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ABSTRACT

The formation and detachment of quasi-geostrophic eddies in a 1Y layer jet is studied using a piecewise
uniform potential vorticity model. A vorticity front separates the two pieces, and thus the jet has a cusplike
character. The evolution of large amplitude initial disturbances (whose origin may be attributed to barotropic-
baroclinic instability mechanisms not explicit in our model) is computed by the method of contour dynamics.
Certain numerical results such as the steepening of the front prior to eddy detachment can be physically explained
in terms of differential mean field advection and vortex induction. Computations are made for a variety of
initial conditions and we indicate the amplitude/scale conditions necessary for the detachment of an eddy. The
discussion is directed to the problem of the formation of warm/cold rings in the Gulf Stream. The effect of a
coast on large perturbations of a jet is also briefly discussed.

1. Introduction

Recent advances in remote sensing technology have
led to a greater appreciation of the rich mesoscale eddy
structure of the Gulf Stream System. Our work centers
on the intense rings and ringlike eddies of deformation
radius scale which are formed when a segment of the
Stream becomes detached from its main axis. Figures
1 and 2 (redrawn from Weatherly et al., 1984, and
from Weatherly and Kelly, 1985) show several such
events as illustrated by the NWS/NOAA surface frontal
maps of the Stream near 40°N, 62°W. Figure 1a con-
tains a time sequence of maps from July and August
1981, showing the “pinching off ” of a warm core eddy.
On day 7/13 the surface front executes a northward,
anvil-shaped meander. A week later (day 7/20) we see
a cold tongue of fluid (see arrow) wrapping around the
anvil from the west and a similar tongue approaches
from the east on day 7/27. By day 8/3 the meander
remains attached by only a thin thread of warm fluid.
A similar sequence of events during May and June
1983 is shown in Fig. 1b. Here, detachment of the
northward meander is effected by a western tongue
alone.

There are also many cases in which large and steep
meanders of the Stream resist detachment for long pe-
riods of time. Figure 2 shows a southward meander of
the Stream over a two-month period in 1982. Although
pinching-off appears imminent on days 5/30 and 6/3,
the meander widens (day 6/7) and persists until day
7/19 at which time a blob of cold fluid apparently be-
comes detached from the southern extremity. This se-
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quence suggests the presence of some mechanism
which works against the pinching off process.

Detached eddies have been reproduced in a number
of quasi-geostrophic, numerical models (e.g., Rhines,
1976; Semtner and Mintz, 1977; McWilliams et al.,
1978). To date, the most focused numerical studies of
eddy detachment are those of Ikeda (1981) and lkeda
and Apel (1981) who used a two-layer, quasi-geo-
strophic model to study the growth of small distur-
bances on an eastward jet. For periodic disturbances,
Ikeda (1981) finds that detached eddies can occur as
the result of meander growth due to baroclinic insta-
bility. Once large, the southern and northern extrem-
ities of the meander develop anomalous cyclonic and
anticyclonic vorticity due to their movement within
the planetary potential vorticity gradient. Exterior fluid
is wrapped around these extremities and detachment
occurs. Baroclinic instability and a (weak) planetary
potential vorticity gradient appear to be essential to
the whole process. For isolated disturbances Ikeda and
Apel (1981) also find detached eddies, but here the
detachment is assisted by two mechanisms not ob-
served in the periodic case. The first mechanism in-
volves interactions between neighboring meanders and
occurs when a fast, small amplitude meander overtakes
a slow, large amplitude meander. This interaction ap-
pears to assist detachment of fluid associated with the
larger meander, but the physics of the situation is un-
clear. The second mechanism involves the generation
of broad recirculations to the north and south of the
jet. Once established, these recirculations are able to
cut off the tips of intruding meanders through simple
advection.

The purpose of this paper is to elucidate the physics
of the “pinching off” process whereby a segment of
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FiG. 1. Surface frontal positions of the Gulf Stream near 62°W. (a) 3-week period in 1981
showing detaching warm eddy; (b) 2-week period in 1983 showing detaching warm eddy.

the Stream detaches to form a closed circulation. To
do so, we introduce an approach based on the method
of contour dynamics (Zabusky and Overman, 1981)
in which the location as a function of time of a material
contour is the dependent variable. This method is ap-
plied to a quasi-geostrophic model containing piecewise
uniform potential vorticity. The contour in question
is a potential vorticity front centered on a cusped jet.
Our study attempts to isolate the conditions under

which segments of the front pinch off and form closed
contours.

We recognize that a baroclinic/barotropic instability
mechanism and possibly others are responsible for the
initiation of such finite amplitude disturbances as are
shown in Figs. 1 and 2. But important inertial effects
come into play when the disturbance amplitudes be-
come finite, and these may be independent of the in-
stability process, particularly if saturation occurs at

42°

N | 5725 5/30 r) 6/3 6/7 6/12
37° ,
65°W 60°
6/16 6/26 7710 7719 7721

FIG. 2. Same location as in Fig. 1. Here the surface front executes a persistent meander over the
two-month period in 1982. Apparently a cold-core eddy finally detaches on about day 7/19.
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moderate amplitude. In trying to isolate the detach-
ment mechanism and to simplify the overall problem
we therefore concentrate on following given finite initial
disturbances of an otherwise stable jet and try to iden-
tify those physical processes which assist and those
which work against pinching off. The goal is to deter-
mine the extent to which several simple inertial mech-
anisms can account for the striking observed features
mentioned earlier.

2. The model

Recent direct measurements of horizontal velocity
in the upper levels of the Gulf Stream east of Cape
Hatteras have enabled Hall (1985) to reconstruct a po-
tential vorticity section across the Stream. Figure 3,
redrawn from her Fig. 4.2, shows potential vorticity
along the 14°C isotherm across the Stream at 68°W.
The most notable feature of this profile is the steep
northward gradient or “wall” centered near y = 0. The
maximum value of this gradient is approximately 60
times the planetary potential vorticity gradient (indi-
cated by the slope of the dashed line in Fig. 3). Similar
profiles have been found in eddy-resolving Gulf Stream
spin-up models. In Fig. 4 we have reproduced an ex-
ample from a 3-layer model (Hall, 1985) showing upper
layer quasi-geostrophic potential vorticity. As before,
the main feature of the profile is a steep wall near y
= () separating high potential vorticity (north) from low
potential vorticity (south).

Now consider a simple model of the upper Guif
Stream in which the horizontal potential vorticity gra-
dient is completely concentrated in a front and, more-
over, all motion is confined to a single density layer
overlying a deep inactive layer of slightly lower density.
The motion of the upper layer is then equivalent to
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FIG. 3. Mean Ertel potential vorticity along the 14°C isotherm
along a cross-Gulf Stream section near 68°W. The slope of the dashed
line indicates the planetary potential vorticity gradient. (From Hall,
1985.)
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FIG. 4. A north-south section of mean quasi-geostrophic potential
vorticity within the upper layer of Holland’s 3-layer general circulation
model of the Gulf Stream system. (From Hall, 1985.)

that of a single layer under reduced gravity. Such a
model might be the first in a hierarchy of models in
which uniform potential vorticity and density regions
are pieced together to build up a realistic Gulf Stream.
As sketched in Fig. 5, the front has horizontal position
y = L(x, t) and separates regions of uniform potential
vorticities A (for y> L) and B — A (for y < L). In
accordance with the observed potential vorticity, we
will call positive y north, and assume that 4 > B — A,
so that the front divides high uniform potential vorticity
fluid in the north from low uniform potential vorticity
in the south. Although unrelated to the Gulf Stream
problem, it is convenient (for later work on coastal
jets) to allow for the possibility that a rigid boundary
may exist at y = —Lg.

Let D denote the mean thickness of the upper layer,
d a typical cross-stream depth variation of the undis-
turbed state, g* the reduced gravity, and f'the Coriolis
parameter. Then if the Rossby radius of deformation
(g*D)'?/fis used as the unit of horizontal length, and
if the thickness variation / is nondimensionalized using
d, then the quasi-geostrophic potential vorticity equa-
tion for the upper layer implies

2 A, y>L
Vih— h {B—A, y<L 2.1)
where 4 and B — A4 denote the potential vorticities
nondimensionalized by fd/D?. With time z nondimen-
sionalized by ( fd/D)~' and velocity by (g*)"/*d/D'/?
the eastward and northward velocities are given re-
spectively by
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FIG. 5. Definition sketch showing plan view of potential vorticity
front. All variables are dimensionless. For the particular case of a
free jet remove the wall (i.e., Ly = o).

These quasi-geostrophic equations are valid for d/D
< 1 provided the parcel accelerations do not become
infinite in the course of time.

The velocities are continuous across the vorticity
front, and for the general problem posed in Fig. 5 we
will need the condition of no normal flow at the rigid
boundary. The geostrophic relation then implies

hdx, =Lo, ) = 0 (2.2)

If L = 0 is taken as the undisturbed position of the
front, then the undisturbed thickness obtained from
2.1)is

Ae”—-1), y>0
hol) = { Ae” + Bcoshy + A~ B, y<0, 2.3)
and the associated undisturbed velocity is
0, y>0
= - ’ 4
uo(y) = Ae {B sinhy, y<0. 2:4)

This basic flow can describe two different types of jets:
one having B = 0 and a maximum velocity 4 at the
front; and the second having 4 = 0 and a maximum
velocity B sinh(Lg) at the wall. The Gulf Stream jet
corresponds to the former with Ly = co. The use of
the term “jet” must be qualified by noting that con-
ventional jets (such as the ones considered by Ikeda,
1981, and Ikeda and Apel, 1981) are linearly unstable,
whereas the “cusped jet” considered here is linearly
stable.

The total streamfunction will be represented as a
_ sum of Ay and a time-dependent deviation A"

h(x, y, t) = ho(y) + h'(x, y, 0). (2.5)
Using (2.1) and (2.3) then gives
B—-24, L>y>0
V' —h'=4{24—B, L<y<0 (2.6)
0, otherwise.
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The B — 24 and 24 — B terms on the right-hand side
of (2.6) represent the difference between the potential
vorticity underneath a ridge (L > y > 0) or trough
(L < y < 0) and the basic potential vorticity. Hence,
the A’ component is appropriately referred to as the
vortex anomaly component. The separation of the total
flow into an 4’ component (which must vanish at y
= —o0) and a mean field component will provide us
with a good deal of physical insight into the numerical
solutions.

The solution to (2.6) can be constructed using the
Grzeens kernel for the modified Helmholtz operator
(Ve —1)

G0x, 5 b 1) = 5= KallGe— 7+ (= P12 27)

where £ and »n denote the x- and y-coordinates of a
point source of potential vorticity and Ky(z) is the
modified Bessel function of zero-order. Integrating the
product of (2.7) and the right-hand side of (2.6) over
all £ and » gives

B—-24,(L>7n>0)
h’(x,y,t)=f dgf dn 2A B,(L<n<0)
(otherwise)

X {G(x, y; &, n) —

G(x, y; & — — 2Lo)}

L(£,0)
fo dn(B — 24), L(E, ) > 0

=J:)d£ 0

L&)
X {G(xa Y Ea 7’) -

dn(24 ~ B), L(§, ) <0

G(x, y; £, —n — 2Lo)}

© L(E,0)
=24 [ de [ aniGes v

- G(x, y; & —n — 2Lg)}.

The second Bessel function on the right-hand side of
(2.8) represents the image point required to satlsfy the
wall condition (2.2).

The time-dependent horizontal velocities are given
by

(2.8)

. oo L(£,0)
WGy 0= = B-24) [ de fo dndfan

X {G(x, y; & n) + G(x, y; & —n — 2Lo)}

= 8-24) | " dE{GLs ¥ & L&, 0]~ G 3 £,0)

+ Glx, y; &,

_L(Ea t) - 2L0)] - G(xa i £9 ~_2‘L0)}

(2.92)
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© L(&,0)
v(x, y, ) = hly = (B — 24)3/dx f_ dgfo dn
X A{G(x, y; £, m) — G(x, y; &, —n — 2Lo)}

fL(x—a,t)
0

X {G(O’ y, a, 7I) - G(O’ ,V§ a, —n — 2L0)}

L(c0,t)

— (24— B) f_ Z dexddx dn

= (B-24) (AL{Gx, ;& L(& 0]

L(—o00,!

— Glx, y; & —L(&, ) — 2Lo]}. (2.9b)
In the last expression, it is understood that the inte-
gration with respect to dL covers all values of L on the
interval —oo < § < o0. These equations are valid even
where L is a multivalued function of x (Stern, 1985),
in which case the integrals are line integrals.

3. Calculation of L(x, r): Contour dynamics

We now focus on the problem of determining
L(x, ?) given L(x, 0). Consider the motion of a tagged
frontal parcel having position [x(¢), L(f)]. The x-ve-
locity of the parcel dx/dt = uy(L) + u'(x, L, t) is obtained
by evaluating (2.9a) at y = L(x, t) and adding the result
to (2.4) evaluated at y = L. The y-velocity of the parcel
dL/dt = v(L) is due entirely to anomalous vorticity. A
form of these equations obtained by carrying out two
of the integrations in (2.9a) is

dx/dt = (B — 24) f " aL{Glx, L(x, 1; & LG, 0)]

+ Glx, L(x, 0); § —L(¢, 1) — 2Lol}

_ (_7:‘15__@ [e—IL(x,t)I + e~[L(x,r)+2Lo]]
0 L>0
~L(x,0f _ ’
+de {B sinhL(x,7), L< o} (3.1a)
L(c0,t)
dL/dt = (B — 24) o dL{Glx, L(x, 1); £, L(¢, 0]
—00,f]

- G[x, L(x, t): E, _L(£5 t) - 2L0]}

The relation

(3.1b)

fw dzKol(a — 2)* + b*]? = mwe 1l 3.2)

(see the Fourier transforms on page 118 of Magnus
and Oberhettinger) has been used to perform several
integrations in (3.1a).

For our main problem in which Ly — oo, B — 0 we
may set 4 = 1 without loss of generality (this sets the
h metric equal to half the difference of the dimensional
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thickness values at y = +00), whereupon (3.1a, b) re-
duce to

dx/dt = =2 f_w déGlx, L(x, 1); & L(¢, 1] (3.32)
L(co,1)

dL/dt = =2 )dLG[x, L(x, 0); & L(¢, 9)]. (3.3b)

L(—oc0,t

An alternate form of (3.3a) obtained using (3.2) is

dx/dt = e L0 — 2 J:w dE{Glx, L(x, 0); & L(¢, 1)]

— Glx, L(x, 1); £, 01}.  (3.4)
In this form the partition of the x-velocity into basic
flow plus vortex anomaly contributions is explicit.

In principle equations (3.3a, b) determine the “dy-
namics” of the contour y = L(x, ¢) given L(x, 0). How-
ever, closed form solutions are difficult without further
approximation due to the complicated structure of the
integrands. Instead, consider a numerical solution
based on a Lagrangian scheme in which the front is
resolved into n material parcels with positions x;(f) and
L;(?), i increasing monotonically with arclength along
the front. The velocity of each parcel is found using
trapezoidal approximations to evaluate the integrals in
(3.1), (3.3) or (3.4) and a predictor-corrector method
is used to implement time-stepping. This algorithm
forms the basis for all calculations presented in sections
5 and 6 and is described in detail in the Appendix. The
essentially Lagrangian calculation allows L(x, ¢) to be-
come a multivalued function of x without necessitating
any special computation. However, the algorithm does
break down if grazing contact is made between different
pieces of the front, as occurs in the neck of a detaching
eddy. Although it is questionable whether mathemat-
ically conclusive contact can occur in the nondiffusive
equations under consideration, the neck width can be-
come arbitrarily small and contact may occur due to
numerical error. When very small neck widths are ob-
served, the numerical integration is stopped, the phys-
ical justification being that close contact implies an
important intervention of small-scale processes (not
included in the quasi-geostrophic framework) which
will complete the detachment process.

The method of contour dynamics has been used to
study the evolution of various types of barotropic vor-
tices (e.g., Zabusky et al., 1979; Zubusky and Overman,
1981; Overman and Zabusky, 1982). More pertinent
to the present problem are studies by Pullin (1981) and
Stern and Pratt (1985) of a two-dimensional front sep-
arating regions of irrotational and finite uniform vor-
ticity fluid. Here, wave breaking and folding of the front
followed by entrainment of irrotational fluid by the
finite vorticity fluid is observed for sufficiently large or
steep initial disturbances. However, captured blobs of
irrotational fluid are stretched into long filaments by
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the surrounding vortical fluid and are thus unable to
exert any significant dynamical influence. Stern (1985)
explored the equivalent barotropic version of this
problem by considering the case (Lo = o0, 4 = 0,
B = 2) of Eq. (2.1). Here the basic state is motionless
to the north of the front and is cyclonically sheared to
the south. Sufficiently large meanders tend to steepen,
causing large-scale lateral wave breaking resembling
shingle-shaped disturbances in the Gulf Stream. Also,
low vorticity coastal water is engulfed in the cyclonic
shear zone and then stretched out to the point of dy-
namical insignificance. We emphasize this because the
behavior is remarkably different from the detachment
to be discussed. Before doing this it is convenient to
list some elementary facts and some limiting cases of
the Lagrangian integro—differential equations for
(L, x).

4. Limiting and special cases
a. Periodic disturbances of small amplitude

It is easy to derive an equation for the propagation
speed ¢ of infinitesimal amplitude (a) disturbances of
the form A'(x, y, t) = a cos[k(x — ct)lg(y). One sub-
stitutes this into the linearized potential vorticity equa-
tion, uses the conditions of pressure continuity and
mass conservation at the front, and readily obtains:

B 24— B
v[1 + coth(vLo)]

where v = (1 + k)2 If the front is free (A =1,
+ B=0, Ly = 0o0) then (4.1) reduces to

c=1—-(+k¥»)
and the corresponding group speed is
¢ = d(ck)/dk = 1 — (1 + k332

In both the bounded and free cases, the frontal waves
are neutrally stable and propagate with the centerline
jet speed minus a speed due to vortex induction. The
latter can be described rather easily for the free case by
considering the motion of the front near the distur-
bance sketched in Fig. 6. The lateral (north-south)
motion of any fluid parcel at the front is due primarily
to anomalous vorticity associated with disturbances of
the front within several deformation radii of that parcel.

c=A 4.1

4.2)

FIG. 6. Nlustration of the vortex induction effect on the front near
an isolated ridge. The vortex induction is represented by an imaginary
point vortex labeled P. o
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In Fig. 6 the disturbance consists of a single ridge which
lies to the north of y = 0 and therefore contains anom-
alously low (anticyclonic) vorticity. We may qualita-
tively represent the integrated effect of this anomaly
using a point vortex at point P. This vortex moves the
front southward downstream (to the east) of the crest
and northward upstream of the crest, leading to a west-
ward propagation relative to the 1,(0). Later on in the
dispersive process the southward displacements to the
right of the crest will lead to a high vortex anomaly
(trough) and eventually more crests and troughs will
appear further downstream. When the boundary is
present, the phase speed (4.1) can be understood using
similar arguments.

b. The long-wave limit

-Next consider disturbances of finite amplitude and
wave length large compared to both L, and unity. For-
mally we write

L(x, ) = LOX, 1) + O(e) 4.3)

where X = ex and where again ¢ <€ 1, L. Taylor ex-
panding L(£, ) about £ = x then gives

aL(x, ;
L(e&, 1) — L(ex, 1) = (£ — x) —Iié(;—t) + O(e?). (4.4)

If (4.3) and (4.4) are used in (3.1), the x-velocity at the
front becomes

u(x, L, §) = 24— 8 (1 — e 4 g2b+Lol _ giL+2Loly
£ b4 2
_ 0, y> L} ' e
- + 4.5
+de {B sinh(Z), y<rzf TOO @)

whereas the y-velocity becomes

2_ B (1 — e 2L+L03T /5% + O(e). (4.6)

Finally, substitution of (4.5) and (4.6) into the ki-
nematic relation

v(x, L, 1) = 24

v(x, L, 1) = 8L/t + u(x, L, )dL/dx  (4.7)
yields, to leading order
oL oL
—+ —=0 4.8
ot ab) ox 4.8)
where the long wave speed C(L) is
C(L) = 24— B (ze—2|L+I4)I - L e—|L+214)|)
2
_ 0, (y> L)}
I — ' . (49
+de {B sinh@), (yv<bf &

Long finite-amplitude waves steepen according to (4.8)
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as one L catches up to a nearby L having a smaller
propagation speed.

When the coastal-trapped portion of the current is
absent (B = 0) but the boundary remains (L, is finite),
(4.9a) reduces to

QL) = AQe ol — gritt2lly - B =0  (4.9b)
whereas the boundary free case (Lo — o0) yields
arL) =0, B =0, Ly=0 (490

i.e., long-wave disturbances of the free front are sta-
tionary. Finally the small amplitude, long-wave limit
for arbitrary B, L, is

(24— B)

AL =4-=——(- P an)
—y__2A-B
B 1 + coth(Ly)

in agreement with the long-wave limit of Eq. (4.1).
According to (4.8), each value of L propagates with
speed C(L) in the positive x direction. The interesting
limit documented in the following subsection for future
reference is not used further in this paper, and conse-
quently the reader may prefer to skip to section 4d.

¢. Free disturbances of finite amplitude and small cur-
vature

As demonstrated by (4.9¢), long-wave disturbances
of the free jet remain stationary to leading order (in
deformation radius/wave length), and we now explore
the slow evolution of such disturbances as determined
by the next terms in the expansion. Let

L(x, t) = € 'l(r, X) + O(1)
X=e
T =€t (4.10)

where ¢ <€ 1 and ¢ is a yet undetermined factor deter-
mining the slowness of the time scale. Using (3.3a, b)
in (4.7) gives

l o
L= " agrge o - s o)

X Ko{{(x = &) + [L(x, 1) — L(¢, n)*}'?),
and substitution of (4.10) into this expression yields -

€, = ;lr' f_ ‘: 45{6(5 = Xxx + % (e x)zlxxx}
X Ko<{(£ - x4+ [(E — lx

-t o@]] )
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where a Taylor expansion in powers of £ about £ = x
has been used. Letting z = (¢ — x) we get

1!'6{_21., = f dZlexKo{[(l + 1)(2)22 + €Ixxlxz3]l/2}

+ % fw dZZzlxxxKo{[(l + lx2 22]”2} + 0(62)
= + I, + O(éd). 4.11)

The integral I, can be evaluated through use of the
Bessel function definition:

K (2) = f df cosh(nf)e™* @, 4.12)
0

If this expression is used in I, and the exponential

- function is expanded in a Taylor Series about ¢ = 0,

the result is

I = Ixx f . dzz Jm dfecosh@LX1+LDI2

eyl
2(1+1)§)'/2f dz J)”

X cosh(f)e CHOHI+EIT2 L O(2),

The first integral vanishes identically since the inte-
grand is odd, leaving O(¢?)

—elixdx
2(1 + AP

- "flxxlx
201 + A2

— _3611,2\',\’1){
201 + 122

I = f daf dblal? cosh(g)e @l

[ delaPiidel

(4.13)

The evaluation of the last integral is given by Abram-
owitz and Stegun (1964). The integral I, can be eval-
uated in a similar way, and the result is

__ ehoxx f ® o,
L —————( T+ LD Jo doa*Ko(a)

€ I XXX

= W . 4.14)

Substitution of (4.13) and (4.14) back into (4.11)
yields

;.31 3IXXIX
T2+ LAY

IXXX
2(1 + 122

+ O(e)

so that { = 3. Therefore, disturbances with (wavelength/
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deformation radius) = e will evolve on an O(¢®) time
scale according to

IXXX 3(IXX)21X
2[1 + IX2]3/2~ 2[1 + 1X2]5/2 =0. (4.15)

Note that the amplitude of L is of the order of the
wavelength.

A more intuitive form of (4.15) can be written in
terms of the curvature:

L, —

- iIXX
[1+ L2

The second and third terms in (4.15) constitute % the
X-derivative of « so that (4.3) may be rewritten

K

1
. lf“EKX=O.

This long-wave model is related to but different from
earlier thin jet models of the Gulf Stream (e.g., Flierl
and Robinson, 1984), and further discussion is reserved
for a later paper.

d. Velocity tendency calculations for simple distur-
bances

In order to explain features of the full numerical
solutions to Egs. (3.3a, b) which will appear later, we
document here the velocities produced by some ele-
mentary frontal shapes (e.g., Fig. 7). Consider first an
isolated disturbance whose downstream width is much
shorter than unity. Since the horizontal area of the
fluid bounded by this frontal displacement and the x-

velocity scale
00 05 10

r~ T T
(@)
---L=1
L=0 T T 1 T > X
-05 00 05
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F1G. 7. Horizontal velocities of various frontal parcels for a spiked
L disturbance of free front (4 = 1, B = 0, L = o). The dashed line
in (a) indicates the x-velocity due to the basic flow alone, and the
arrows indicate the total velocity. (b) The arrows indicate the y-ve-
locity.
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axis is small, the vortex anomaly is small and therefore
the evolution is dominated by the basic velocity (2.4).
As an example, we have computed the velocities for
the spiked disturbance

1 —10x|, x| <0.1

L =
. 0) {0, otherwise

using Egs. (3.3a, b). The total x-velocities for several
material parcels distributed over the downstream (right)
face of the spike are indicated by arrows in Fig. 7a, and
the x-velocities on the upstream face are identical.
Compare these with the dashed line which gives the
basic flow contribution, and which accounts for most
of the x-velocity. Also Fig. 7b shows that the y-velocities
are small compared to the x-velocities. It follows that
fluid parcels in the southern (i.e., smaller y) part of the
spike travel eastward at a faster rate than those in the
northern tip. The rear (west) side of the spike will
therefore steepen, tilt backward, and a kind of breaking
wave will be produced.

In contrast consider a disturbance having a large area
for the potential vortex anomaly, as given by the step:

0, x<0
L(x, 0) = y, x=0, 0<sy<UL, (4.16)
L2,X>_0

The total horizontal velocity for points on x = O is
given by (3.3a) as

1]
w0, L,0)= f AEK[(E? + [D)'7]

1 o]
+ - fo deKo{[£% + (L — L)'}

= (€L + D), (4.17)

When L, > 1, the value of (4.17) at the south (y = 0)
corner is one-half, and near the north corner (y = L,)
the value of (4.17) is also approximately one-half, i.e.,
the same as at the south corner. The x-velocities for
the case L, = 1 are shown in Fig. 8 and indicate the
tendencies described above. Specifically, we see that a
small amount of frontal folding is confined to the
southern part of the step and occurs at a slower rate
than that of the spike. The y-velocities, given in Fig.
8b, are now the same magnitude as the x-velocities.
It is instructive to compare this tendency calculation
to the result obtained by Stern (1985) for a step in a
different flow (4 = 0, B = 2, Ly = o0), which is indicated
in the inset on the upper left side of Fig. 8a. Here the

* basic velocity is zero to the north of y = 0 so that the

east velocity at the step disturbance is entirely due to
the (now cyclonic) vortex anomaly under the step. This
anomaly tends to tilt the step backward (as shown in
Fig. 8a inset) and the upper corner velocity u(L;) is
equal and opposite to that of the lower corner velocity
#(0). For our free jet profile, on the other hand, we see
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FIG. 8. The horizontal velocities for a step disturbance of unit amplitude for free case (4 = 1,
B =0, Ly = «). (a) u along the step. The inset shows a step disturbance of Stern’s (1985) front
(4 =0, B=2, L, = co) with corner velocities. (b) v near the step.

that u(L,) = u(0) and therefore one should expect the
temporal evolution of our step to be much different.
The previously discussed spike signature would seem
to be the more relevant one for significant frontal
steepening and folding.

5. Numerical results for isolated disturbances of the
free front

We now consider the complete evolution of the front
for several classes of initial conditions. For the most
part attention is restricted to initial disturbances having
downstream widths of the same order of the defor-
mation radius. Longer wave lengths are governed by
Eq. (4.15) and will be the subject of a future study.
Shorter widths are essentially governed by the barotro-
pic contour dynamics (see Stern, 1985). The vital sta-
tistics for all numerical experiments are listed in Table
1, and an important result is the tabulation of a hori-
zontal area of detaching eddies. This gives some quan-
titative measure of the pinching off process, such as
may be related to the heat flux across the front in the
oceanic prototype.

a. The smoothed step
First consider the initial shape
L(x, 0) = L,y[1 + tanh(Spx)]/2 (5.1)

with L, = 4 and S, = 10 (labeled ¢ = 0 in Fig. 9), this
being essentially the step profile whose tendency was
discussed in the previous section. As anticipated, fold-
ing occurs in the southern part of the step (see t = 4
in Fig, 9) causing L(x, ¢) to become a multivalued
function of x. A northward excursion of the front near
the step can also be seen and is explained by the ten-
dencies in Fig. 8b. This northward movement carries
the step into a region where the basic shear is weaker
and the result is that the front “unfolds” (¢ = 7) and
the step begins to disperse. By ¢ = 15 the step has dis-
persed to a good degree and several trailing waves have
developed. This calculation dramatically illustrates the
ability of anomalous potential vorticity to disperse dis-
turbances even when huge initial slopes are introduced.

An eastward-facing step evolves in essentially the
same way as a westward-facing step of the same di-
mensions. This follows from the fact that —L(x, ¢) is
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FIG. 9. Evolution of the case L(x, 0) = 2[1 + tanh(10x)].

a solution to the equations of contour dynamics if
L(x, 1) is a solution.

"b. Detachment of single-lobe meanders

The single lobe meander is central to our discussion
of the pinching off process. First consider the initial
condition

L,{1 + tanh[Sy(x + W)]}, x <0

L,{1 — tanh[Sy(x — W)]}, x>0 (5-2)

L(x, 0) = {

consisting of a single ridge of amplitude L, half-width
w, and maximum slope Sp. Resuits for the case L, = 2,
w = 2,5, = 10 are plotted in Fig. 10. At ¢t = O the
disturbance resembles a “top hat” with rounded cor-
ners. Since the east and west faces of the top hat are
four “deformation radii” apart, little communication
initially exists between them. Therefore, the west face
initially evolves as the step of Fig. 9, while the east face

evolves as its mirror image (see ¢ = 3 of Fig. 10). As
expected, vortex induction dominates the upstream
face and causes it to unfold (+ = 6) and disperse (¢
= 34). On the downstream face, however, remarkably
steep slopes persist long after the upstream face has
dispersed (see the segment ab at ¢ = 34). These steep
slopes can be better understood by considering the
north-south velocities produced by the vortex anomaly
due to the ridge. Since this anomaly is anticyclonic,
northward velocities are produced near the northwest
corner of the ridge and southward velocities are pro-
duced near the southeast corner, as indicated by arrows
in the ¢ = 6 profile of Fig. 10. Furthermore, the south-
ward velocities produce a trough in the lee of the ridge,
and the trough’s cyclonic vortex anomaly tends to
reinforce the already strong southward velocities be-
tween the ridge and crest. The downstream face of the
crest is therefore caught between areas of strong north-
ward excursions (upstream) and strong southward ex-
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FIG. 10. Evolution of the case in which L(x, 0) is given by Eq. (5.2)
with L, =2, W=2,5 = 10.
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FiG. 11. As in Fig. 10 but W = 1.

cursions (downstream), and this preserves the steep
slope. Also, since the upstream face of the trough lies
to the south of y = 0, it will be steepened by the basic
shear.

Although the ridge appears at ¢ = 3 to be on its way
to pinching off at small y, this is prevented by dispersion
at the upstream face. One way to prevent this disper-
sion, as suggested by section 4d, is to make the width
of the initial disturbance smaller so that the basic field
advection dominates and we therefore decreased the
half-width to w = 1. As shown in Fig. 11, the folding
of the upstream face now continues unchecked until
close contact is made with the downstream face. The
latter maintains a steep slope despite the decreased
strength of the initial vortex anomaly. At 1 = 18 we
see a blob beginning to detach, although the horizontal
area of this blob (~0.64) is tiny compared to that of
the initial area of the disturbance (~8.6). If wis further
reduced to 0.5 (Fig. 12), the bottom of the lobe is readily
sheared off by the basic flow, and the detached area
(=2.5) is now closer to the initial area (=~4.9). In both
cases note that the neck of the detaching blob is being
stretched and tilted in a sense consistent with the mean
shear.

These calculations suggest that fairly extreme initial
conditions (i.e., small width and large amplitude) are
required to allow single lobe disturbances to pinch off.
This fact is further illustrated by considering an initial
Gaussian profile.

with A = 3, and W = 1. This profile has essentially the
same width as the Fig. 11 initial profile but smaller
amplitude (3 as opposed to 4) and a moderate maxi-
mum slope =~ 1.8. The numerical results obtained for
this case (not shown) verify that the ridge fails to
pinch off.

¢. Two-lobed meanders

We now consider the case where the initial distur-
bance consists of a trough with positive vorticity
anomaly lying downstream of a ridge with negative
vorticity anomaly. (Note that the inverted case of a
trough lying upstream can be obtained by merely re-
placing L by —L in that which follows.) In the previous
examples, where we started with a single ridge, a cy-
clonic lobe was generated downstream as a result of
vortex induction. In the present case introducing the
trough ab initio enhances the steepening that occurs
on the downstream face of the ridge, and this can cause
the ridge to pinch off before the upstream face has had
a chance to disperse.

A simple and adequate initial distribution which will
illustrate the point is

L(x, 0) = —Axe " (5.4)

and we note that the maximum amplitude of each of
the two lobes is considerably less than nominal am-
plitude 4. The numerical results (Figs. 13 and 14) for
A = 6, w = 1 (actual amplitude = 2.6) show a small

L(x, 0) = Ae~&/*? (5.3) blob starting to detach from the ridge at t = 9, and this
- L B L T T Tr ¥ Ll AL L} B
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FG. 12. Asin Fig. 11 but W = 0.5.
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result is to be compared with the previously described
run 1ld (Table I) where a single-lobed Gaussian of
slightly larger max/(x, 0) and unit half-width failed to
detach. Note the steepening of the front upstream of
the trough along the segment labeled ab in Fig. 13 at
t = 7. Also note that the width of the trough grows
while that of the ridge shrinks. As its area decreases,
the ridge evolves more and more according to the spike
model of section 4d. A small blob starts to pinch off
(¢ = 11, Fig. 14), but at the same time is stretched into
a filament.

A detached eddy of significantly greater area and of
ringlike appearance occurs when A is increased to 9.0,
causing max|L(x, 0)| to increase by about 1.2 over the
previous case. The early evolution (not shown) is sim-
ilar to that discussed above and Fig. 15 shows a detailed
view of the detaching eddy. Although its neck is being
tilted and stretched in a way consistent with the basic
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shear effect, the eddy itself maintains an approximately
elliptical shape. This integrity may be contrasted with
stretching and shearing which dominates the smaller
eddy of Fig. 14. The difference between the two cases
is primarily due to the greater distance the eddy of Fig.
15 has from the region of strong basic shear (near y
= 0). The center of mass () of the latter eddy is ap-
proximately 2.4, while y ~= 1.4 for the eddy of Fig. 14.
Also the eddy of Fig. 15 is larger and therefore able to
exert more influence on its surroundings, thereby re-
sisting being passively advected by the basic flow.

d. Three-lobed meanders

We have seen that rather high initial amplitudes are
required to inhibit the vortex-induced dispersion of the
upstream face of a two-lobed disturbance and allow
detachment. We now show that detachment can occur
at much lower amplitudes if a small wavelet is incident
from the west, so that the whole initial three-lobed sys-
tem may be represented by

L(x, 0) = —Axe " — g7 l*DwE (5 5)

where A4, and w, denote the nominal amplitude and
width of the new wavelet (lobe) and D its offset. Al-
though the two-lobe case 4 = 6, w = 1.5, 4,, = 0 pro-
duces no detached eddy (see run 2a of Table I), when
we set A, = w, = 1 and D = 2.5 we do get a detached
eddy as indicated in Fig. 16. The remarkable thing here
is that the relatively small initial amplitude of the west-
ern wavelet (minL =~ —0.4) produces such a great
qualitative change. Apparently the shorter wavelength
and greater propagation speed of the wavelet prevents
dispersion of the upstream face of the ridge. Our iso-
lation of this effect may help to explain Ikeda and Apel’s
(1981) observations which show short eastward-prop-
agating meanders catching up with longer meanders
and apparently triggering eddy detachment.
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F1G. 14. Closeup of detaching blob in Fig. 13. The three profiles shown
have been separated for visual convenience.
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TABLE 1. Summary of numerical experiments for free jet case.
Initial
number Detached Detached area* Time of

Run of lobes Initial shape: L(x, 0) Figure area Initial area* detachment

0a 0 Eq.(5.1), L =4.,85 =10 9 no detachment

la 1 Eq.(6.2), L, =2,85=10,w=2 10 no detachment

b 1 Sameas labutw=1 11 0.6 0.07 t=16

Ic I Same as 1a but w = 0.5 12 2.5 0.51 t=17

1d 1 3.0 exp[—x7] — no detachment

2a 2 Eq.(54),A=6.w=15 —_ no detachment

2b 2 Same as 2b but ¥ = 1 13, 14 0.2 0.08 t=10

2c 2 Same as 2bbut 4 =9 15 14 0.32 t=9

3a 3 Eq. (5.5),A =6, w=1.5,D = 2.5, 17, 18 4.0 1.12 15

A, =386, w,=1

3b 3 Same as 3a but 4, = 2. — 3.2 0.75 13

3c 3 Same as 3abut 4, = 1. 16 1.4 0.25 15

3d 3 Same as 3a but w, = 1.5. —_ 5.1 2.10 >12

3e 3 Same as 3d but D = 6. — no detachment

* Initial area = area above y = 0 of lobe from which eddy detaches.

¥ Detachment time = time when neck width becomes <0.1.

Figure 17 illustrates the result of increasing the
nominal amplitude A, of the new lobe to 3.86. The
pinching off of the centerlobe (¢ = 14) now occurs at

L
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FIG. 15. Detailed view of the detaching eddy when the initial con-
dition is the same as in Fig. 13 except 4 = 9. The profiles have been
separated for visual convenience.

a lower value of y, with the result that a greater area
of fluid is trapped in the detaching eddy. The further
evolution of the detaching eddy (Fig. 18) shows a
tongue of high potential vorticity (cold) fluid wrapping
around the southerly portion of the eddy. A similar
tongue apparently occurs in the observations of Fig. 1.
We note that tongues and necks such as those shown
in Fig. 18 contain potential vorticity extremes and may
therefore be subject to barotropic instability, although
no firm evidence of the latter has been observed in any
results,

Listed as a part of Table 1 are the results obtained
using three-lobed initial profiles. Included are the hor-
izontal areas of detaching eddies both in absolute terms
and relative to the initial area (above y = 0) of the lobe
from which the eddy formed. In general, increases in
the area (and vortex anomaly) of the west lobe tend to
produce detached eddies of greater absolute and relative
area. Taking run 3a as the benchmark case, we see that
decreasing the nominal amplitude A, of the wavelet
(runs 3b and 3c¢) results in a reduction of detached
area. Increasing the nominal width w, of the west lobe
increases the detached area as shown by run 3d, how-
ever if the displacement D between west and center
lobes is then increased from 2.5 to 6 (run 3e) no de-
tachment occurs.

We shall now try to bring these results together and
suggest a generalized shape parameter S which deter-
mines the relative area of detached fluid. The spike
model discussed in section 4d suggests that the initial
aspect ratio (amplitude/width) of the detaching lobe
should be of central importance. For large aspect ratios
(i.e., narrow lobes), advection should overwhelm dis-
persion and large areas should detach. In Fig. 19 we
have plotted relative detached area as a function of S
(= nominal amplitude/width scale) for all the one- and
two-lobe runs. Clearly the detached area increases as
S increases, and there appears to be a critical value of
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FIG. 16. Evolution of the case in which L(x, 0) is given by (5.5)
with4=6,w=15D=25and 4,=w,=1.

S'(near 1.5) below which no detachment occurs. When
three lobes are present, we have seen that the displace-
ment D and area (—A,w,) of the west lobe strongly
affect the detachment of the center lobe. There are a
number of ways of constructing a shape parameter to
include both the aspect ratio of the center lobe and the
west lobe scales; here we choose to define S = (4/2W)
+ A,w,/D? (= center lobe aspect ratio + west lobe area/
square of displacement). A plot of relative detached
area as a function of this generalized .S is shown in Fig.
19, and the tendency of larger values of S to produce
" larger detached areas is clear. There is also the sugges-
tion that increasing the number of lobes allows milder
initial shapes to produce large detached eddies. Further
investigation of this sketchy relationship (Fig. 19) may
provide a useful diagnostic tool for interpretation of
satellite pictures of the Gulf Stream.

e. A periodic case

It is interesting and important to consider the evo-
lution of a periodic disturbance such as

L(x, 0) = A, sin(wx/w,) — A3 sin(3wx/w;) (5.6)

for the following reasons. First of all it is probably the
simplest mathematical problem to pursue if one wants
to obtain a deeper understanding of the detachment
process. It has well-posed and rigorous (periodic)
boundary conditions, as contrasted with the isolated
disturbance for which it is necessary to assume no
north-south velocity at the endpoints of the interval
containing tagged parcels. Second, it would be desirable
to extend the calculation to basic states which are un-
stable to small perturbations, e.g., three piecewise uni-
form potential vorticity regions (with a maximum in
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FIG. 17. As in Fig. 16 but with 4, = 3.86.
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FiG. 18. Continuation of Fig. 17 to ¢ = 21.

the middle region) separated by two fronts. For this
complex problem it is most straightforward to do the
numerics using periodic disturbances, and the inter-
pretations of the results will require a knowledge of the
signatures produced in the absence of the instability
mechanism. See the last part of the Appendix for the
numerical method used in this calculation.
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FIG. 19. Plot of relative detached area (as defined in Table 1) as a
function of shape parameter S for one-, two-, and three-lobe cases.

Figure 20a shows part of the evolution of a single
(43 = 0) sinusoid with 4, = 3.5 and w; = 1.5. At
t = 3, L(x, t) becomes multivalued as one side of each
lobe steepens. Although the folding continues, no de-
tachment occurs at later time (now shown) because the
distance (w;) between zero crossings (L = 0) can be
shown to be an invariant. Compare this with Fig. 20b
for which the w; is the same, the fundamental ampli-
tude is reduced to 4, = 1.75, and a third harmonic of
the same amplitude is added (4; = 1.75). The cyclonic
anomaly forming near x = 0 at ¢ = 3 pinches off at
about ¢ = 6.3 (not shown). Figure 21 shows the results
when A4, and A4; are both halved. The pinched-off cy-
clone at ¢ = 6.07 shown in the upper left has been
displaced for clarity from its proper position relative
to the earlier curves. As was the case in section 5d, we
see that the presence of the smaller wavelength allows
a detached eddy to form.

[, Velocities and parcel trajectories near a detaching
eddy

A disadvantage of the method of contour dynamics
is that the streamfunction field is not given directly.
Therefore it is difficult to obtain much of the diagnostic
information that is readily available in finite difference
simulations. However, the velocity field [u(x, y, o),
v(x, y, )] can be obtained using the contour dynamics
algorithm by substituting y for L(x) in (3.3) and using
the predetermined L(£). (In terms of the algorithm
presented in the Appendix, this amounts to substituting
y for L; and using the predetermined L;.)
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F1G. 20. Evolution of spatially periodic disturbances with the initial state given by equation
(5.6). Curve a is the front at £ = 3 for the initial state (4, = 3.5, 4; = 0, w; = 1.5). Curve b shows

the result when 4; = 4, = 1.75.

As a typical case, we present (Fig. 22) the velocity
field near the detaching ring of run 3a (Figs. 17 and
18) at ¢t = 14. To the southwest of the neck, the tongue
of high potential vorticity fluid can be seen moving
southeast. Within the neck, the velocities are such as
to close the neck and low potential vorticity fluid is
being ejected in a southeasterly direction. Within the

eddy, the circulation is anticyclonic as expected and
the velocities normal to the front indicate an eastward
propagation. If the normal velocities around the pe-
rimeter of the eddy are used to compute a propagation
velocity, the eastward speed is 0.17. (The basic flow -
has eastward speed 0.22 at the center of mass of the
eddy.)

t=2.025

\ [x

W

t=4.05

FIG. 21. As in Fig. 20 but 4, = 4; = 0.875. Inset shows pinching off cyclone. Although tl.Je
amplitude is now smaller for the disturbance, more of it is influenced by the shear than in

Fig. 19b.
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The velocity fields for run 3a have also been used
to compute the trajectories of several tagged parcels
near the eddy. The positions of these parcels are in-
dicated by the small circles in Fig. 17 and it can be
seen that all initially lie within the center lobe. Only
parcels “a” and “b” are trapped within the detaching
eddy; “c” and “d” are ejected and advected far to the
east. This picture suggests that the detached eddy is
composed primarily of fluid initially lying near the front
to the west of the center lobe crest.

6. An example with a lower boundary

We have previously drawn attention to the rapid
steepening which occurs on the downstream side of a
meander (e.g., Fig. 13) and have partially attributed
this to the strong north and south velocities produced
by a positive feedback effect involving vortex induction.
The strength of this important effect will now be dem-
onstrated by showing that the rapid steepening and
large velocities occur even when an east-west wall is
inserted to block the path of the southward-moving
parcels. Once again we set B = 0 in (3.1a, b) so that
the boundary-intensified component of the basic flow
is absent and the previously discussed frontal steep-
ening tendencies are retained. Figure 23 shows the re-
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sult of a calculation in which L(x, 0) consists of a
Gaussian ridge [Eq. (5.3)] with 4 = 2, w = 1 and with
Ly = 0.5. The dotted curve shows part of the front at
t = 6.8 lying to the east of the meander crest, and the
interesting part is to the west where the dots indicate
positions of tagged parcels. We see that a steeply sloping
wave front has formed near x = —3.0, and that the
corresponding large southward velocities have led to
grazing contact with the wall near x = —2.6. The curve
with the arrows and the marked time points (open cir-
cles) shows the path taken by parcel 88 which contacts
the wall at ¢ = 6.8. Figure 24 shows the result of similar
calculations for different values of Ly and A. The
ground symbol indicates the time in the numerical cal-
culation when grazing contact occurs with the wall, at
which time the calculation is stopped. At this time the
flow of the western branch of the current is blocked,
and it is not at all clear how to continue the calculation
in time. Increasing Ly from Y5 to 0.75 with 4 = 2 re-
quires a longer time for blocking to occur, but contact
with the wall still occurs despite the fact that the normal
velocities must vanish there.

It is instructive to compare the above with a different
kind of coastal current, for which the potential vorticity
of the basic flow increases as one moves towards the
wall, and thus we now set 4 = 0 in Eq. (3.1a, b). We
also choose B = 2 so as to make the jump in potential
vorticity across the front equal and opposite to that of
the previously considered free jet. Figure 25 shows the
shape of the front at time ¢ = 6.0 for Ly = 0.5 and for
a Gaussian initial bump having the same amplitude
and width as for the case shown in Fig. 23. At earlier
times the left-hand side of the disturbance folds
rapidly and wave breaking occurs—all in a manner
qualitatively similar to that which occurs when
Ly = oo (Stern, 1985). The maximum downward dis-
placement (L = —0.455) of the front has already oc-
curred at ¢ = 4.5 (not shown), and thus we see that the
southward velocities in this case are insufficient to pro-
duce contact of the front and the coast.

7. Summary

We have shown how eddy detachment can occur
from a simple cusped jet when no planetary potential
vorticity gradient nor recirculating gyre exists. Most
useful for this purpose and for future work on coastal
jets is the contour dynamical equations for piecewise
uniform potential vorticity currents. Also useful in
providing a physical understanding of the numerical
results is the simple formal decomposition of the latter
equations into a basic flow component and a contri-
bution due to vortex anomalies. For a northward dis-
placed front (ridge) these anomalies are anticyclonic
and are contained in the area between the disturbed
front and the undisturbed jet axis. These anomalies
will induce southward displacements of the front on
the downstream side of the ridge (Fig. 10), and the
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FIG. 23. Evolution for the case in which L(x, 0) is a Gaussian (Eq. 5.3) with A=2,
W = 1 and a lower boundary is present at L, = 0.5. The small dots indicate the actual
positions of a small portion of 125 tagged parcels along a section of the front which
has made contact with the boundary at ¢ = 6.8. The arrowed curve connecting open
circles shows the path taken by the first parcel (88) to contact the wall.

northward velocities on the other side are associated
with pervasive dispersive effects tending to reduce the
frontal slope on the upstream side of the ridge. This is
not favorable for pinching off the whole ridge, whereas
the southward velocities on the downstream face are
favorable because they produce strong and persistent
frontal steepening. Figure 23 illustrates the latter in a
most impressive way because the coastal wall in that
problem might be thought to inhibit the southward
velocities and the concomittant steepening of the
downstream side of the ridge. But in the case of the
free jet this effect at the downstream face is not suffi-
cient to produce a pinched-off ridge because the dis-
persion at the other face may prevent the two faces

min L

-03 } \\ N3~ Lgl3Re3,T=075,N=.25
X, = e

N
\.\\* Lg5A=2

-07 | N \ L,275K:2,N=125
A L3, X=3,N5125,T<075 . ~

I 0 Lzo,Re3,N88,T2.75

® L 200,X=1.5,N288,T=.1

a

FIG. 24. Summary of calculations for cases similar to that of Fig.
23 but with different L, and 4. The minimum L is plotted against
the time of its occurrence. N is the number of Lagrangian points and
T is the time step.

from joining up to form the stem (Fig. 15) precursor
of the eddy detachment process. If the initial width of
the ridge is sufficiently small, then this dispersion, as-
sociated with the vortex induction component, is small
compared to the basic field advection component [Figs.
7, 12], in which case the upstream face of the ridge -
steepens in time and joins the downstream edge in
forming a detached eddy.

But relatively extreme amplitude and width condi-
tions are required for this effect if the initial state con-
sists of one or two lobes (Fig. 19). Smaller initial am-
plitudes are required when a small wavelet is incident
on a ridge-trough meander of the main stream (Figs.
16-18). The wavelet offsets dispersion at the upstream
side of the ridge, maintaining a steep slope there, and
allowing it to catch up with the steep downstream slope
of the ridge in question.

FIG. 25. The front at ¢ = 6 for the same initial state as Fig. 23 but
with (4 = 0, B = 2). The minimum displacement (L = —0.420) here
does not reach the coast y = —Lg = —0.50.
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The later stages of Fig. 18 illustrate a limit of our
calculation as well as the interesting close contact of
the water masses at the converging neck of the distur-
bance. Further temporal integration would require a
rapidly increasing computational resolution in the neck
and a flagrant disregard of relevant nongeostrophic and
smaller scale physical processes. At this point one is
well advised to cut the cackle and the neck of the eddy
in Fig. 18, continuing the quasi-geostrophic calculation
with the resulting multi-connected domain, to see
whether the eddy will remerge or be removed from the
near vicinity of the Stream. Both of these effects appear
to happen with observed warm core and cold core ed-
dies in the Gulf Stream. Our results are applicable to
the latter by merely changing the sign of L.
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APPENDIX
Numerical Method

The numerical procedure for solving (3.1) and (3.3
or 3.4) is based on a Lagrangian scheme in which »
tagged frontal parcels are followed. The position of any
such parcel is denoted [x;(¢), L;(¢)] where i (=1, n) in-
creases with increasing arclength along the front and
where

a'x,-/dt = u(x,-, L,) dL,/dt = v(x,~, L,) (Al)

In the free case (B = 0, 4 = 1, Ly = o), the x-
velocity can be approximated from (3.3a) as follows

(s, L) = f : dEK[R(®)]

= {f w + f :O}dEKo[R:(E)] + [ aex

Xi-1

X [R(®] + 3 ,Ez (5 = x-1)
J#ELi+1
X {KolRi(x-0)] + Kol RiO)}  (A2)
where
Ri(® =[x — £ + (Li — LOM™

The three terms on the right-hand side of (A2) rep-
resent, in order, the contribution due to the portion of
the front lying outside the interval x, < x < x, con-
taining tagged parcels, the contribution due to the in-
tegrable singularity at x; = £ and the remaining con-
tribution. The latter has been approximated using the
trapezoidal rule. By employing a change in integration
variable, the first term may be rewritten as
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Uw * L:o}deolR,-(en

- fR w() AEKSBE/E? + (L — L]

+ 7 agka@pne + - Ly
Rifxn)

Furthermore, we can write
E/[E2 + (L — L1)]2 = 1 + Ol(L; — Ly)/(x; — x1)]
E/[E2 + (Li — L)12 = 1 + O[(Li — L)/(x: — X))
If x; and x, are placed sufficiently far to the left and
right of the isolated disturbance, then the value of each

of the above expressions is nearly unity. Under these
conditions we have

{fm * L:o}déKolRi(sn

{7 [Cfeio.

Near the singularity x; = £, R;(£) < 1 and Ky[R;(§)]
~ —In[R;(£)]. Therefore we may write

'Xi+1
dtholR ] = - [ dE (R @]+ 0Ax)
Xi-1
m~ 1r{20640 — Xi—1) — (1 — X3) In[(xi4y — X
+ (Lis1s — L) = (6 = xi-0) In[(6; — xiey)?

+ (Li— L)%} (Ad)
where Ax represents the spacing near the point x; = £.
The final step in (A4) has been performed through in-
tegration by parts and use of the trapezoidal rule.

From (3.3b) the y-velocity of the ith parcel can be
approximated as follows

wo(x;, L) = f_: dLK[R;(£)]

Li+1 n
1
~ dLK[Ri(£)] + 5 2 (@Li—Liy)
Li-1 j=2
JEiLI+]

X {Ko[Ri(xj-1)] + Ko[Ri(x})]}. (AS)

Here x; and x, are assumed to have been placed far
enough away from the isolated disturbance so that L
= constant for x < x; and x > x,. Hence, no contri-
bution to v(x;, L;) arises from these intervals. The con-
tribution due to the singularity (the first term on the
right-hand side of A5) can be treated as in (A4) with
the result
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Li+1
ALEo{R(®) ~ {(Liss — Li-t) = 3 (Liws ~ L)

Lij-
X In[(X+1 — x;)* + (L — LY*) — %(Li —Ly)

X Inf(x; — xi1)* + (L; — Li1)'1}. (A6)

Equations (A2) and (AS5) together with the approx-
imations in (A3), (A4), and (A6) give the horizontal
velocities for each tagged parcel. In most of the results
presented here, 160 parcels are used to resolve the dis-
turbance. Values of x;(0) and L;(0) are specified and a
predictor~corrector scheme based on the Adams
method (Gear, 1971) is used to integrate (A1).

During the time stepping, tagged parcels tend to
clump together in regions of tangential velocity con-
vergence and poorly resolved segments appear in di-
vergent regions. It is therefore necessary to redistribute
the parcels to maintain needed resolution, and this is
done where necessary by reestablishing uniform spacing
with respect to arc length. In order to perform integra-
tions over much longer time intervals than those used
here, more sophisticated redistribution schemes are re-
quired to handle the fine structure that develops. One
such method is discussed by Zebusky and Overmann
(1981).

A comparison was made between the numerical
model and the exact linear solution for the initial state

L(x, 0) = 3x/(x* + 4)% (A7)

the amplitude (=~0.12) and maximum steepness
(==0.10) of which are small. The initial parcel spacing
measured along the front is 0.1 and a relative time-
stepping error 0.0005 for each Ar = 1 is specified. The
maximum difference between the linear and computed
value of L(1.2, ¢) is <0.5% over 0 < ¢ < 10.

A further test of the numerics is the ability to com-
pute the horizontal and vertical velocities for the step
shown in Fig. 8. For a uniform parcel spacing = 0.075
along the front, the computed velocities are accurate
within a relative error of 0.0015.

The question arises as to the uniform validity of the

quasi-geostrophic approximation when sharp corners

in L develop. Although it is easy to show that (u, v)
are finite, we would also like (du/dt, dv/df) to be finite.
Therefore we computed these quantities for the parcel
located in the upper corner of the step profile (Fig. 8).
As t — 0 the acceleration of this parcel is bounded and
of the same magnitude as the accelerations computed
for neighboring parcels in the corner.

The extension to the wall-bounded jet (Fig. 22) is
made by adding to (A2) and (A5) the terms due to the
image vortices. These coastal calculations were made
on an IBM PC, and follow quite closely the program
used in Stern (1985). For the periodic case (Section Ve)
the previous end point conditions are replaced by the
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sum of the periodic contributions outside of one wave-
length (=2w,). It can be shown from (3.3a, b) that
L(x,f) = —L(x £ w, £) at all ¢ if it is satisfied at ¢ = 0.
Thus we only have to consider the Lagrangian evolu-
tion of points inside one half~wavelength (w,), taking
into account the induction effect of all the other half-
wavelength intervals. An adequate truncation was
achieved by considering only four half-wavelengths on
either side of the main half-wavelength. A second order
Runge-Kutta time-stepping procedure was used in this
program, and it was checked by setting 43 = 0, A4,
=0.005, w, = 2, and by using N = 40 Lagrangian
points. The result gives phase speeds differing from lin-
ear theory by less than 1%.
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