

Sea Ice Deformation in a Coupled Sea Ice-Ocean Model and in Satellite Remote Sensing Data

<u>Gunnar Spreen</u>, Ron Kwok, Dimitris Menemenlis, An T. Nguyen

Jet Propulsion Laboratory, California Institute of Technology

2010 California Institute of Technology. Government sponsorship acknowledged.

Outline

Comparison of observed RGPS SAR sea ice deformation fields to results from a traditional viscous-plastic sea ice model

- Motivation
- Data and Model
- Comparison
 - Dependence on model resolution
 - Power law scaling of sea ice deformation
 - Dependence on model sea ice strength formulation
- Conclusions

Sea ice deformation in the Arctic climate system:

- Divergence creates open water
 → new ice growth in winter
- Convergence creates pressure ridges
 → thicker ice
- Controls heat and gas fluxes to the atmosphere and brine rejection to the ocean
- Alters the air and water drag coefficients
- → Correct modeling of sea ice kinematics important for sea ice mass balance and ocean – air energy fluxes

Sea ice model evaluation with ice deformation fields:

- Even simple models with wrong sea ice physics can simulate the mean sea ice velocity field correctly [e.g. Rampal et al., 2009].
- Comparisons with first order mean velocity fields therefore not sufficient. Second order sea ice deformation should be used.
- Tuning a traditional Hibler-type viscous-plastic sea ice model with elliptical yield curve
 - Sea ice deformation field is not represented correctly in all details
 - But it is widely used in climate research.
- Tune model to best represent observed sea ice kinematics

- RADARSAT Synthetic Aperture Radar (SAR) data
- Same region covered approx. every 3 days
- Spatial cross-correlation of patterns \rightarrow ice movement

- Initial grid spacing 10 km
- Calculation of deformation (divergence, vorticity, shear) from Lagrangian cells
- -0.05 3 daily gridded (12.5 km)
 - Accuracy of ice velocities in the order of 100 m (SAR pixel size)
 - Discrimination between
 - first- and multiyear ice

gunnar.spreen@jpl.nasa.gov

0.8

0.6

0.4

0.2

ECCO2 Coupled Sea Ice-Ocean Model

1000

h

m

4000

-5000

Regional Arctic solution:

gunnar.spreen@jpl.nasa.gov

ECCO2: High-resolution global ocean and sea ice model constrained by least squares fit to available satellite and insitu data (Green's function approach).

Ocean model

- 50 vertical levels, volume-conserving, C-grid
- Surface boundary conditions: JRA-25
- Initial conditions: WOA05

Sea ice model

- 2-category zero-layer thermodynamics [Hibler, 1980]
- Viscous plastic dynamics [Hibler, 1979]
- Initial conditions: Polar Science Center
- Snow simulation: [Zhang et al., 1998]

Regional Arctic solution

- 4.5, 9 and 18 km horizontal grid spacing.
- Boundary conditions from global solution.
- Bathymetry: IBCAO
- Time: 1992 2009 (18 years)

Model Performance

Sea ice minimum 2007

- Model is doing well in terms of sea ice extent but is tuned to do so ②
- Changes in ice volume are comparable to observed ones using ICESat data (Kwok et al., 2009)

Trend in sea ice volume (1992-2009)

Sea Ice Speed

April 05

gunnar.spreen@jpl.nasa.gov

- Sea ice deformation parameters: divergence, vorticity and shear
 - •Example: November 1997 black line: perennial ice

RGPS and Model Sea Ice Deformation

10/20

RGPS and Model Sea Ice Deformation

RGPS and Model Sea Ice Deformation

day

- •Sea ice deformation parameters: divergence, vorticity and shear
 - Example: November 1997 black line: perennial ice
 - •Number and distribution of linear kinematic features (LKF) improve with increasing model grid resolution.

MITgci

Spatial Scaling of Deformation Rate

- Deformation rate D: $D = \sqrt{\text{div}^2 + \text{shear}^2}$
- follows power law with dependence on spatial scale *L*: $D \approx dL^b$
- Scaling exponent *b* from RGPS observations:
 b = -0.2 (winter)
 b = -0.3 (summer)
 - (Stern & Lindsay, 2009)
- Power law also found in model: b = -0.5
- Similar seasonal cycle

Power Law Scaling of Deformation Rate

- a) Original deformation $D = \sqrt{\text{div}^2 + \text{shear}^2}$ for three model resolutions (18, 9 and 4.5 km).
- b) By power law scaling with exponent b = -0.54 deformation rates of three model runs become similar.
- c) Probability density function of model shows similar power law scaling as RGPS data.

gunnar.spreen@jpl.nasa.gov

1996-11

1999-04

2001-09

2004-02

2006-07

2008-12

1994-06

0.08

0.06

0.02^L 1992

JPL Scale factor vs. ice concentration & thickness

- Model power law scaling factor b strongly depends on ice concentration.
- For ice concentrations of 90% b becomes similar to the observed RGPS scaling factor (-0.3 to -0.2).
- RGPS data is only obtained in high ice concentration regions.
- Ice concentrations near 100% do not show power law scaling.
- Stronger power law scaling for thin than for thick ice but very variable.

gunnar.spreen@jpl.nasa.gov

Ice Pressure (Strength)

gunnar.spreen@jpl.nasa.gov

LCubic – Linear Parameterization Difference

- Difference in deformation rate: Test – Control ice strength formulation
- → More deformation, especially in seasonal ice zone.

Deformation Rate Difference 1996-2000: Cubic – Linear

gunnar.spreen@jpl.nasa.gov

AOMIP Workshop 2010

18/20

____ Time Series of Deformation Rate Difference

- → New ice pressure formulation improves sea ice deformation distribution
- → Independent of model resolution.

- Compared to RGPS observations, the model does not adequately reproduce small scale deformation and linear kinematic features (LKFs). Also the overall modeled deformation rate is lower than the observed one.
- Increase in model resolution produces more and clearer confined ice deformation features.
- The observed power law scaling of sea ice deformation can also be found in the model. Noticeable is that the scaling exponent *b* is not constant but strongly depends on sea ice concentration, thickness and time of year.
- By changing the model sea ice strength formulation from a linear to a cubic dependence on ice thickness, the modeled and observed deformation fields become more consistent.

- Compared to RGPS observations, the model does not adequately reproduce small scale deformation and linear kinematic features (LKFs). Also the overall modeled deformation rate is lower than the observed one.
- Increase in model resolution produces more and clearer confined ice deformation features.
- The power pairs provide the second concentration, thickness and time of year.
- By changing the model sea ice strength formulation from a linear to a cubic dependence on ice thickness, the modeled and observed deformation fields become more consistent.