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Why build a 3D coupled model?

Assess impacts of spatio-temporal variability
Generate new hypotheses

A numerical laboratory

— Sensitivity studies

— Future scenarios

Assist with management questions

....Data assimilation



But... many caveats...

* Model are only as good as the information we
put into them...

 Many different “carbon cycles” can fit the
same data



Requirements

Physical model
Biogeochemical module
Computers

People

— Physical model

— Physical data

— Biogeochemical model
— Biogeochemical data



Physical model

 Many codes out there, most free
— ROMS, MITgcm, FVCOM, etc.

— provided “as is”; support from discussion forum

e Some differences...

1. Grid scheme - z-level, terrain following,
unstructured

2. Ability to run on parallel processors

* Developer familiarity is a big factor in choice



Unstructured Grid

- FVCOM, Cook Inlet
- Chen at UMASS-
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Physical model

 Many codes out there, most free
— ROMS, MITgcm, FVCOM, etc.

— provided “as is”; support from discussion forum

e Some differences...

1. Grid scheme - z-level, terrain following,
unstructured

2. Ability to run on parallel processors

* Developer familiarity is a big factor in choice



Physical Data

 To make it go
— Bathymetry
— Atmospheric forcing (NCEP Reanalysis, NARR)

— Boundary conditions
* A global model? A climatology?

— Perhaps, data for assimilation
* To know if its right — Validation data
— Currents, SSTs, T profiles

— Coverage in all dimensions of space and time



Who to build physical model?

* |deally a physical oceanographer with
modeling experience — or a lot of time to learn

* Or a good postdoc with modeling experience

Collaborate!
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A passive tracer released Jan 1 with concentration ~6x10* When
lake fully mixed, concentration=1 everywhere. 2 year animation.



Biogeochemical Module — Water Column

co, O,
 Codes out there, but fewer Air-Sea Flux
ALK
* Less support <
\oz
e Maybe already coupled to [°t“(‘.i’,8)“"t°]
physical model? r/
Z00
(P,C)
* Much “structural uncertainty” - Y
—i.e. are the equations you o; 0 | (o J
are using appropriate to your
system? ©:

sink / remineralize

Bennington 2010;
Dutkiewicz et al. 2005



Depending on system, other modules

* Sedimentation

* Benthic processing
* Rivers

* Estuaries

* Coastal Vegetation
* Other..



Biogeochemical Data

Initialization

Boundary Conditions

Validation and/or formal B gl

optimization A N
=

R e

Nutrients, DIC, DOC | Ly

Chl —satellite, if algorithm OK 1

Observed rates most helpful, et

but scarce



Computers:
Lots of processors and lots of disk space

Your lab?

Your institution?
NCAR

NASA

Biogeochemistry typically makes computation
10x’s larger than physical only

Terrabytes of output
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Lake Superior’s
Multiple “realities”



Phosphorous Model
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No Phosphorous Model
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Model - Observation
Comparisons
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Open Lake pCO,
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* Both models capture spring and summer open
lake pCO, within reason



SAMI pCO, Time Series
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Model Summary

Phosphorous No P Model
Model
Chlorophyl Better
Open Lake Okay Okay
pCO, (EPA)
High frequency Better
pCO,

Given the lack of data constraints, these models only begin to cover the
potential ecosystem / carbon cycle realities of Lake Superior.

Nevertheless, the models do begin to cover the state space and so are
reasonable tools for further carbon cycle analysis.



Seasonal cycle of air-lake CO, flux
remains poorly constrained
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