rgdf

fo dy

and taken as a constant, measures the relative impor-
tance of the planetary (beta) effect. To validate the use
of Cartesian coordinates, and because our interest lies
in scales much less than the size of the earth, we shall
take

(2.4)

B<1. (2.5)

In such a model, a jet is represented by a flow field
in geostrophic balance with a pressure gradient; the
latter being maintained by an interfacial slope con-
necting two reservoirs of uniform but different depths.
If the distance over which the layer thickness varies
from one value to the other (typically on the order of
the deformation radius) is relatively short compared
to the length over which meanders occur, the jet can
be said to be narrow.

To take full advantage of the disparity of scales in
the directions across and along the jet, a change of
variables is in order. In the spirit of Flierl and Robinson
(1984) and predecessors, but with slight modification,
we define a time-dependent, curvilinear system of co-
ordinates tied to the meandering jet (Fig. 1). A midjet
curve, to be defined precisely later, is introduced, along
which distance is measured by the variable s; at each
point along the curve, a local normal is constructed,
defining the variable n. For convenience, we take s
increasing downstream and » increasing to the left fac-
ing downstream. Any point of coordinates (x, y) in
the two-dimensional framework of reference can be

FIG. 1. Definition of the natural coordinates: s measures the dis-
tance along the midjet line from some origin, while n measures the
distance from that curve, positively to the left, to any point (x, y) in
the plane. The point (X, Y ) is the point on the midjet line that is
closest to the arbitrary point (x, y).



JANUARY 1993

attributed the coordinates (s, n), where n is the distance
from the point to the nearest point (X, Y) on the jet
and s is the distance along the jet axis from an origin
to that point (X, Y) (Fig. 1). The relations are

Y

x=X—na— (2.6)
as
X

y=Y+n?—, (2.7)
as

where X (s, t) and Y (s, t) are thus the coordinates of
the point on the midjet curve that is closest to the ar-
bitrary point (x, y). The spatiotemporal functions X (s,
t)and Y (s, t) describe the evolution of the midjet line,
and the formulation of their evolution equations is the
object of the model. Because s is the distance along the
curve (dX? + dY? = ds?), the following geometric

relation,
XY vy
as as ’

must hold everywhere and at all times. This statement
can be interpreted as a choice of normalization of the
variables s.

There are other noteworthy properties: (X;, Y;) is
the unit vector tangential to the midjet curve, pointing
in the positive s direction; (— Y, X;) is the unit normal
vector pointing in the positive »n direction; and the cur-
vature is

(2.8)

_X &Y _sx oy

(2.9)

which takes on positive (negative) values if the jet
curves to the left (right). It is straightforward to show
that the second derivatives of the jet coordinates (X,
Y') are related to their first derivatives via the curvature
by

*X

ds?

_g Y
ds’

%Y X
oY k%

ds? ds

(2.10)

Before proceeding with the change of variables, it is
also convenient to define the local alongjet and crossjet
velocity components, U and V, respectively:

oX Yy
=U—-V— .
u % s (2.11a)
Y oxX
=U—+V— .
v Ua s (2.11b)

The change of variables consists in the systematic
replacement of the coordinates (x, y) by (s, n) and of
the velocity components (u, v) by (U, V). The gov-

CUSHMAN-ROISIN ET AL. 93

erning equations (2.1)—-(2.3) are then transformed into
the equivalent set:
aC\ aU oU

U
o - N -0
az+<JU A+”Jas)as =03,

—[1 +J§g+,8(Y+n2)£>+JKU]V
as as

dh
——Ja—s (2.12)
14 oC\ oV oV
- — _ ] — V_ —_—
é)l+(JU A+n.las)8s+( C)an
+ I+J(—9-€+B Yﬁ-rz(—:}—)£ + JKU|\U
as as
=~—h (2.13)
oh aC\ oh oh
E+<JU—A+HJ'£)(9S+(V C)an
| 4
+(J£]+a—~JKV)h=O, (2.14)
ds On

where the ancillary quantities A(s, t), C(s, t), and
J(s, n, t) are defined by

X X 9Y aY

=——t —— 2.15
A ot ds + ot 9ds ( )
0X 0Y 94X 9Y
=—— .1
ds ot ot Os (2.16)
= ! (2.17)
1 —nkK’ ’

Geometrically, 4 and C are the velocity components
of the point (X, Y) in the tangential and normal di-
rections, respectively (i.e., A4 is the sliding velocity and
C is the skidding velocity); J is the Jacobian of the
coordinate transform and is naturally undefined at the
distance n = 1/K from the curve, that is, at the local
center of curvature of the line. To avoid any singularity,
it is imperative that the jet width be much smaller than
local curvature radius 1/K. This is the essence of the
thin-jet approximation.

The choice of a narrow jet leads to the following
choices for the sizes of the various independent and
dependent variables:

alongjet distance and meander

displacements: s~X~Y~ 1/e

acrossjet distance: n~1
interfacial depth variations: h~1
alongjet velocity: U~1
acrossjet velocity: V ~ e

time: t~ 1/€%,
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where ¢ is the number, much smaller than unity, that
measures the narrowness the jet. The fact that varia-
tions in A are on the order of one implies that finite
depth variations across the jet (dimensionally as large
as H) are allowed. This is in contrast with the quasi-
geostrophic studies of Robinson et al. (1975) and Pratt
(1988). The velocity and time scales result from ed-
ucated guesses, such as geostrophy of the along-jet ve-
locity component.

The preceding scales imply K ~ ¢ or a meander
radius of curvature on the order of 1/¢(>1). In the
subsequent mathematical developments, it will be
necessary to integrate certain quantities across the jet,
that is, from a large negative to a large positive value
of n. In the spirit of boundary-layer theory, a “large”
value of n will be meant as much larger than unity
(away from the jet) but less than 1/¢ (not to reach the
center of meander curvature).

Although the smallness of ¢ is arbitrary, it must
somehow be measured against that of 3 [see (2.4)-
(2.5)]. The richest dynamics are found when ¢ ~ 8,
with planetary dynamics dominating for lesser values
of € and meander curvature dominating for larger val-
ues. Let us then take ¢ = 8'/2, which with dimensions
implies that the meander length scale L, the radius of
deformation Ry, and the planetary parameters are re-
lated by

B fO 1/2
L%&mw)'

For a deformation radius R, = 40 km and a planetary
scale fo(df/dy)™" = 3500 km, the meander length scale
is L ~ 370 km, a very reasonable meander wavelength
and amplitude for the Gulf Stream (Watts and Johns
1982; Tracey and Watts 1986).

Expanding all variables in terms of the small number
¢, for example,

X = X, + eX; + O(e?),

we obtain at leading order the much reduced set of
equations:

(2.18)

0 10/ oh
UoﬂﬂVo— Co)—==Vo=—— (2.19)
as on as
+ Uy =— 9o (2.20)
on
a a oh
— (hoUo) + — (hoVo) = Co—— = 0. (2.21)
os on on

The middle equation confirms geostrophy in the cross-
jet direction, while the first equation shows that the
balance in the perpendicular direction is ageostrophic.
Elimination of U, via (2.20) and an integration of
(2.21) with respect to n yields

oh
ho(Vo— Co"éf) = p(s, 1), (2.22)
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where the function p(s, t), should be determined by
boundary conditions.

Four cases should be distinguished depending on
the asymptotic values of /g, the basic crossjet interfacial
profile. These cases are illustrated in Fig. 2. In cases I
and II, the interface reaches the surface at least once;
there h, vanishes, and (2.22) implies p(s, t) = 0. A
subsequent division by A yields

a
V0=C0+_h(‘).
as

This is all that can be stated about case I at this stage.
For case II, the interface extends to infinity, where,
away from meanders, /4, reaches the asymptotic values
h;, a pure constant. At such large distances from the
jet, there can be neither crossjet velocity or variations
in the s direction (V; = dho/ds = Q). The last expression
requires that Cy vanish, and reduces to

_ ok

0= —

s (2.23)

In case III, Ay reaches different asymptotic values, &,
and A, on each side. Expression (2.22) applied at those
extremes (Vo = 0ho/ds = 0) yields

~hCo=p, —hCo=p,
n=R n=0 n=0
n he=0 h,=0 n he=0
U \®\ )
1™
double front single front -
(double jet)
11
I
n n=0 n n=0
! © I ®
h i hy 1 1
no front no front

(special case)
I1I
v

FiG. 2. The four possible profiles of the interfacial displacement
across the jet: double front (I), single front (II), and no front (111
and 1V). In case 1V, the asymptotic value of the upper-layer depth
is the same on both sides. Cases I and IV correspond to velocity
profiles with no mean flow, and do not fall under the present theory.
(Current directions are indicated for the Northern Hemisphere only.)
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which lead to p = Cy = 0. Again the result is (2.23).
In case IV, the asymptotic values are identical; the
function p is equal to —h,Cy, and ¥V} is given by

Because the 4, profiles of cases I and IV correspond
to jets with accompanying return flows and no net geo-
strophic transport, much unlike the Gulf Stream, we
wish not to consider these cases further. This leaves us
with cases IT and II1, of which the dynamics at this level
are somewhat degenerate. First, C;, vanishes, and there
is no prognostic term left in any of the equations.
Moreover, with V, = dhy/ds, Eq. (2.19) becomes

0hy 8%hy  dhy 3*hy

ds on®>  On 9som

The most general solution to this last equation is
hy = F[n + q(s, t), t].

The arbitrary function ¢(s, ) can be set to zero since
the origin of »n has not yet been specified. Physically,
this choice amounts to defining the position of the so-
called midjet line within the Ay profile. For example,
the origin of the » axis in case II can be conveniently
placed at the front, while in case I1I the inflection point
would be a natural choice. The extra, parameteric de-
pendency on time appears unnecessary since the van-
ishing of Cy eliminates the presence of the time variable
at this stage. As a result, the /1, profile can only depend
on the crossjet coordinate #, and must be interpreted
as a frozen profile found at all times and at all positions
along the jet. We will consider it as given information
regarding the particular jet under consideration.
Higher-order dynamics control the small temporal and
spatial distortions of the basic profile, as well as the
moving and curving of the midjet line onto which the
basic profile is attached.

With 8h9/ds = 0, Vy is nil: the crossjet velocity is
then smaller than anticipated. Similarly, the vanishing
of Cy implies a longer time scale than expected. (Note
that the last two assertions do not hold in cases I and
IV.) The next-order dynamics yield

aJ
B —en@R = 0
as ) s
0
U, + YU, + KoUo = —3%1, (2.25)
oh, oho U, 0
Up 5 + St o S .
- ¢ ho( : 6n) 0
(2.26)

Equation (2.25) brings into the formalism the beta
and curvature effects (Y, and K, terms, respectively).
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We thus anticipate that meandering will be affected by
these processes rather than result from intrinsic insta-
bilities of the basic jet profile (which appears to be the
fate of jets in cases I and IV).

. Elimination of the alongjet velocity perturbation U,
by use of (2.25) and the recall of the leading-order
geostrophic balance (2.20) transform (2.24) and (2.26)
into

1+d2h0 v _% % 3%h, _dzhoa_h,
dn? 'oas dn 3sdén  dn® 0s
d*hy  (dho\* 3Y, [ dho\’ 0K,
— = — 4+ == — (227
G dn? (dn) 8s+(dn as ( )

=C (2.28)

dn_kod 3s dn/ 9ds

These two equations form a 2 X 2 system for A, and
V. A solution, however, will exist only if the second
equation meets a certain compatibility equation. In-
deed, integrating this second equation (2.28) across
the entire range of values of 4, for example, from large
positive 7 to either n = 0 (case II) or large negative 7
(case III), the left-hand side yields no contribution be-
cause either %, = 0 at the front or V; and 94, /ds vanish
at large distances. It remains

C] %dn

dn
_aYofho a’ho 6[<tho(dh°> dn.
dn

Because the integrands in this equation do not exhibit
singularities at infinity, the integrals can be extended
from n = —oo to either n = 0 or n = +oo0. These in-
tegrals depend solely on the given crossjet structure,
hy, and can be calculated once and: for all. The first
two are negative, while the third is positive. A division
by the first integral permits one to write

dhy _, dhodYo (dho)2 0Ky

C.=aé&+b%, (2.29)
as as
where
dho\* dho
[l ) am f ho o
a= —._—3}2—0_—_’ dho (2.30)
—dn —-—d
dn

are two positive coefficients that can be considered as
known quantities,

Equation (2.29) is the evolution equation that we
were seeking; it relates the velocity of the midjet line
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(or front for case II) to a curvature effect and a plan-
etary (beta) effect. Tracing back the curvature term to
the momentum equation (2.25), we note that the
source of this curvature effect is the centrifugal force
acting on the particles as they negotiate meanders, .

Collecting Eqgs. (2.8), (2.9), and (2.29) and dropping
the subscripts that are no longer necessary, we obtain
a self-contained set of equations:

ax \? dY \?
— ) +{—] =1 2.31
( as ) ( as ) ( )
oX 9%Y 9%*X 9Y
=% 92 9 os (2.32)
oX Y 94X 9Y oK Y
o o ot as %o Tl (333

A return to dimensional variables leaves these equa-
tions unchanged as long as the constants a and b are
modified according to

2J.h(dh/dn)za’n ,
_g° b=g(h|+hz)_6£
S hy — hy ’ 25 dy’

(2.34)

where Ay and A, are the two limiting values of % (see
Fig. 2).

A simple geometrical interpretation of (2.33) can
be obtained by considering the motion of an infinites-
imal segment of arc moving with velocity (8X/9dt, Y/
dt). When written in terms of the azimuth 8, measured
counterclockwise from the zonal direction, the left-
hand side of (2.33),

a

ow

Y . 0X

cosd % sinf prl
is clearly the velocity of the segment normal. to itself,
with positive values to the left of increasing s. Equation
(2.33) therefore indicates that this normal velocity is
proportional to the rate of change of centrifugal force
along the path (dK/ds) and the azimuth angle from
the zonal direction (dY/ds). The former can alterna-
tively be interpreted as a vortex induction effect (Pratt
1988).

Equations (2.31)—-(2.33) form a system for the three
unknowns, X, Y, and K, that describe the midjet path.
Equivalent formulations can be proposed, but we feel
that the foregoing one is the most symmetric in its
presentation, for it does not discriminate before the X
and Y coordinates of the jet axis, except insofar as the
beta effect is concerned [b term in (2.33)]. When the
beta effect is neglected [6 = 0 in (2.33)] and when the
coordinate s is eliminated leaving X as the independent
spatial variable [at the cost of a multivalued Y ( X, ¢)
function], we recover exactly the path equation of Pratt
(1988).
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3. Connection with theory of Flierl and Robinson
(1984)

It is natural to ask whether (2.33) is a special case
of the path equation derived by FR for a thin, Bous-
sinesq, 8-plane jet over a horizontal bottom. Surpris-
ingly, the answer is no: Eq. (2.33) contains a term not
included in the (apparently ) more general result of FR.
It is possible, however, to recover (2.33) by making
slight alterations in the derivation of FR. The general
procedure is sketched below.

One of the key simplifications in the FR theory is
the assumption that the jet path is independent of z.
Under this condition the velocity normal to the jet axis
must be independent of z, and therefore, baroclinic
motions are severely limited. The most obvious im-
plication is that baroclinic instability, whereby the
cross-stream slope of isopycnals is decreased, is elim-
inated. In the present 1 !/-layer model baroclinic mo-
tions are retained (although baroclinic instability is ab-
sent). The jet path extends only through the upper
layer, and the weak normal velocity in the lower layer
15 opposite in sign to its upper-layer counterpart.

In more specific terms, the derivation of FR is based
on integration of the vorticity equation [their Eq. (4)],
which contains a stretching term (dw/dz in their no-
tation). Integration over the water column leads to a
null result, since w vanishes at the upper and lower
boundaries. With 1 i/>-layer stratification, however, the
integration takes place over the vertical extent of the
active layer, and a finite contribution arises due to the
nonzero vertical velocity at the density interface. This
contribution eventually leads to the left-hand side of
Eq. (2.33), the missing terms alluded to earlier.

If the derivation is carried forth using the previously
outlined step, a slightly more complicated version of
the result obtained by FR will resuit. Recovery of (2.33)
can then be made by taking a limit in which the ratio
of meander phase speed to parcel speed in the jet is
forced to be much smaller than the other dimensionless
parameters. This last step is appropriate for 11/;-layer
models and is tantamount to elimination of the baro-
tropic mode.

The preceding discussion does not imply that an er- -
ror was made by FR. Repetition of their analysis (in-
cluding integration over the entire water column) using
1 Ip-layer stratification simply results in an indeter-
minate system. Additional information would be re-
quired to calculate the vertical structure of the flow.

4. Special solutions and limiting cases
a. Straight lines
Before considering the general time-dependent be-

havior of (2.33) we first investigate some special cases.
First, consider a solution consisting of a straight line
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(K = 0) inclined at an angle §, with respect to the x
axis. Equation (2.33) then reduces to

X

cosfy % — sinfy %t_ = b sinfy;
that is, the velocity of the front normal to itself is equal
to b sin fy. When the path is aligned east-west (6p = 0)
the path is stationary. For north-south alignment the
path translates westward at speed b. The same phe-
nomenon is observed in the calculation of Pedlosky
(1990).

b. Steady states

Next, consider a purely stationary (dX/dt = Y /dt
= 0) solution for which (2.33) reduces to

K=—§Y+ const. (4.1)

This equation, derived by Robinson and Niiler
(1967), was subsequently used by Masuda (1982) to
study the bimodal character of the Kuroshio. Solutions
to (4.1) consist of stationary meander patterns in which
eastward advection by the jet is balanced by westward
propagation tendencies induced by local vortex induc-
tion and the 8 effect. When b = 0 the solutions reduce
to circles (K = const).

¢. Periodic meanders of permanent form

The only straight-line solution that is also a steady
state is that of east-west alignment. We now look for
plane-wave solutions consisting of perturbations of this
basic state. Let the natural coordinate system be
imbedded such that any point (X, Y') on the front re-
mains fixed in a frame of reference moving with steady
eastward phase speed c. Then dX/dt = ¢, Y /ot = 0,
8X/ds = cosl, Y /ds = sinf, and (2.33) reduces to

3% (c+b)
=+
9s?

This is simply the nonlinear pendulum equation;
the solutions of which have been obtained and trans-
formed to Cartesian coordinates by Pratt (1988). In
his f-plane, quasigeostrophic analysis, the coefficient of
the sinf term is 2 ¢ and generalization to the present
case can be made by replacing 2¢ by (¢ + b)/a. The
results are shown in Fig. 3 (essentially a copy of his
Fig. 3 with the appropriate label replacements). Curves
of constant (¢ + b)/a are shown in meander wave-
number and amplitude space. For specified values of
a and b, Fig. 3 constitutes a nonlinear dispersion re-
lation for the meanders in which ¢ is given by the
Cartesian wavenumber k and amplitude 4. The mean-
ders are multivalued for k4 > 2.61 (lower dashed line)
and self-intersecting for k4 > 8.30 (upper dashed line).

sind = 0. (4.2)
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FIG. 3. Nonlinear dispersion relation for periodic, finite-amplitude
meanders. The solid curves indicate constant values of (¢ + b)/a
and are plotted as a function of the meander wavenumber k and
amplitude 4. The dashed lines separate regions of single-valuedness,
multivaluedness, and self-intersection. The lower and upper dashed
lines are given by k4 = 2.61 and kA4 = 8.30, respectively.

If the parameter (¢ + b)/ain Eq. (4.2) is eliminated
by rescaling the coordinate s by factor (¢ + b)'/?/a'’/?,
the solutions collapse to a single curve. The latter is
simply the (¢ + b)/a = 1 curve in Fig. 3, with appro-
priately rescaled wavenumber and amplitude. To avoid
confusion, this result is reproduced in Fig. 4. The single
curve shows the value of (b + ¢)'/?24/a"/? determined
by given a'/?k/(b + ¢)*/?, or vice versa. Although this
plot elegantly shows the self-similarity contained in the
solutions, it does not easily allow determination of
phase speed for given wavelength and amplitude. Fig-
ure 3 should be used for the latter.

In addition, setting ¢ = O gives the threshold value
of amplitude separating downstream (¢ < 0) from ret-
rograde (¢ < 0) propagation at a given k. As k increases,
so does the threshold amplitude. When ¢ = 0, solutions
lying along the curve correspond to stationary mean-
ders, identical to the steady states discussed by Masuda
(1982).

Finally, if we restrict attention to small amplitude
oscillations (6 <€ 1), so that sinf — 8 in (4.2), the
solution 6§ = A sinkx leads to the linear dispersion re-
lation

c=ak?—b. (4.3)

Stationary meanders thus occur at wavenumber k
=(b/a)'’?, as indicated in Fig. 4. Longer waves prop-
agate westward (upstream), while shorter waves travel
downstream. Note that the group velocity

¢, =3ak’>— b
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FIG. 4. The dispersion of information from Fig. 3 has been
collapsed into the single curve shown here.

has value 2b for the stationary meanders, indicating
eastward energy flux.

5. Solitons, breathers, and the mKdV equation

We now turn to initial-value and initial-boundary
value problems. In this context the form of (2.33) is
rather inconvenient, and we seek to obtain an equiv-
alent representation containing the single dependent
variable 6, the local azimuth of the jet.

Using the relationships 0.X/ds = cosf, Y /s = sind,
K =30/ds,(2.33) can be rewritten

Y 3%

. 0X _
sinf o cosf o %

Successive differentiations with respect to s yield
a0 6_30 00

— bsind. (5.1)

— - b — cosf
C 0£+si0§z—al aaS3 ascos
OS5t Ry o9 ’
as
(5.2)
and
N S 4
sin 3 cos 3
d 3% a9
—B—a———3—b—cost9
ot as s
_QQE (5.3)
ds s 06 ’

ds
Adding (5.1) and (5.3), multiplying the result by 46/
ds, and integrating once with respect to s leads to
a0 3% (60

— — ——3+ (t)ég (5.4)
or %5t T2%%s ot a5 ’
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The function ¢y(t) is determined by boundary or
initial conditions. For example, consider the case in
which the path is held fixed at one end (s = 0, say)
and the angle 8(0, ¢) and curvature 36(0, t)/ds are pre-
scribed. Evaluating (5.2) and (5.4) at s = 0, where d.X/
dt = 3Y/dt = 0, and combining the results leads to

2
co = b cosb(O0, 1) — % a[% (0, t)] .
as

If, instead, 6(s, 0) is prescribed over —o0 < § < ©
such that 6(s, 0) = 0 as s &> —o0, the above arguments
lead to ¢y = b.

If, in this latter case, (5.4) is differentiated with re-
spect to s and the scaled variables

r=a"'?t

11290
2% 3
£=—a ?[s+ bt]

K =

are introduced, the modified Korteweg—deVries
(mKdV) equation,
Ok 5 Ok 33
—_— _ + —_ = . 5
3 + 6k % ar 0, (5.5)

is obtained. Initial-value problems in Cartesian space
can now be solved using standard techniques (Lamb
1980; Ablowitz et al. 1974) by imposing the equivalent
initial condition (£, 0) on (5.5).

Equation (5.5) admits the single-soliton solution,

k = +2k sech(2k¢ — 8k3r + §)
or, in the previous coordinates, '

? = +d4ka~"'* sech{ —2ka™'"*(s + bt)
s

—8Kk3%a %1 + 8}, (5.6)

As one moves from s = —o0 t0 § = co, the net change
in 6 experienced by this wave form is +2, indicating
that a “loop” is executed. In fact, the solution consists
of the single loop propagating with speed ds/dt = —(b
+ 4k?). A Cartesian representation of the loop soliton
is given in Fig. 5a.

It should be noted that a single-loop soliton cannot
evolve from a single-valued initial condition without
a cusp first occurring in the path (Fig. 5b). Two loop
solitons, one inside the other, could form without such
singularity (Fig. 5c). Proof of this behavior can be
shown by integration of (5.5) over all §, leading to

(% » kd§ = % a'’?(6(c0, t) — 0(—c0, t)) = 0.
If 6(c0, 0) = 6(—o0, 0), loop solitons can arise only in
negative and positive pairs; otherwise, the difference
0(c0, t) — 6(—o0, t) will be finite.
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FI1G. 5. Schematic depiction of loop soliton (a), the formation of
a loop soliton with intermediate cusp formation (b), and the for-
mation of two superimposed loop solitons in a figure-eight configu-
ration (c¢). In (b) and (c), time increases as one moves to the right
through successive frames.

A second and more physical wave form admitted by
(5.5) is an envelope solitary wave or “breather” (Lamb
1980):

_i| Asin(Qaf + o1 — 0,)
k = —2—tan s
I3 cosh(2Aaé + v + ©,)

where « and A are arbitrary parameters and § and v
are given by

6 = 8a’(1 — 3\?)

v = 8a3\(3 — \?).

The breather is a packet of waves propagating inside
an envelope of permanent form. When expressed in
terms of previous variables, the solution is described
by
\sin[—2aa'?s

+a "?(2acy + 6)t — 6,]
cosh[—2ara™'"%s
+ a7 '2(2hacy + v)t + 0,]

6 =4tan!

with ¢y = —b. The envelope ( corresponding to the cosh
term) propagates with speed ¢, = ¢ + v/2a\ = 4a?(3
— A?) — b, while the interior oscillations (correspond-
ing to the sin term) have speed ¢, = ¢o + 8/2a = 4a?(1
— 3A%) — b. The constants 0, and 0, determine the
phase lags between the envelopes, oscillations, and or-
igin.

The free parameters a and A determine the length
scales a'/?/2a\ and a'/?/2a of the envelope and os-
cillations. As A —> 0, the steepness of the breather and
its amplitude decrease and the solution takes the form
of small amplitude, uniform wave train. In this limit
the phase speed ¢, of the oscillations approaches the
previously noted linear value 4a? — b = ak? — b, with
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k = 2aa”'?. For A > tan(«/8), the maximum value
of § exceeds = /2, and thus, the breather becomes mul-
tivalued (in a Cartesian sense). If A exceeds unity, in-
tersections between different path segments occur and
the solution becomes invalid. Figure 6 shows the case
A = 1, for which grazing contact first appears. The dif-
ferent contours show realizations of the same breather
at different phases t = 0, 7/8, T/4, etc., where T is the
period of the interior oscillations. As shown, the path
experiences self-intersections only at ¢t = 0, 7/2, T,
etc., in contrast to the loop soliton.

As described by Lamb (1980), the initial-value
problem for Eq. (5.5) can be solved using the inverse
scattering technique. Furthermore, the number of so-
litons and breathers that evolves from an isolated initial
distribution of « can be determined directly from the
scattering coefficient, along with the corresponding
values of A. Should any loop solitons (or breathers with
A = 1) arise, then it is clear that self-intersection of the
path must occur at some finite time. Such an event
presumably marks the onset of detachment of a seg-
ment of the path, as in the formation of a “ring.” Of
course, the thin-jet approximation is violated at this
point, and no further integration of the governing
equation is permissible. These considerations suggest
that eddy detachment, or lack thereof, might be pre-
dicted analytically by computing the scattering coef-
ficients associated with the initial data. This problem

T ‘i______
! o

L/

T/ 2
U

-15 -10 -5 0 5 10 15

FG. 6. Evolution of breather with o« = 0.4 and
A = 1.0 over one period (T = 3.07).
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has been considered by Ralph (1991) and will be the
subject of a subsequent paper.

6. Numerical examples

To illustrate the emergence of breathers from an ini-
tially isolated meandering disturbance, Eq. (5.4) has
been solved numerically, using a finite-difference
method. Center differencing is applied in space. Time
stepping is carried out using a predictor-corrector
method, with a leapfrog scheme to predict and a trap-
ezoidal integration to correct. The resultant scheme is
second order in space and time, and conditionally sta-
ble when

5[lal , 117
Ats‘/E[As“_As )

[ An alternative approach is to solve (5.5 ) numerically,
which can be done using pseudospectral methods
(Fornberg and Whitham 1978)].

Two examples are given: the first of which shows
the development of a nonlooped breather. The initial
condition is

0(s, 0) = 3.6 sech(2s) tanh(2s), (6.1)
F 0312
r_—‘/\v/\f\/\' 0281
-_—_’/'—\/U\/\' 0.250
:_—/\/Vw 0.218
~_—//\/1/\A 0.187
3 0.125
— U 004
T
[ J" 0.031
(1) J’L t=0
0 ; G

F1G. 7. Numerical evolution for an initial thin
lobe given by (6.1).
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FiG. 8. Formation of two breathers using the initial
condition given by (6.2) (from Pratt 1988).

and Fig. 7 shows the evolution leading to an isolated
wave packet. The second example, taken from Pratt
(1988), is based on the initial condition,

Y(X,0) = 2e~* cos(3X), (6.2)

where Y denotes the y position of the front. Two
breathers emerge, the first centered near X = 3 and the
second near X = 20 in the ¢ = 4.18 profile shown in
Fig. 8. The latter produced a closed loop. The Fig. 8
results were obtained before the connection with the
mKdV equation was discovered.

7. Estimation of parameters from Gulf Stream data

Estimates of the model parameters a and b were
made using a Gulf Stream density cross section taken
at 68°W by Hall and Fofonoff (1992). The parameters
were computed by using an isopycnal to represent the
shape of the interface in the 1 1/-layer model stratifi-
cation. Five estimates were made using the isopycnals
indicated in Fig. 9 (from their paper). Two of the iso-
pycnals, o, = 26.5 and o, = 26.6, outcrop, defining the
northern edge of the stream. For nonoutcropping iso-
pycnals, the edges of the stream were chosen to be
where the isopycnal slope was judged zero. The depth
of the isopycnal was scaled by H, the depth of that
isopycnal on the southern edge of the Gulf Stream.
Values of H range from 550 m for the 26.5 contour to
1330 m for the 27.7 contour. Cross-stream distances
were nondimensionalized using R; = V(g'H) / fo with
fo=9.4X%X107°s"". The reduced gravity was calculated

according to .
, Po — Pi
g = g(———) s
Po
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FIG. 9. Density section across the Gulf Stream at 68°W. (From Hall and Fofonoff 1991).
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where p; is the density of the lower layer and p, is the
density of the upper layer. The densities for each layer
were estimated by separately averaging the density of
the water above and below the isopycnal. The defor-
mation radius for all five of the isopycnals was found
to be approximately 40 km.

Once the isopycnal profiles were nondimensional-
ized, a and b were calculated. using integrals (2.30).
Table 1 contains the values of a and b for each of the
five isopycnals. The parameter b depends on whether
the isopycnal outcrops or not. For outcropping iso-
pycnals, b = 0.5. As the isopycnals get deeper, b in-
creases to approximately 0.7. The upper two outcrop-
ping isopycnals and the two middle isopycnals have a
~ 0.15. The 27.7 isopycnal has a much lower value
of a (a = 0.09). This isopycnal is slightly deeper than
the core of the current, so its slope d4/dn is smaller
than the other isopycnals, leading to a smaller estimate
of a. Because this isopycnal misses the current core, it
is not a good choice for the shape of the interface. These
estimates show that interfaces that outcrop do not be-
have significantly differently than those that do not.

Table 1 suggests that, on average, b exceeds a by a
factor of 5. To interpret this result, consider the strength
of the restoring tendency associated with the 3 effect,
as measured by

b cosfy _ b cosbodf/dy
ak? ak3foRy °

the ratio of the two terms on the right-hand side of the
linear dispersion relation (4.3). Using b/a = 5, fo(df/
dy)~' = 3500 km, R, = 40 km, cosfy = 1, the preceding
ratio is unity for wavelength (27 /k;) ~ 1050 km. Just
off Cape Hatteras where the azimuth of the Gulf Stream
is about 30° (cosfy = 0.866), the critical wavelength
is 1130 km. This is the meander scale over which the
westward propagation tendency associated with 3 bal-
ances the eastward propagation produced by the com-
bination of advection and local vortex induction.
Longer wavelengths propagate westward, while shorter
wavelengths move eastward. Lee and Cornillon (per-
sonal communication ) have identified westward-prop-
agating Gulf Stream meanders having wavelengths in
the range from 450 to 2000 km.

8. Conclusions

From the one-layer, reduced-gravity model and the
thin-jet approximation, we have extended the Pratt and
Stern (1986) path equation to include nonquasigeo-
strophic dynamics, the beta effect, and continuous po-
tential-vorticity distributions. The equations differ from
the fundamentally barotropic path equations derived
earlier by Robinson and Niiler (1967) and Flierl and
Robinson (1984).

Clearly, our new path equation retains two mecha-
nisms governing the temporal evolution of meanders,
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TABLE 1. Estimates of ¢ and b.
T Rd a b
26.5 40.7 0.149 0.50
26.6 420 0.150 0.50
274 42.6 0.144 0.64
27.6 39.8 0.150 0.70
27.7 36.8 0.099 0.75

and for an eastward jet such as the Gulf Stream, these
mechanisms oppose each other. On one hand, the
combination of advection and vortex induction (de-
scribed by Pratt 1988) generates a tendency toward
downstream propagation of disturbances, while on the
other hand, the beta effect and the attending Rossby-

.wave dynamics induce a westward propagation, that

is, upstream. At a threshold wavelength, meanders are
stationary. The existence of such nonpropagating
meanders may explain the node observed in the Gulf
Stream path some 600 km downstream of Cape Hat-
teras ( Halliwell and Mooers 1983; Cornillon 1986).
Indeed, the position of this node may correspond to a
distance equal to half the threshold wavelength from
the geographically imposed node at Cape Hatteras.

The path equation also admits a variety of steadily
translating wave forms, including a periodic wave, a
loop soliton, and an envelope soliton or ‘“breather.”
The latter were found by recasting the path equation
as the modified KdV equation. Numerical evidence
suggests that meander detachments are associated with
the solitons (see Fig. 8). Since the number and con-
nectiveness (intersecting or nonintersecting ) of solitons
emerging from an arbitrary, isolated initial disturbance
can be obtained through a straightforward calculation,
the detachment of meanders might be forecast without
actually integrating the time-dependent equations. The
results of such calculations will be reported in the fu-
ture.

A final note on the limits of the model is in order.
Because of its thin-jet formulation, the present model
is unable to represent correctly the eddy pinch-off pro-
cess. More importantly, our path equation, like all its
predecessors, excludes baroclinic instability, which is
known to contribute greatly to meander generation and
growth. Thus, the preceding equation is not to be in-
terpreted as a low-order forecasting tool, but only as
the basis for the elucidation of curvature and beta dy-
namics in well-defined jets, such as the Gulf Stream.
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