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These notes have been compiled from teaching ma-
terials developed by John Hayes between 1980 and
1995.  Since their goals are to introduce basic concepts
and practices, they are not grossly outdated in spite of
their antiquity. Where necessary or desirable, minimal
revisions indicate more recent data and practices. The
sections include:

Practice and Principles of Isotopic Measurements
in Organic Geochemistry. This review originally ap-
peared as pp. 5-1 to 5-31 in W. G. Meinschein (ed.)
Organic Geochemistry of Contemporaneous and An-
cient Sediments, a volume published in 1983 by the
Great Lakes Section of the Society of Economic Pale-
ontologists and Mineralogists. That book was intended
to provide the notes for a short course offered in con-
nection with the 1983 National Meeting of the Geo-
logical Society of America, but the short course drew
inadequate enrollment and was cancelled. The original
document included the introduction and sections 1 and
2 reprinted here, as well as an earlier version of section
3.

Primary Standards of Stable Isotopic Abundances.
Presented here as section 3, this material was revised
and expanded frequently in the years after 1983, nota-
bly for use in a short course sponsored by Finnigan
MAT in Beijing in 1986 and for frequent use in subse-
quent classes at Indiana University.

Limits on the Precision of Mass Spectrometric Mea-
surements of Isotope Ratios.  Originally prepared for
class use some time in the 1980s, this text (Section 4)
explains how shot noise, or “ion-beam noise,” or “ion
statistics” fundamentally limit the precision that can be
attained in any measurement based on integration of an
electrical current.

Uncertainties in Blank-Corrected Isotopic Analyses.
These notes (Section 5) were prepared for use by work-
ers in the Biogeochemical Laboratories at Indiana Uni-
versity during the 1980’s (accordingly, their presenta-
tion is far from “publishable”). They deal with the com-
mon problem in which an analytical result reflects the
composition of a sample and, in addition, the magni-
tude and isotopic composition of an analytical blank.

Further Notes, July 2002.  Section 6 elaborates on
notes inserted in earlier sections.

Preface
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Introduction

The modern era of precise isotopic measurements
and exploration of natural variations in isotopic abun-
dances began with the work of Nier and Gulbransen
(1939), who observed that the relative abundance of
carbon-13 was greater in inorganic material (carbon-
ates) than in organic material. Later, Harold Urey and
his students at the University of Chicago greatly ex-
tended the precision and scope of these measurements.
The measurement of oxygen-isotopic abundances in
carbonates was introduced for paleotemperature stud-
ies (Urey et al., 1951; Epstein et al., 1951), and Harmon
Craig (1953) published his landmark study of the bio-
geochemistry of the stable isotopes of carbon. Wickman
(1956) provided an early estimate of the division of
sedimentary carbon between organic and inorganic
materials. Much earlier, West (1945) published the first
report of carbon isotopic studies in petroleum geochem-
istry, an accomplishment that has received too little rec-
ognition.

In view of the growing importance of isotopic stud-
ies in organic geochemistry (for major reviews, see
Degens, 1969; and Deines, 1980) it is the goal of this
review to provide the reader with an introduction to the
practical and theoretical bases of isotopic geochemis-
try.

1.  Mass Spectrometric Analyses and
Sample Handling

1.1 The Nature of the Problem

Because the equilibrium or kinetic characteristics
of one isotopic species usually differ from those of an-
other by only a few percent, the variations in isotopic
abundances imposed by those differences are small.
Highly precise analytical techniques are required, and
it has been found convenient to compare samples, mea-
suring isotopic differences, rather than to attempt abso-
lute measurements of isotopic abundances.

Obtaining short-term high precision is not a prob-
lem, but getting long-term stability can be extremely
difficult. More graphically, when absolute measure-
ments are employed, a single sample may yield isotope
ratios of 0.0100886 ± 0.0000007 today and 0.0100251
± 0.0000008 tomorrow. In contrast, if that sample is
compared to an arbitrary reference sample on both days,
the differences observed between the sample and the

reference will probably be constant. This stability will
be observed because the same instrumental fluctuations
that have affected the “absolute” ratio of the unknown
sample will also have affected the “absolute” ratio of
the reference sample. Provided everything is compared
to the same reference (either directly or indirectly), very
small differences between isotope ratios can be accu-
rately measured. This technique of differential compari-
son has been a cornerstone of precise isotopic analysis
since it was introduced around 1950 in Harold Urey’s
laboratories at the University of Chicago (McKinney
et al., 1950).

Sample Preparation. Differential measurement of
isotopic abundances requires that each sample be com-
pared to a standard (i.e., a reference point) which dif-
fers from the sample, if at all, only in its isotopic com-
position. This is often convenient and simple. For ex-
ample, precise comparisons of isotopic compositions
of carbonates can be made by comparing mass spectra
of samples of carbon dioxide prepared from each ma-
terial.

The mechanism of comparison is neither so obvi-
ous nor so simple when isotopic compositions of or-
ganic materials are of interest, though there is nothing
fundamentally wrong with comparing isotopic compo-
sitions of organic materials directly. For example, the
difference in carbon-isotopic compositions of two
samples of benzene (C6H6, molecular weight = 78)
might be measured by comparison of the (mass 79)/
(mass 78) ion-current ratios, and if both samples were
not available at the same time, each might be satisfac-
torily compared to an intermediate standard. The im-
practicality of this simple approach becomes clear, how-
ever, when it is recognized that (i) the measurement
would be invalid if the hydrogen-isotopic compositions
of the samples differed significantly, (ii) an isotopic
standard would be required for each compound of in-
terest if indirect comparisons were to be made, (iii)
comparisons between different compounds would be
difficult and subject to systematic errors, and (iv) it
would be impossible to make isotopic measurements
on species that could not be readily volatilized to yield
ion beams that were both intense and stable.

Many advantages are gained by converting organic
materials to “common denominator” forms especially
suitable for mass spectrometry and isotopic analysis.
For example, the gases H2, N2, and O2 are ideal for
hydrogen, nitrogen, and oxygen isotopic analyses. They
are volatile. Because they contain only a single ele-
ment, ion-current abundances in their mass spectra carry
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information only about isotope ratios for that element.
Their constituent atoms do not easily participate in ex-
change reactions. There is, unfortunately, no analogous
form of carbon. Carbon tetrafluoride, CF4, would be a
logical choice because fluorine has no isotopes and
quantitative details of the mass spectrum therefore de-
pend only on carbon isotopic abundances. Carbon di-
oxide is easier to prepare, but contains exchangeable
atoms of an element other than carbon.

The isotopic composition of the substance employed
in the differential measurement (i.e., the compound used
in isotope-ratio mass spectrometry) must faithfully rep-
resent that of the parent material. Fulfillment of this
requirement for isotopic fidelity is assured if all of the
element to be analyzed isotopically is converted to the
form used for analysis, but quantitative yields in pre-
parative organic reactions are rare. Fortunately, com-
bustion can easily be driven to completion. It may be
unusual (some would say perverted) to think of com-
bustion as a preparative reaction, but it offers a remark-
able combination of fundamental appeal (ease of ob-
taining quantitative yield) and experimental conve-
nience. Carbon dioxide may be theoretically inferior to
CF4 as a material for isotopic mass spectrometry, but
it’s far easier to prepare in high yield. Further, as noted
in Fig. 1, the remaining products of combustion can
also be utilized in isotopic analyses, though water must
first be converted to H2.

1.2 Methods of Sample Preparation

Techniques of Combustion can be either “static” (the
sample and oxidant are held together in a restricted
volume) or “dynamic” (the sample and oxidant are
moved through a series of catalyst beds by a carrier
gas).

Static techniques offer many advantages and are well
established for analyses of carbon and nitrogen isotopes.
Systems in use in geochemical laboratories (Wedeking
et al., 1983; Stuermer et al., 1978) utilize an approach
introduced by Frazer and Crawford (1963). A milligram
or less of organic material, together with a few hun-
dred milligrams of cupric oxide and a few milligrams
of silver foil, is sealed in an evacuated quartz tube. The
tube is heated to a temperature near 850°C and pyro-
lytic decomposition of the cupric oxide yields O2 which
rapidly attacks the organic material. If the tube is cooled
slowly, all nitrogen present in the initial organic mate-
rial will be converted to N2, all sulfur will be trapped as
CuSO4, and, of course, all carbon will be in the form of
CO2. With care, water can be recovered in quantitative
yield (Frazer and Crawford, 1963), but several labora-
tories have found that hydrogen isotopic analyses are
quite variable. Using the static technique, large num-
bers of samples can be conveniently combusted using
batches of tubes, but each tube must be individually
opened and the products of combustion isolated and
purified by cryogenic distillations.

Dynamic techniques involve more complicated sys-
tems, and only one sample can be processed at a time,
but offer several advantages and are well established
even for hydrogen-isotopic measurements. Procedures
utilizing no carrier gas whatever offer the lowest blanks
(DesMarais, 1978) but require cryogenic techniques for
separation and purification of the products of combus-
tion. Procedures in which oxygen serves as the carrier
gas have high capacity, but the fact that oxygen is partly
condensable at liquid-nitrogen temperature makes care-
ful control of the system mandatory. Recovery of N2
from streams of O2 is difficult, and such systems are
not generally applicable. The widely-utilized “LECO”
total organic carbon analyzer can, however, be success-
fully adapted to the preparation of CO2 for isotopic
analysis of total organic carbon in sediments (Wedeking
et al., 1983).

Commercially-developed dynamic systems (e.g.,
Pella and Colombo, 1973) for the elemental analysis of
organic materials can be very successfully adapted to
the preparation of samples for isotopic analysis. In such
systems, combustion, conditioning of the products (i.e.,
reduction of nitrogen oxides, scavenging of
interferents), and separation and purification of N2, CO2,
and H2O, are frequently integrated in a single automated
sequence. The products can be trapped from the
carrier-gas stream as it leaves the instrument (Hayes
and Santrock, unpublished results). An accurate elemen-

Sample

Combustion Reduction

Conversion

(excess O2)

Pyrolysis

(excess C)

H2O

CO2 (MS for 13C)

CO2

(MS for 18O)

N2 (MS for 15N)

H2

(MS for 2H)

CO

(+?)

Figure 1. Schematic representation of sample-preparation
procedures.
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tal analysis is also obtained. Such systems are gener-
ally suitable only for the combustion of milligram
samples of pure organic material, however.

The process of combustion can be directly coupled
with chromatographic separation of components of
natural gas or of more complex molecular species
(Matthews and Hayes, 1978; Vogler et al., 1981; Hayes,
1983). At present, such systems offer the best route to
the precise determination of the isotopic compositions
of individual organic compounds.

As noted, nitrogen isotopic analyses can be accom-
plished using N2 recovered from products of combus-
tion. Water, the combustion product carrying
sample-derived hydrogen, cannot be directly used for
isotopic measurements because the hydrogen atoms are
so easily exchangeable with the sorbed water molecules
inevitably present on the walls of all vacuum systems.
To circumvent this problem, the hydrogen in the water
is always converted to H2 gas for mass-spectrometric
analysis. While many metals are electropositive enough
to reduce water to H2, procedures that are both effi-
cient and convenient are extremely rare. The reagent
chosen must not be too volatile for convenient use in a
vacuum system; must not form adherent oxide layers
leading to passivation; must not dissolve and retain the
H2 (a common problem with many metals); and must
not tend to retain a portion of the H as hydroxyl groups.
The earliest satisfactory procedure was described by
Bigeleisen et al. (1952), who used uranium metal as a
reductant. More recently, a batchwise process utilizing
zinc as the reductant has been described by Coleman et
al. (1982).

Oxygen isotopic analyses. The determination of the
abundances of oxygen isotopes in organic material can-
not, of course, be based on combustion in the presence
of excess oxygen. Direct methods for elemental analy-
sis of oxygen in organic material are pyrolytic. The or-
ganic material is degraded at very high temperature and
the oxygen-containing fragments are further degraded
to products suitable for analysis. The persistence of re-
sidual amounts of water can be avoided by selective
removal of hydrogen, and this is the principle of suc-
cessful nickel-bomb techniques (hydrogen gas diffuses
freely through nickel at temperatures near 1000°C).
Pyrolysis of cellulose in a sealed nickel tube yields most
cellulose-derived oxygen in the form of CO and CO2,
and it has been shown (Brenninkmeijer and Mook,
1981) that the oxygen-isotopic composition of cellu-
lose can be determined by conversion of all of that oxy-
gen to the form of CO2 for mass-spectrometric analy-

sis. In more recent studies, Wedeking and Hayes (un-
published) have shown (i) that the recovery of oxygen
in such procedures is not absolutely quantitative, but
that the losses involve no measurable isotopic fraction-
ation and are thus not consequential, and (ii) that the
procedure can be adapted to the analysis of oxygen in
materials other than cellulose, even in the presence of
pyrite and other common sedimentary trace minerals.

The Unterzaucher (1940) technique for elemental
analysis of oxygen in organic materials employs a dif-
ferent principle of operation. Products of pyrolysis are
equilibrated with elemental carbon in order to produce
CO in quantitative yield. This procedure is very well
established for elemental analysis of all kinds of or-
ganic matter, but is troubled by a significant blank (of
little significance in elemental analysis, but crucial in
isotopic analyses because it is coupled with trouble-
some memory effects) and yields a product not suit-
able for isotopic analysis (CO can only be trapped by
procedures that also trap N2, which is inevitably present
as a contaminant and interferes disasterously in mass
spectrometric measurements). Nevertheless, Taylor and
Chen (1970) have earlier shown that this technique can
be adapted for detection of excess oxygen-18 introduced
as an isotopic tracer, and Santrock and Hayes (1983)
have recently shown that quantitative modeling of a
well-controlled system (Pella and Colombo, 1972) al-
lows high-precision analyses to be obtained.

While other techniques of sample preparation have
been described in connection with the detection of oxy-
gen isotopic tracers (e.g., Rittenberg and Ponticorvo,
1956), repeated attempts (reviewed by Brenninkmeijer,
1983) to improve the precision of these procedures to
levels suitable for the measurement of natural varia-
tions in isotopic abundances have been unsuccessful.

Intramolecular isotopic analyses. The determination
of isotopic abundances at specific positions within or-
ganic molecular structures can be of great interest. Com-
bustion is useless in such investigations, its convenience
and efficiency being matched by its lack of selectivity.
Special degradative techniques must be devised to pro-
duce CO2 quantitatively from the positions of interest.
Investigations of this type have included pyrolytic deg-
radations of two-carbon molecules (Meinschein et al.,
1974; DeNiro and Epstein, 1977), the use of specific
reactions capable of selective but quantitative attack at
specific functional groups (Abelson and Hoering, 1961;
Vogler and Hayes, 1979, 1980), and more complicated
schemes involving multistep degradative sequences
(Monson and Hayes, 1982). Extraordinarily detailed
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information can be obtained, but the quantities of ma-
terial required are large enough that the approach has
thus far been utilized only with modern biological ma-
terials.

1.3 Instrumentation

Isotope-ratio mass spectrometers. The distinguish-
ing characteristics of modern isotope-ratio mass spec-
trometers are (i) very high efficiency of ionization and
very intense ion beams (ii) multiple-collector systems
allowing simultaneous collection of two or more ion
beams, and (iii) dual – or even triple – inlet systems
designed to allow rapid exchange of one sample gas
for another in the ion source of the instrument. All of
these features, unique to isotope-ratio instruments, are
of special importance.

If R represents an ion-current ratio, E the efficiency
[(molecular ions at collector) / (molecules introduced)],
and N the number of molecules required for a mass spec-
trometric measurement, the following equation speci-
fies the maximum attainable precision of ratio measure-
ment (where σR represents the standard deviation in
the measurement of R):

ENR
R

R
R +
=

1σ
(1.1)

(Hayes et al., 1977; also derived in section 4 of these
notes). A ten-fold improvement in the precision of mea-
surement will, thus, require a 100-fold increase in the
product EN, the number of ions formed and collected.
There is an inescapable requirement for a large number
of ions (ion beams of 10–9 A and larger are common in
isotope-ratio mass spectrometry; these are three orders
of magnitude more intense than those commonly en-
countered in organic mass spectrometry). If sample re-
quirements (N) are to be minimized, efficiency of ion-
ization (E) must be maximized. Efficiencies approach-
ing 10–3 ions/molecule are typical of modern instru-
ments. These are very much higher than efficiencies in
organic instruments, which must minimize the residence
time of sample molecules in the heated ion source if
degradation of thermally labile molecules is to be mini-
mized. Modern instruments provide precisions (σR/R)
of 10–5 and better. [Equation 1 is based on the assump-
tion of a “perfect” signal-processing system, absolutely
free of any noise sources, and thus defines a theoretical
limit. Peterson and Hayes (1978) have discussed in
detail the capabilities of real systems and have shown
how closely they can approach this limit.]

Equation 1.1 was derived assuming that both ion

beams were collected simultaneously. The procedure
is obviously economical of time and sample molecules
– no ions are “wasted” while the detector measures one
beam at a time. A more fundamental advantage involves
elimination of a noise source that would otherwise be
crippling, namely variations in ion beam intensity over
the course of a measurement. The first example of mul-
tiple collection involved dual collectors (Straus, 1941),
and isotope-ratio mass spectrometry was stalled at that
point for decades. Efficient isotopic analysis of carbon
dioxide, however, requires simultaneous measurement
of three ion beams, and instruments with three and more
collectors and multiple signal-processing pathways are
now relatively common.

The specialized techniques utilized in acquiring and
processing data from isotope-ratio mass spectrometers
have been summarized by Mook and Grootes (1973).
[For more recent notes on this subject, see section 6]
Particular problems arise in the case of hydrogen. The
mass-3 ion beam in the spectrum of H2 is due not only
to HD, the species of interest, but also to H3, a product
of ion-molecule collisions occurring in the ion source
of the mass spectrometer. A correction must be deter-
mined and applied. The relevant procedures have re-
cently been evaluated, and a new alternative introduced,
by Schoeller et al. (1983).

Special inlet systems. The great instrumental con-
tribution of Urey’s Chicago group was the dual inlet
system allowing quick change-over of samples
(McKinney et al., 1950; see also Halsted and Nier,
1950). Contributions from a second family of noise
sources – those associated with longer-term variations
in ion source performance, mass spectral background,
and inlet contaminants – are thus minimized. The ap-
plication of modern vacuum technology to the design
of clean inlet systems has yielded a further advance.

Sample Requirements. Many variations in natural
abundance can be observed and satisfactorily measured
if the precision of ion-current ratio measurement (σR /
R) is 10–4. Equation 1.1 correctly indicates that samples
less than one nanomole in size should allow measure-
ments of this quality if E is 10-4 or greater. Unfortu-
nately, practical sample requirements are much higher.
Operation of most practical inlet systems requires at
least 100 nanomoles of gas, though dilution of samples
with helium (Schoeller and Hayes, 1975) can signifi-
cantly reduce that requirement.

Future developments. An approach to elimination
of inlet systems and consequent attainment of the sen-
sitivities noted above has been demonstrated by
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Matthews and Hayes (1978), who directly connected a
mass spectrometer and a gas chromatograph by way of
an in-line combustion oven and gas-purification sys-
tem. Precisions great enough to allow measurement of
natural variations in isotopic abundances were obtained
using samples as small as 20 nanomoles in spite of the
facts that the GC-MS interface system transmitted only
10% of the sample gas and that the ion source had an
efficiency of only 10–8 ions/molecule under the condi-
tions of the experiment. Very great improvements in
this approach are obviously possible.

2. Rudiments of Isotopic Chemistry

2.1 Elementary Calculations

Notation of isotopic abundances. Absolute isotopic
abundances are commonly noted in terms of atom per-
cent. For example,

atom percent 100
CC

CC 1312

13
13












+
= (2.1)

A term more convenient in many calculations is frac-
tional abundance

 fractional abundance of 











+
==

CC
CC 1312

13
1313 F (2.2)

(in mathematical expressions dealing with isotopes, it
is convenient to use left superscripts to designate the
isotope of interest, thus avoiding confusion with expo-
nents and retaining the option of defining subscripts).
Isotope ratios are also measures of the absolute abun-
dance of isotopes; they are usually arranged so that the
more abundant isotope appears in the denominator

“carbon isotope ratio” R13
12

13

C
C
== (2.3)

Interconversion between fractional abundances and iso-
tope ratios is straightforward

F
FR 13

13
13

1−
=        

R
RF 13

13
13

1+
= (2.4)

Oxygen provides an example of the expressions
applicable to elements with more than two isotopes:

FF
FR 1817

18

16

18
18

1O
O

−−
== (2.5)

  
RR

RF 1817

18

181716

18
18

1OOO
O

++
=

++
= (2.6)

It is clear that 18F is a function not only of 18R, but also
17R, and it would appear that it is not possible to calcu-
late 18F with perfect accuracy given only 18R. In many
cases, however, 17R and 18R are functionally related
(Santrock et al., 1985) and an accurate, though labori-
ous, calculation can be made. A useful approximation
has been introduced by Wedeking and Hayes (1983),
who noted that variations in the ratio 17R /18R are much
smaller than variations in 17R alone, and rewrote equa-
tion 2.6 as











++=

RR
RF 1818

17
18 11 (2.7)

Insertion of a representative value for 17R/18R then al-
lows convenient calculation of 18F with good accuracy
over a considerable range. Similar approximations will,
no doubt, serve with other polyisotopic elements, and
are of interest because the calculation of fractional abun-
dances is often required.

The delta notation. Because most isotopic measure-
ments are differential measurements, and because the
interesting isotopic differences between natural samples
usually occur at and beyond the third significant figure
of the isotope ratio, it has become conventional to ex-
press isotopic abundances using a differential notation.
The “uninteresting” (i.e., unchanging) portions of the
isotopic abundance are, in this way, not around to clut-
ter the report, confuse the reader’s mind, or tax the
investigator’s memory. To provide a concrete example,
it is far easier to say – and remember – that the isotope
ratios of samples A and B differ by one part per thou-
sand than to say that sample A has 0.3663 %15N and
sample B has 0.3659 %15N. The notation that provides
this advantage is indicated in general form below.  This
means of describing isotopic abundances was first used
by Urey (1948) in an address to the American Associa-
tion for the Advancement of Science and first formally
defined by McKinney et al. (1950).

3

std
A

std
A

sample
A

std
A 101000X 







 ∆=











 −
=

R
R

R

RR
δ (2.8)
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As noted in the second portion of the equation, this
expression amounts to nothing but a relative difference
expressed in parts per thousand.  [See note in section 6
regarding the factor 103 and concluding that the defini-
tion favored by later authors, in which δ is defined sim-
ply as ∆R/R, ought to be preferred.]  More formally, it
defines an explicit relationship between the abundance
of isotope A of element X in a given sample and its
abundance in a particular standard (designated by a
subscript, here shown in general form as std). Values of
δAXstd are usually expressed in parts per thousand.  The
corresponding symbol, ‰, is called “permil” (from the
Latin per mille by analogy with per centum, percent).
In the Russian literature, delta values have often been
reported in percent. This has occasionally caused con-
fusion, and care must be taken to multiply such values
by 10 for comparison to values reported in permil.

The name or pronunciation given to δ might obvi-
ously be “delta” except that a colloquial, shortened ver-
sion (“del”) can occasionally be heard.  In mathemat-
ics, del (or nabla) refers specifically to ∇ , the gradient
vector operator.  Anyone tempted to foster confusion
by referring to the isotopic δ as del rather than delta
should first consider the limerick on this subject by
Harmon Craig [see section 6].

2.2 Mass-Balance Calculations

Master equation. Mass-balance calculations are of
general importance in isotopic studies. Examples in-
clude (i) the calculation of isotopic abundances in pools
derived by the combination of isotopically-differing
materials, (ii) isotope-dilution analyses, and (iii) the
correction of experimental results for the effects of
blanks. A single master equation is relevant in all of
these cases. Without approximation, we can write

nTFT = n1F1 + n2F2 + ... (2.9)

where the n terms represent molar quantities of the el-
ement of interest and the F terms represent fractional
isotopic abundances. The subscript T refers to total
sample derived by combination of subsamples 1, 2, ...
etc. The same equation can be written in approximate
form simply by replacing the F values with delta val-
ues. The magnitude of the error introduced by the ap-
proximation depends on the element, but even for car-
bon, errors will be less than 0.02 permil for most calcu-
lations involving only natural materials. Because delta
is based on R instead of F, however, accurate treatment
of any calculation involving highly enriched or depleted
materials usually requires use of the exact form of the
equation.

Isotope dilution. In isotope-dilution analyses, sample
1 might represent a material that could be sampled but
not quantitatively isolated (say, total body water) while
sample 2 would represent an isotopic spike. All of the
isotopic abundances would be known, as would the
value of n2, but it would be of interest to determine n1.
In such cases, the standard equation for isotope-dilution
analyses can be derived simply by substituting nT = n1
+ n2. Exact solution for n1 yields

1T

T2
21 FF

FFnn
−
−

= (2.10)

Blank corrections. When a sample has been con-
taminated during its preparation by contributions from
an analytical blank, the isotopic abundance actually
determined during the mass spectrometric measurement
is that of the sample plus the blank. Using T to repre-
sent the sample prepared for mass spectroscopic analy-
sis and s and b to represent the sample and blank, we
can write

nTFT = nsFs + nbFb (2.11)

Substituting ns = nT – nb and rearranging yields

( )
T

bsb
sT n

FFnFF −
−= (2.12)

an equation of the form y = a + bx. If multiple analyses
are obtained, plotting FT (or δT) vs. 1/nT will yield the
accurate (i. e., blank-corrected) value of Fs (or δs) as
the intercept.  A method for assessment of the uncer-
tainties in Fs or δs is demonstrated in section 5 of these
notes.

2.3 Isotope Effects

General terms. Figure 2 schematically illustrates the
difference between an isotope effect – a physical phe-
nomenon – and an isotopic fractionation – an observ-
able quantity. As noted in Figure 3, an equilibrium iso-
tope effect will cause the heavy isotope to accumulate
in a particular component of a system at equilibrium.
The rule (or regularity) for such effects is that “the heavy
isotope goes preferentially to the chemical compound
in which the element is bound most strongly”
(Bigeleisen, 1965). Thus, 13C accumulates in the bicar-
bonate ion in the example shown (Deuser and Degens,
1967; Wendt, 1968) and, when CO2 is equilibrated with
H2O and oxygen atoms are exchanged (by way of car-
bonate intermediates), 18O is concentrated in the CO2
(Friedman and O’Neill, 1977).
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Vapor-pressure isotope effects provide an example
of a second kind of equilibrium isotope effect. They
are, for the most part, normal (species containing the
lighter isotope are more volatile; for numerous ex-
amples, see Friedman and O’Neil, 1977), though in-
verse vapor-pressure isotope effects in which species
containing the heavy isotope are more volatile are fre-
quently encountered when D replaces H at molecular
positions not affected by polar interactions in the con-
densed phase. Thus, CH3ND2 is less volatile than
CH3NH2, but CD3NH2 is more volatile than CH3NH2
(for a review of this subject, see Hopfner, 1969).

A kinetic isotope effect (KIE) is said to occur when
the rate of a chemical reaction is sensitive to atomic
mass at a particular position in one of the reacting spe-
cies. If the sensitivity to isotopic substitution exists at

the position at which chemical bonding changes dur-
ing the reaction, the kinetic isotope effect is described
as primary. A secondary kinetic isotope effect is one in
which the sensitivity to isotopic substitution occurs at
an atomic position not directly involved in the reaction
itself. A normal KIE is one in which the species con-
taining the lighter isotope reacts more rapidly. Almost
all primary KIEs involving elements heavier than H
are normal; some secondary KIEs and some primary
KIEs involving H are inverse. Kinetic isotope effects
are intensively studied for the information that they can
provide about mechanistic details of reaction pathways,
and the field has been the subject of many excellent
reviews (Rock, 1975; Cleland et al., 1977; Melander
and Saunders, 1980).

An isotope effect is not directly observable.  Its ex-
istence must be inferred from its effect on isotopic abun-
dances. As noted in Figure 2, the presence of an iso-
tope effect in a reacting system is likely to lead to an
isotopic fractionation, an observable effect generally
described in terms of enrichment or depletion of the
heavy isotope. A useful and memorable colloquial us-
age has developed in the description of relative isoto-
pic abundances. Substances enriched in the heavy iso-
tope are said to be “heavy,” those depleted are said to
be “light.” These terms are inherently relative, not ab-
solute, and care must be taken that the point of com-
parison is clear whenever these terms are used.

Fractionation factors. As noted in Figure 3, the
magnitude of an equilibrium isotope effect can be rep-
resented by an equilibrium constant. Alternatively, a
fractionation factor can be reported. Virtually without
exception, fractionation factors refer to equilibrium
constants of (sometimes hypothetical) exchange reac-
tions in which a single atom is exchanged between two
species. The equilibrium constant for such a reaction is
identically equal to the ratio of isotope ratios for the
exchanged positions, and the fractionation factor is usu-
ally presented in this simplified form. For the exchange
reaction shown in Figure 3, for example, the fraction-
ation factor is given by

2CO
1213

3HCO
1213

2CO/3HCO )C/C(

)C/C( −

− =α (2.13)

and is numerically equal to the equilibrium constant.
The use of fractionation factors cuts across the three
communities commonly involved in isotopic studies,
namely the geochemists, the biochemists, and the physi-
cal chemists. Fortunately, all use the term to describe a

∆

12C 12C

13C

13C

R P + Q

An Isotope Effect causes Fractionation

Figure 2. Schematic representation of the relationship
between an isotope effect (a physical phenomenon) and the
occurence of isotopic fractionation (an observable quantity).

EQUILIBRIUM

KINETIC

13CO2(g) + H12CO3
-(aq) 12CO2(g) + H13CO3

-(aq)

K = 1.0092  (0°C)

1.0068  (30°C)

H3C–C–CO2H

123

O

H3C–C–SCoA + CO2

123

O

NAD+ NADH + H+

CoASH

Pyruvate Dehydrogenase

12k
13k

C-2

= 1.0232

Figure 3. Examples of equilibrium and kinetic isotope effects.
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ratio of isotope ratios. Most geochemists have adopted
a reasonably uniform system of subscripting and, vir-
tually without exception, assign the symbol α to the
fractionation factor. Helpful discussions are provided
by Friedman and O’Neill (1977) and by Fritz and Fontes
(1980).  There is no established convention regarding
placement of components in the numerator and denomi-
nator.  A notation like that shown in eq 2.13, in which
the numerator and denominator are specified by a sub-
script attached to α, is therefore preferred.

The magnitude of a kinetic isotope effect can be most
simply represented in terms of a ratio of rate constants.
When the rate constant pertaining to the species con-
taining the light isotope is placed in the numerator, the
numerical value of the ratio is greater than unity if the
KIE is normal. For the example shown in Figure 3, the
species containing carbon-12 at position 2 reacts 1.0232
times more rapidly that the species containing carbon-13
at that position. This would be termed “a 2.3% isotope
effect.” Theoretical maximum values for kinetic iso-
tope effects have been reported by Bigeleisen and
Wolfsberg (1958). For replacement of protium by deu-
terium, the primary isotope effect can be as large as
18-fold, or 1700%; for replacement of carbon-12 by
carbon-13, 25%; or for replacement of oxygen-16 by
oxygen-18, 19%. Replacement of H by D can yield sec-
ondary kinetic isotope effects as large as 100%; sec-
ondary effects for heavier atoms rarely exceed 1%.

2.4 Isotopic Fractionations

The relationship between the magnitude of an iso-
tope effect and the isotopic fractionation that it might
cause can be complex. The first thing to note, however,
is that even the largest isotope effect possible will not
cause any fractionation if the reaction with which it is
associated occurs quantitatively. In fact, if we imagine
a cascade of reactions in which reactant A irreversibly
yields product B, which in turn yields product C, and
so on until product Z is finally obtained, it can happen
that almost every reaction in the cascade has a large
isotope effect but that no fractionation will be observed
between A and Z when the system is at steady state.
The only requirements for this seemingly unlikely event
are that no isotope effect is associated with A → B and
that each successive product has no possible fate other
than being carried forward in the reaction sequence.
Then, as in a pipeline, everything that goes in – includ-
ing neutrons – will eventually have to come out. It would
be said, in such a case, that the isotope effects in the
reactions linking B to Z “Were not expressed.”

Closed systems. An isotopic fractionation will, how-
ever, always be observed when a reaction has an iso-
tope effect and the formation of product is not quanti-
tative. Figure 4 depicts a “closed system” in which the
famous chemical reaction R → P is occurring. The sys-
tem is termed “closed” because no material crosses its
boundaries. As the reaction proceeds (irreversibly) from
onset to completion, the fractional yield of P varies from
0.0 to 1.0 and the isotopic compositions of the compo-
nents of the system follow the curves plotted in the graph
shown in Figure 4. The first-formed product is depleted
in the heavy isotope but, at completion (i. e., at yield =
1.0), the isotopic composition of the pooled product
(represented by curve P) must match that of the start-
ing material. The preferential utilization of light reac-
tant species enriches the residual reactant in the heavy
isotope (see curve R). The isotopic fractionation be-
tween the increment of product forming at any instant
and the residual reactant is fixed by the magnitude of
the isotope effect.  As a result, the curve denoting the
isotopic composition of successively formed product
increments (P’) is separated from curve R by a con-
stant difference.

B

R

P

A

P'

0 0.5 1.0

yield of P

Is
o

to
p

e
 r

a
ti
o

R P

Fractionation

Isotope Effect

Fractionation between

pooled product and

unconsumed reactant

is variable

A = f (yield, isotope effect)

Fractionation between

instantaneously

forming product and

unconsumed reactant

is constant

B = f (isotope effect)

Figure 4. Schematic representation of a closed system and
the isotopic fractionations occurring within it as a reaction
proceeds to completion. Curve P’ represents the isotopic
composition of the instantaneously-forming product, and P
represents the isotopic composition of the pooled product.
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The precise functional relationships between isoto-
pic compositions and yields have been determined by
simultaneous solution of the integrated rate equations
and are summarized in the landmark review by
Bigeleisen and Wolfsberg (1958). In exact form, they
write (where h and 1 designate heavy and light iso-
topes, and isotope ratios place the heavy isotope in the
numerator)

( )
( )( )









+

+
=−

rf

ro

rorf
l

h

R1
1-1ln

/ln1
Rf

RR
k
k

(2.14)

where f is the fractional yield ( f → 1 as the reaction
proceeds) and the subscripts designate initial reactant
(ro) and reactant remaining when the fractional yield =
f (rf). Given Rro (the initial isotopic composition of the
reactant) and hk /1k (the isotope effect), this equation
can be solved to yield Rrf as a function of f.

Alternatively, observation of the isotopic composi-
tion of the reactant can be used to determine the iso-
tope effect. A useful approximate form has been de-
scribed by Mariotti et al. (1981)

( )f−
−

=
1ln

rorf δδε (2.15)

where ε = [(hk/1k) – 1]103. If δrf is plotted as a function
of ln(1 – f), the value of ε will be given by the slope of
the line.

The isotopic composition of the pooled product is
given in exact form (Bigeleisen and Wolfsberg, 1958)
by

( ) 








−
×

−
+=−










−

fc
fc

R
RR

fc
k
k

1
1ln1ln1

ro

pfro
l

h

(2.16)

where the subscript pf designates the product accumu-
lated when the fractional yield = f and c is a correction
factor [c = (1 + Rro)/(l + Rpf)] allowing for finite abun-
dance of the heavy isotope. Manipulation of this equa-
tion allows (i) evaluation of the isotope effect given the
isotopic compositions of reactant and products or (ii)
prediction of isotopic fractionations given the isotope
effect.

The corresponding approximate form presented by
Mariotti et al. (1981) is

( ) ( )
f

ff −−
−=

1ln1
ropf

εδδ (2.17)

The coefficient for ε on the right-hand side of this equa-
tion approaches –1 as f approaches 0. At very low yields,
therefore, δpf → δro +ε. The isotope effect can again be
evaluated from the slope of a straight line, in this case
when δpf is plotted as a function of (1 – f ) ln(l – f ) / f.

Rayleigh distillation. Fractionations like those de-
picted in Figure 4 can also occur in some circumstances
when an equilibrium isotope effect accompanies the
reversible interconversion of R and P. It is necessary
only that P be removed from the system as it is formed,
usually by incorporation in a separable or nonreactive
phase. Geochemists describe such processes as Rayleigh
distillations. An example is provided by the loss of pre-
cipitation from a cloud of atmospheric water vapor. In
this case, due to vapor-pressure isotope effects, the
first-formed product (the first water to condense and
fall from the cloud as rain or snow) will be heavier than
the “reactant” (the bulk of the water vapor in the cloud),
and the residual reactant will, accordingly, be lighter.
Successive increments of precipitation will always be
heavy relative to the residual water vapor, but will be
increasingly lighter as the water enriched with the heavy
isotopes (of both H and O) is preferentially removed
from the cloud. As a result, precipitation near the equa-
tor (the major area of cloud formation) is heavy rela-
tive to that at high latitudes (where clouds are depleted
in the heavy isotopes). Because the product is heavy
relative to the reactant, the curves representative of this
particular phenomenon bend down rather than up, but
the functional relationships governing isotopic compo-
sitions in this and other Rayleigh distillations are the
same as those describing fractionation by a kinetic iso-
tope effect in a closed system. The parameter ε is re-
lated to the equilibrium fractionation factor in this case
by

αP/R = Rpe/Rre = 1 + 10–3ε (2.18)

where the e subscripts designate equilibrium values for
the isotopic compositions of the reactant and product.

Open systems. Many interesting natural systems are
open, not closed. That is, reactant is constantly added
and products are constantly withdrawn. A system of
this type is schematically depicted in Figure 5. For the
special case in which the removal of products exactly
compensates for the addition of reactant, the amount of
material in the reaction chamber is constant and the
calculation of isotopic fractionations is straightforward.
A branch point in an enzymatic reaction network pro-
vides an example of such an open system, and the func-
tional relationships governing isotopic fractionations
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have been summarized in that connection by Monson
and Hayes (1980).

It is known (i) that the isotopic fractionation between
the products is controlled by the isotope effects and (ii)
that material is neither created nor destroyed in the sys-
tem. Provided only that the reaction chamber is stirred
rapidly enough that the isotopic compositions of R, P
and Q (see Figure 5) are homogeneous, the treatment
of such open systems is independent of whether an equi-
librium or kinetic isotope effect is involved. The two
conditions outlined above provide two independent
equations.

The first equation establishes the isotopic fraction-
ation between the products. For a system at equilib-
rium, we write

Rpe = αP/RRre and Rqe = αQ/RRre (2.19)

The isotopic fractionation observed between the prod-
ucts is then

Q/R

P/R

qe

pe

α
α

=
R
R

(2.20)

For a system in which the isotopic fractionation is due
to a kinetic isotope effect, the same equations are ap-
plicable if hk/1k ratios are substituted for α values. If, as
noted in the caption to Figure 5, the product designated
here as Q were, in fact, simply unutilized reactant, equa-
tions 2.19 and 2.20 (and 2.21 – 2.23) could be simpli-
fied by replacement of Q by R’ and replacement of αQ/R
by unity.

The second equation expresses conservation of mass

Fr = fpFp + (l – fp)Fq (2.21)

and is identical for systems at equilibrium and under
kinetic control. The coefficient fp is the fraction of ma-
terial leaving the system in the form of P (i.e., the frac-
tional yield of P).

Simultaneous solution of equations 2.20 and 2.21 is
straightforward but takes a complicated form because
of the necessary distinction between isotope ratios and
fractional abundances. Casting the exact result in terms
of the delta notation is even more complicated, and
approximate forms are often used. Specifically, we can
write

δp = δr + (1 – fp)ε (2.22)

and

δq = δr – fpε (2.23)

where ε = [(αP/R/αQ/R) – 1]103. These equations yield
the graph shown in Figure 5. An exact treatment shows
that the lines representing isotopic compositions as a
function of the division of R between P and Q (Figure
5) are not perfectly straight, but it is a characteristic of
such systems that the fractionation of isotopes between
product streams is, for all practical purposes, constant.

Measures of fractionation. It is often necessary to
discuss the isotopic contrast between two samples for
which delta values are known. A crude expression is
sometimes used

∆A–B = δA – δB (2.24)

but the symbol ∆ is not defined in the same way by all
authors, and, as noted by Friedman and O’Neill (1977),
a single mechanism of fractionation characterized by a
specific fractionation factor can yield different values
for δA – δB. In contrast, the following expression yields
α directly and is both simple and exact.

αA/B = (δA + 1000)/(δB + 1000) (2.25)

To express the isotopic contrast in parts per thousand,
it is best (Friedman and O’Neill, 1977; Fritz and Fontes,

Q
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yield of P
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Reaction

Chamber
R

Constant fractionation, A = f(isotope effect)

Isotope effect Fractionation

Figure 5. Schematic representation of an open system and
the isotopic fractionation occurring within it as a function of
the division of R (the input) between two product streams
(one of which might be unreacted R leaving the system), P
and Q.
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1980) to use the quantity 1000lnα, which has further
theoretical significance in that the relationship between
α and T (absolute temperature) can often be fit to an
expression of the form

1000lnα = a + b/T + c/T2 (2.26)

The following approximations can also be noted

1000lnα ≅  (α – 1)1000 ≅  δA – δB (2.27)

3. Primary Standards of Stable Isotopic
Abundances

Isotope ratios for the presently accepted primary
standards are summarized in Table 1. Given a “delta
value,” reference to these values will allow calculation
of an absolute isotopic abundance. Notably, however,
the isotope ratios of the standards – which are certainly
the most carefully studied materials available – are quite
uncertain.  For the elements listed in Table 1, the accu-
racy with which any absolute isotopic abundance can
be reported is substantially poorer than the precision
with which relative isotopic abundances can be mea-
sured.

The question of working standards (i. e., materials
for routine laboratory use) has been a thorny one. It is
simple enough to prepare a sample of N2 from air, and
the availability of standard water samples from the In-
ternational Atomic Energy Authority (IAEA) has been
good, but other up-to-date standards have been scarce.
More recently, however, the IAEA has expanded its list
of available standards to cover all elements of interest
and a substantial variety of matrices (IAEA, 1995).
Earlier, Blattner and Hulston (1978) made a significant
contribution to the development of carbonate standards
by reporting results from a large intercalibration exer-
cise focused on oxygen isotopes. Harding Iceland Spar,
a standard that has been widely used on an informal
basis, has also been proposed as a formal standard
(Landis, 1983).

More fundamentally, the NBS-19 sample prepared
by Friedman et al. (1982) has gained acceptance as a
new effective primary standard with status equivalent
to VSMOW, replacing, in effect, PDB (although the
position of the zero point of the scale is not to be
changed). Values assigned to the isotopic composi-
tions of this material on the VPDB scales for C and O

are: δ13CVPDB = +1.95‰, δ18OVPDB = –2.20‰.

Coplen and Kendall (1982) have prepared two sets
of standards in the form of gaseous CO2. The availabil-
ity of standards in this directly-usable form is particu-
larly important because variations associated with
sample-preparation procedures are avoided. Compari-
sons of these and many other standards have been re-
ported by Coplen et al. (1983), and by Gonfiantini
(1984). Particularly notable in the former compilation
is a revised assignment for the isotopic composition of
NBS-22, a standard petroleum sample. Coplen et al.
assign δPDB (NBS-22) = –29.63‰, a substantial change
from the previously accepted value of –29.4‰
(Silverman, 1964). There is some reason for concern,
however, because yet another intercalibration exercise
(Schoell et al., 1983) concluded that the correct isoto-
pic composition for NBS-22 is –29.81‰ vs. PDB, and
it is reasonable to ask whether this material can be re-
garded as suitable for calibration of highly precise iso-
topic analyses.

The need for an abundantly available and certainly
homogenous sulfur isotopic standard has been filled by
development of the IAEA-S-1 standard (Ag2S). By
analogy with carbon, the zero point of the sulfur isoto-
pic scale is still to be set by the initial standard, troilite
from samples of the Canyon Diablo meteorite (abbre-
viated CDT).  The δ34S value of IAEA-S-1 is –0.30‰
on this scale.  Results calibrated by reference to IAEA-
S-1 are to be reported vs. VCDT.

The practice of “normalizing” the results of isoto-
pic analyses is now well established, and can be illus-
trated for the case of D/H measurements. Repeated
measurements of a secondary standard (“SLAP,” Stan-
dard Light Antarctic Precipitation) by many laborato-
ries yield an average result of –424.9 ± 6.7‰ on the
SMOW scale [reported uncertainty is the standard de-
viation of a population of 45 measurements, see
Gonfiantini (1984) and, for an earlier compilation,
Gonfiantini (1978)]. Nevertheless, repeated careful
measurements of the absolute isotope ratios of SMOW
and SLAP (Hagemann et al., 1970; DeWit et al., 1980;
Tse et al., 1980) have established that the true position
of SLAP on the SMOW scale is much nearer –428‰
than –425‰. The difference in these values must be
due to systematic errors inherent in the procedures
employed for conventional differential measurements,
and it has been concluded (Gonfiantini, 1978) that it
will be useful simply to define δ2HSMOW(SLAP) =
–428‰, and to recommend that results of differential
analyses be adjusted accordingly (i.e., each laboratory
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ought to “stretch” or to “shrink” its hydrogen-isotopic
scale so that it obtains –428‰ as the result of analyses
of SLAP).

The success of the normalization procedure can be
demonstrated by consideration of results of analyses of
a third reference water sample, “GISP” (Greenland Ice
Sheet Precipitation). Referred only to SMOW by con-
ventional differential measurements, a value of –188.2
± 2.7‰ [uncertainty is standard deviation of a popula-
tion of 41 measurements (Gonfiantini. 1984)] is ob-
tained. After normalization, the same set of analyses
yielded –189.7 ± 1.1‰ (Gonfiantini, 1984). The sec-
ond result is presumably more accurate, and obviously
more precise.

The defined oxygen isotopic composition of SLAP
is –55.5‰ vs. SMOW (Gonfiantini, 1978; 1984). A
similar process of normalization is to be applied to oxy-
gen isotopic analyses. The standards described by
Blattner and Hulston allow an equivalent approach to
be taken in the analysis of carbonates.

A second new technique of significance in the defi-
nition and calibration of isotopic standards has been
introduced by Santrock, Studley, and Hayes (1985), who
have reconsidered isotopic calculations and analyses
based on the mass spectrum of carbon dioxide. In par-
ticular, they have (i) incorporated new information re-
garding natural covariations of 17O and 18O, (ii) devel-
oped an approach allowing exact calculation of isoto-
pic abundances from observed ion current ratios, and
(iii) described methods for dealing with samples spe-
cifically enriched in a single oxygen isotope.

The first of these innovations was based on the “ter-
restrial oxygen line” defined and discussed by
Matsuhisa et al. (1978).  This line is defined by a rela-
tionship of the form

a
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R

R
R
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where the subscripts 1 and 2 pertain to any two sub-
stances and the exponent a quantifies the relationship
between variations in 17O and those in 18O.  The value
of a varies slightly depending on the chemical mecha-
nisms by which substances 1 and 2 are related.
Matsuhisa et al. (1978) showed that a = 0.516 was
broadly representative.  Rearrangement of eq. 3.1 yields
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This expression shows that, once 17R and 18R are known
accurately for any single terrestrial material (i. e., 17R2
and 18R2 in eq. 3.2), the value of 17R can be calculated
for any other material provided that its value of 18R is
known.  Santrock et al. (1985) summarized this rela-
tionship by writing

17R = 18RaK (3.3)

where K is equal to the parenthesized term in eq. 3.2.
Writing in 1985, Santrock and coworkers could only
estimate the value of K, since there was no single ter-
restrial material in which the absolute values of both
17R and 18R were then known accurately.  The value
they provided can now be refined based on the value of
17RVSMOW reported by Li et al. (1988).  The revised,
presently best-available value is K = 0.0093704.

4.  Limits on the precision of mass
spectrometric measurements of isotope

ratios

Isotope ratios are calculated from observed
ion-current ratios. Such observations can be corrupted
by noise added to the signal in any part of its path.
However, even if the transducer, amplifier, and
analog-to-digital converter were perfect (completely
free of noise), the precision attainable in all measure-
ments would still be limited by “shot noise,” an intrin-
sic property of all electrical signals. Modern
signal-processing components approach perfection
closely enough that shot noise is (or should be) the prin-
cipal noise source in modern isotope-ratio measurement
systems. For this reason, and because it will always
separate the possible from the impossible in isotopic
analysis, our quantitative treatment of precision will be
based on a consideration of shot noise only.

The quantity of interest in isotopic measurements is
δ, defined as:
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
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−= 1

2

1

R
Rδ (4.1)

where R is an isotope ratio (e. g., 13C/12C) and the sub-
scripts denote two different materials which are being
compared. The precision with which δ can be deter-
mined is best considered in terms of its standard devia-



page 15

J. M. Hayes Practice and Principles

Notes to Table 1:

a. SMOW was defined by H. Craig (1961). Although the ini-
tial definition was mathematical and no specific sample of
“SMOW” existed, water with an isotopic composition cor-
responding to Craig’s specifications has since been pre-
pared and is distributed by the International Atomic En-
ergy Agency, Vienna. Some confusion exists because it
has developed (Coplen and Clayton, 1973) that the iso-
tope ratios (at least 2H/1H) in the water sample being dis-
tributed do not perfectly match those prescribed by the
initial definition.  In practice, the IAEA sample has super-
seded the initial SMOW.  The isotope ratios tabulated here
refer to “Vienna SMOW” or VSMOW.

b. In order to estimate the 95% confidence interval, I have
assumed that the uncertainty reported (Hagemann et al.,
1970) was the standard error of the mean. Essentially iden-
tical values (155.75 ± 0.08 and 155.60 ± 0.12, respec-
tively) have been reported by DeWit et al. (1980) and by
Tse et al. (1980).

c. Baertschi (1976) documents a standard deviation of 0.45
× 10–6 for a population of five independent observations.

d. The tabulated value is the result of a new measurement
by Li et al. (1988).

e. The PDB standard was defined and described by Urey et
al. (1951). The supply has long since been exhausted.
Numerous secondary standards have been defined and
carefully compared to PDB or to other well-known materi-
als, and all carbon isotope ratios are still referred to PDB.

f. Computed from 13RNBS-19 = 0.011202 (Zhang and Li, 1990)
and the definition of VPDB, namely δ13CVPDB(NBS-19) =
+1.95‰. Zhang and Li (1990) report an uncertainty of ± 28
but obtain it by summing terms which include systematic
errors. The result appears to be a significant overestimate.
The value of ± 16 chosen here results from adding their
error components in quadrature.

g. This number refers to the oxygen in the mineral. Isotopic
fractionation occurs during the preparation of CO2 (note:
two oxygen atoms) from CaCO3 (note: three oxygen at-
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Table 1. Isotopic Compositions of Primary Standards

oms).  The value reported here is based on 18RVSMOW and
the observation that CO2 equilibrated with VSMOW at 25°C
is depleted in 18O by 0.27‰ relative to CO2 derived from
the treatment of VPDB with 100% H3PO4 at 25°C (Hut,
1987).  Relevant fractionation factors are 18αCO2/H2O =
1.0412 (Friedmann and O’Neil, 1977) and 18αCO2/calcite =
1.01025 (Friedmann and O’Neil, 1977).  In order to esti-
mate the uncertainty in 18RVPDB, the standard deviations
of 18RVSMOW, 18δVSMOW-CO2(PDB-CO2), 18α(CO2/H2O, 25°),
and 18α(CO2/calcite, 25°) have been taken as 2 × 10–7,
0.01‰, 0.0005, and 0.0001, respectively.

h. Calculated from 18RPDB by means of eq. 3.3.

i. There is no evidence that N2 in air is isotopically inhomo-
geneous (Junk and Svec, 1958; Sweeney et al., 1978).

J. In order to estimate the 95% confidence interval I have
assumed that the uncertainty reported by Junk and Svec
(1958) was the standard error of the mean.

k. An important early review of sulfur isotopic standards is
presented by Ault and Jensen (1962). They cite
MacNamara and Thode (1950) as first to investigate me-
teoritic troilite, which was subsequently adopted as the
primary standard. Ault and Jensen note that workers in
the Soviet Union utilized the Sikhote-Alin meteorite as their
source of meteoritic troilite. Very recently, the use of these
meteoritic standards has been criticized by Nielsen (1984),
who notes that the materials are not perfectly homogenous
isotopically and that there may be a systematic difference
between Canyon Diablo and Sikhote Alin.

l. The value specified is that chosen, somewhat arbitrarily,
by Jensen and Nakai (1962). The uncertainty reported
here is the standard deviation of the mean of five indi-
vidual values they considered. Nielsen (1984) has noted
that corrections to the mass-66 ion current in the spec-
trum of SO2 may have been inaccurate (contributions by
34S32S have been overlooked), and that 34S/32S may be
as low as 0.043748, a value recently derived from obser-
vations of the spectrum of SF6.
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of the frequency of observation of various numbers of
ions would take the form shown in Figure 6, which is a
plot of a normal distribution with a mean of 1060 and a
standard deviation of 32.6.

 These variable results arise because an ion current
derives from a beam of discrete particles distributed
randomly with respect to time. If a very small ion cur-
rent were processed so that individual ions produced
audible clicks at a loudspeaker, you would hear (with
thanks to e. e. cummings)

tick,      tick, tick,       tick,           tick,   tick,tick     tick,

not

tick,    tick,    tick,    tick,    tick,    tick,    tick,    tick.

Time intervals between ions would follow the Poisson
distribution, but collection of large numbers (as in Fig.
6) would always yield count totals following the nor-
mal distribution. The standard deviation of the distribu-
tion would always be N0.5, where N is the average num-
ber of ions collected.

Even if you had a relatively large ion beam and, in
one second, collected exactly 100,000,000 ions, you
could not say, “I have measured this ion current with
an uncertainty of 1 part in 108.” The inescapably ran-

tion, σδ. Assuming only that errors in R1 are not corre-
lated with errors in R2, we can write

2
2

2

2
2
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2
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= (4.2)

This expression is derived from the standard treatment
of the propagation of errors. For example, if we are
given w = f(x, y, z), we know that the standard devia-
tion of w will be related to the standard deviations of
the quantities from which it is derived by the equation
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= (4.3)

In equation 4.2, we have not specified separate stan-
dard deviations for R1 and R2 because both ion-current
ratios can be assumed to have equal standard devia-
tions (when R1 and R2 are nearly equal and are mea-
sured sequentially and identically, as is common in iso-
topic analysis).

The ion-current ratio, R, can, in turn, be expressed
as a function of two quantities:

R = im/iM (4.4)

where i denotes an ion current (expressed, for example,
in amps, or coulombs/sec) and the subscripts m and M
are introduced to specify the minor and Major ion beams
(for example, masses 45 and 44 in a carbon-isotope ra-
tio measurement). Following the approach of equation
4.3, we can write

2
M
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2
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=
i
R

i
R

R (4.5)

where σm and σM denote the standard deviations of
the minor- and major-ion currents, respectively.

4.1 The random nature of ion currents

An ion current does have a standard deviation. For
concreteness, consider specifically a current of 1.7 ×
10-13 amps. This is a bit small by the standards of isoto-
pic mass spectrometry, but it is of interest here because
it is almost exactly 106 ions/sec (1.06 × 106 ion /sec, to
be precise). If you observed this beam for exactly 1
msec you might expect to collect exactly 1060 ions.
You would, on average. Careful observation would
show, however, that the numbers of ions collected in a
series of 1-msec intervals varied significantly. A plot

994

1000

1060

1100

1125

Number of ions observed in 1 millisecond

(1.7 x 10–13 amps)

Ion beam with 1060 ions/msec

σ =   1060 = 32.6

Figure 6. Probability distribution for observing n ions during
any 1 millisecond interval.
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bers of ions collected. If we recall that R = Nm/NM, we
can rewrite equation 4.10 in terms of only the
major-beam ion current:







 +

=







R
R

NR
R 11

M

2σ
(4.11)

This is useful because we can relate the number of
major-beam ions quite simply to the performance of
the mass spectrometer.

The sensitivity of a mass spectrometer can be de-
scribed in terms of the number of ions collected per
input molecule. This is often termed the “efficiency”
of the mass spectrometer. To a very good approxima-
tion, the efficiency is independent of isotopic composi-
tion. That is, we can speak of the number of carbon
dioxide ions appearing at the collector per input mol-
ecule without worrying about whether we’re talking
about 13CO2 or 12CO2. If we denote the efficiency by E
and the number of molecules introduced by M, we can
always write

R
EMN
+

=
1M (4.12)

(when R is small, the right-hand side of this equation
can be approximated by EM, but if we wished to con-
sider a gas with, for example, R = 1, the form given
here correctly indicates that only half the molecules
would contribute to NM). Equation 4.11 thus becomes

( )
EMR

R
R

R
22 1+

=
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
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
σ

(4.13)

To proceed to a master equation relating precision of
isotope measurement and sample requirements, we need
only fit this expression into equation 4.2.

Simplification of equation 4.2 is aided considerably
by the fact that, in most high-precision isotopic mea-
surements, R1 and R2 are nearly equal numerically (quite
possibly differing only in the fourth significant figure).
Thus, when we obtain ∂δ/∂R2 = –103R1/(R2

2), we can
recognize that this quotient will differ very little from
–103/R, where R (no subscript) is a “generic isotope
ratio;” for example, 0.01 for carbon-isotopic measure-
ments. We then can write
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62 1102102 σσδ (4.14)

dom distribution of time intervals between ions dic-
tates that you might observe a different total in the next
second and that the long-term average might not be
exactly 100,000,000 ions/sec. Given the properties of
the normal distribution, you know that 95% of your
observations will fall within two standard deviations
of the true mean and that, therefore, you can be 95%
confident that the true value is within 2 × 104 ions/sec
of 100,000,000. You could say, “I have measured this
ion current with an uncertainty of 1 part in 104.” In
general, if you have collected N ions, the uncertainty
will be 1 part in N0.5.

4.2 Sample requirements

To come up with a quantitative relationship between
σδ and ion currents or sample sizes, we work backward
from equation 4.5, utilizing the relationship explained
above. Evaluating the ∂R/∂i terms and substituting the
results in equation 4.5, we obtain
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The terms on the right-hand side of this equation in-
volve the squares of the relative standard deviations of
the ions currents m and M. These can be recast as fol-
lows. An ion current is given by

i = Ne/t (4.7)

where i is a current expressed in amperes or coulombs/
sec, N is the number of ions collected in a time interval,
t (sec), and e, the electronic charge, is the charge (cou-
lombs) carried by a single ion. We note that

N
t
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N
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and that the relative standard deviation of an ion cur-
rent is given by
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i 12
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
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(4.9)

Equation 4.6 can thus be written as
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(4.10)

And we learn that the relative standard deviation of an
ion-current ratio is a very simple function of the num-
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thus producing an equation for the precision attainable
in δ as a function of R (i.e., the element of interest), the
sample size (expressed in terms of M, a number of
molecules), and E, the efficiency of the mass spectrom-
eter. Recasting this expression with M as the depen-
dent variable, we obtain

( )
ER
RM 2

2
6 1102

δσ
+

×= (4.15)

and can derive table 2.

4.3 Postscript: reality

The effects of other noise sources are summarized
in Figure 7, which is based on signal-to-noise ratios
characteristic of typical ion-current-amplifier systems
(Peterson and Hayes, 1978). As an example, consider
the case of 13C measurements. The figure shows that, if
the major ion current is 1000 picoamperes (that is, 10–9

A), the beam carrying information about the abundance
of 13C will amount to 11.9 pA. If we observed those
beams for 300 sec in each of two different samples, the
maximal precision (i.e., the precision calculated on the
basis described above) obtainable in a measurement of
δ would be 0.0095‰. If all components of the signal
pathway were at the state of the art, the observed signal
to noise ratio (S/N) would be nearly equal to that ex-
pected on the basis of ion statistics alone (the table at
the base of the figure shows that the observed S/N would
be 89% of the theoretical maximum S/N). The corre-
sponding attainable precision for δ would be 0.0106‰,
not 0.0095‰.

 

gas 
Ratio, R Efficiency 

(ions/molecule) 
Nanomoles of element X required

a
 

  = 0.1‰  = 0.03‰ 

H 
C 
N 
 

O 

H2 
CO2 
N2 

CO2 
O2 
O2 

3/2 = 0.0003 
45/44 = 0.011 
29/28 = 0.007 
46/44 = 0.004 

33/32 = 0.0007 
34/32 = 0.004 

10
–5 

10
–4

 
10

–4
 

10
–4

 
10

–4
 

10
–4

 

 222 
 0.31 
 0.92 
 1.6 
 8.8 
 1.6 

 2200 
 3.1 
 9.2 
 16 
 88 
 16 

 

aThe fact that two moles of H, N, and O are required for each mole of sample gas has been taken into account.

X Sample

Table 2. Theoretical limits on the precision of isotopic measurements.

13C

15N

18O

17O
2H

iminor, pA 11.9 7.32 4.08 0.75 0.31

(σδ) n, ‰ 0.0095 0.012 0.016 0.038 0.059

(S/N)S/N

(S/N) n
0.89 0.84 0.76 0.45 0.31

(σδ)S/N, ‰ 0.0106 0.014 0.021 0.084 0.190

imajor = 1000 pA

(t = 300 sec)

Figure 7. Effects of noise sources on obtainable precision
for isotopic measurements.

As minor ion currents become smaller, the effects
of noise sources in the signal pathway become more
important. In the case of hydrogen-isotope ratio mea-
surements, for example, the same measurement which
would be expected to yield a precision of 0.059‰ on
the basis of ion-statistical limitations alone is found to
yield a “real” precision more than three-fold lower,
0.19‰.
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where δs is the isotopic composition of some unknown
sample (not the test material used to develop the re-
gression line and for which, accordingly, the true isoto-
pic composition is already known), nT is the total mo-
lar quantity of CO2 analyzed isotopically, and δT is the
isotopic composition of that sample.

The result derived by solution of equation 5.3 is
uncertain. Even if all the terms on the right-hand side
of the equation are “well known,” they all must have
some inherent uncertainty, and those uncertainties must
cause uncertainties in δs. Specifically, nT will be uncer-
tain because our methods of measurement of the quan-
tities of small gas samples are imperfect. The value of
δT is uncertain because the mass spectrometer itself can
yield only finite precision and because the standardiza-
tion of the mass spectrometer (i.e., the establishment of
the zero point on the PDB scale) may be imperfect.
These are, however, the only uncertainties to be con-
sidered in δT, and the second will not be important if
the principal use of the results will be comparisons be-
tween samples that have all been analyzed at the same
time. Values of nb and δb must be treated as uncertain
for two distinct reasons. First, of course, either or both
might be more accurately described as an “estimate.”
Since the size of the blank is usually much smaller than
that of the sample, that need not be much of a problem
(an example is discussed below). Second, however, nb
and δb are probably inherently variable. Even if we did
establish their values perfectly at one point in time, it is
extremely likely that small variations in procedures,
materials, and conditions would cause them to vary at
least slightly in subsequent procedures. In assessing the
uncertainties in nb and δb it is appropriate to take those
variations into account.

Propagation of errors can be treated quantitatively.
I take as an example the correction of isotopic analyses
of porphyrins that have been purified by TLC. Each
equation is followed by corresponding notes.
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−
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δδδ (5.4)

This is identical to equation 5.3 but is rewritten in a
form more amenable to differentiation:
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5. Uncertainties in Blank-Corrected
Isotopic Analyses

When a sample has been contaminated during its
preparation by contributions from an analytical blank,
the isotopic abundance actually determined during the
mass spectrometric measurement is that of the sample
plus the blank. Using T to represent the sample pre-
pared for mass spectroscopic analysis and s and b to
represent the sample and blank, we can write

bbssTT δδδ nnn += (5.1)

where n terms represent molar quantities. Substituting
ns = nT – nb and rearranging yields

( )
T

bsb
sT n

n δδδδ −
−= (5.2)

an equation of the form y = a + bx. If multiple analyses
are obtained, plotting δT vs. 1/nT will yield the accurate
(i. e., blank-corrected) value of δs as the intercept.

The coefficients in equation 5.2 can, of course, be
most accurately determined by use of statistical tech-
niques (the “least squares” placement of a straight line,
more generally referred to as regression). If regression
techniques are employed, the 1/n values should be
treated as precisely known, and point-to-line deviations
parallel to the δ axis ought to be minimized. Since all
pocket calculators that I know of actually calculate the
regression of y on x, the appropriate treatment of blank
data will be obtained when δ’s are input as y values and
1/n’s are input as x values.

The slope of the line specified by equation 5.2 is
–nb(δs – δb).  Notably, it depends on both the size and
the isotopic composition of the blank (nb and δb, re-
spectively).  Neither of these quantities can be deter-
mined independently unless further information is avail-
able.  For example, if two different slopes have been
obtained by repeatedly carrying two samples of differ-
ing isotopic compositions through the same procedure,
simultaneous solution of two equations will allow de-
termination of both nb and δb.

Whatever the case, some reasonable means must be
employed for estimation of values for nb and δb. This is
required because correction of individual analyses is
carried out by use of the expression

bT

bbTT
s nn

nn
−
−

=
δδδ (5.3)
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low, I concluded that this estimate was too large, and
reduced it to 0.02 mmol.

3‰.0
b
≈δσ (5.9)

My estimate of variations in the isotopic composi-
tion of the blank appears to have been about right.
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Equations 5.10 – 5.17 show the evaluation of the
differentials required by equation 5.5.
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Equation 5.18 is derived by substitution of the final
results of equations 5.14 – 5.17 into equation 5.5.

This equation expresses the relationship be-
tween the standard deviation in δs (i.e., the uncertainty
we wish to evaluate) and the standard deviations in the
various terms in equations 5.4 and 5.5. Lower-case
Greek sigmas (σ) are used to represent standard devia-
tions. The square of a standard deviation is referred to
as a “variance.”

µmol025.0
T
≈nσ (5.6)

The uncertainty in nT has been set equal to 65% of
the “least count” interval of the baratron readout. At
the time these notes were compiled, a one-unit change
in the least-significant digit of the baratron readout cor-
responded to 0.039 mmol C. In the absence of any fur-
ther information, this is a useful means of assigning an
uncertainty to a digital readout. Keep in mind that only
68% of all observations are expected to fall within one
standard deviation of the true value, 95% within two
standard deviations.

3‰0.0
T
≈δσ (5.7)

The standard deviation of a single isotopic measure-
ment is not the same as the standard deviation reported
by the mass spectrometer software. The latter number
depends only on the consistency of the various indi-
vidual measurements of δ (i.e., those deriving from the
numerous sample-standard comparisons occurring
within a single measurement) that the computer aver-
ages in order to derive the δ value it reports. Because it
relates only to this internal consistency, it is often re-
ferred to as an “internal precision.” In contrast, the num-
ber which should be inserted here is sometimes termed
the “external precision.” It can be evaluated by repeated,
independent analyses of gas samples having identical
isotopic compositions. By choosing a value of 0.03‰,
I have estimated that the standard deviation of the popu-
lation of independent analyses of, for example, repeated
doses of standard gas, would be 0.03‰. This does not
include allowance for uncertainties in standardization.
This value may be a bit high for repeated analyses of
large samples, but for the one-micromole quantities
considered here, it may even be low.

µmol02.0
b
≈nσ (5.8)

My original estimate of the standard deviation that
should be assigned to nb was 0.03 mmol. In this case,
we thought we knew that the blank was 0.086 mmol,
so this amounted to assigning a relative uncertainty (and
inherent variability) of 35%. By means explained be-
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This is a general expression for the standard devia-
tion of δs as a function of the standard deviations of the
terms contributing to δs. If you wish to develop a com-
puter program to evaluate these equations, the follow-
ing test data will be useful.

For nb = 0.086 µmol and δb = –22.0‰

and nT = 0.768 µmol and δT = –26.959‰,

adoption of the standard deviations shown in equations
5.6 – 5.9 (0.02 being used in equation 5.8) yields δs =
–27.58‰ and a standard deviation for that number of
0.17‰.

The adequacy of a treatment of this kind can be
tested (and was in this case) if standards are analyzed
along with samples. The individual standard results can
be treated as unknowns and the results can be corrected
by use of equation 5.3. These corrected results ought,
of course, to scatter around the true value determined
by reference to the intercept of the initial regression
line. You may then proceed as follows.

(i) Calculate the difference between each corrected re-
sult and the known, true isotopic composition.

(ii) Divide each of these differences by the standard
deviation assigned to each result. For example, in
the specific case noted above, the corrected result of
–27.58‰ differed from the true value of –27.43‰
by 0.15‰. Dividing that difference by 0.17‰, the
assigned standard deviation, showed that this par-
ticular result was 0.85 standard deviations low.

(iii) Check to be sure that about 68% of the standard
results are less than one standard deviation away from
the mean, and that less than 5% are more than two
standard deviations away. If you find that almost
every result is within less than one standard devia-
tion (and this is what happened in this example when
the standard deviation of nb was set at 0.03 mmol),
then one or more of the standard deviations in the
model (equations 5.6 – 5.9) should be decreased. If
many deviations amount to more than one sigma,
you will have to increase some of the input standard
deviations.

The tyranny of small numbers and special circum-
stances can always cause problems. In the porphyrin
analyses, for example, the model developed seemed to
predict uncertainties accurately for 13 out of 15 stan-
dard analyses. The two outliers (3.1 and 3.6σ!) both
pertained to large samples. Those samples were, in fact,
larger than any of the unknowns. Moreover, the test
becomes especially stringent in such circumstances
because the large samples lead to very low predicted
values for the standard deviation in δs. On balance, I
concluded that it was fair to use the model within the
range of sample sizes where it worked and not to push
everything out of shape to accommodate two irrelevant
outliers.

What uncertainties should be presented in formal
reports of isotopic analyses? I favor the following. In
tables, report the result plus or minus two standard de-
viations (this amounts to the generally accepted stan-
dard of 95% confidence limits). That would be –27.58
± 0.34 in the example given above. When the indicated
uncertainty becomes greater than 30 units, I would drop
the least significant figure both in it and in the reported
number. For example, in a publication I would report
this result as –27.6 ± 0.3‰. While the data were under
review and consideration, however, I would probably
carry the extra significant figure. I would never report
or carry a standard deviation amounting to more than
100 units. In any report to the outside world, however
informal, I would clearly write at the bottom of the table
(or someplace where it would be clearly juxtaposed with
the numerical results), “indicated uncertainties are plus
or minus two standard deviations.” Otherwise, many
people will assume that the reported uncertainties are
merely plus or minus one standard deviation.
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6.  Further Notes, July 2002

6.1 Data processing

The algorithm introduced by Santrock et al. (1985)
is indeed more accurate than earlier systems of equa-
tions. As a result, if the same sample is analyzed at very
high precision on two different instruments, one of
which uses the Santrock equations and the other some
older algorithm, the results can differ significantly.
Moreover, if a laboratory has two or more instruments
and all do not use the same data-processing algorithms,
systematic errors will result if working standards are
calibrated on a machine that uses one algorithm and
then transferred for use on a machine that uses the other
algorithm.

Confronting discrepancies of this kind, isotopic ana-
lysts wishing to standardize procedures for measure-
ments of atmospheric trace gases have spelled out al-
gorithms and absolute ratios (i. e., values equivalent to
those reported here in Table 1) that should be used by
all laboratories in that field (IAEA, 1995). In general,
they have chosen antiquated procedures and outdated
values, avoiding the Santrock et al. (1985) algorithm
and the updated absolute ratios reported in Table 1.
Presumably these choices have been made in order to
provide comparability with all earlier reports.

6.2 The definition of δδδδδ

The question is whether δ should be defined as ∆R/
R or as 103(∆R/R). American usage overwhelmingly
favors the latter and, in doing so, faithfully follows the
earliest formal reports. Earlier sections of this docu-
ment follow this practice.

When this definition of δ is used in the develop-
ment of further equations relating, for example, to iso-
topic fractionations in multistep processes, the result-
ing expressions are cluttered by factors of 103. The prob-
lem has been pointed out by Professor Graham Farquhar
of the Research School for Biological Sciences at Aus-
tralian National University. Papers from his research
group consistently employ the definition of δ in which
the thousand-fold multiplier is omitted as an explicit
factor.  Resulting values of δ and ε can be reported as,
for example, –0.0254 (no units) or –25.4‰.  This us-
age embodies the view that the permil symbol (‰) im-
plies multiplication by 103 and expression of the value
in terms of parts per thousand. This same view has been
taken by Professor Willem G. Mook of the Centre for
Isotope Research, University of Groningen, the Neth-
erlands, in his major new book on isotopic techniques

(Mook, 2000).  Since this book is freely available via
the internet, it is particularly likely to shape usage
around the world.

The advantages of the ∆R/R form are substantial.
In the future, I plan to use it consistently.

6.3 The pronunciation of δδδδδ

Confronting a growing trend to refer to δ as “del,”
Professor Harmon Craig of the Scripps Institution of
Oceanography, one of the founders of modern isotopic
studies, composed the following limerick.  It’s claimed
that there was no particular target for this missile, least
of all anyone at Cornell University.

The was a young man from Cornell
Who pronounced every “delta” as “del”
But the spirit of Urey
Returned in a fury
And transferred that fellow to Hell!
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