Modeling Carbon in the Coastal Zone

Galen A. McKinley
University of Wisconsin - Madison

Why build a 3D coupled model?

- Assess impacts of spatio-temporal variability
- Generate new hypotheses
- A numerical laboratory
 - Sensitivity studies
 - Future scenarios
- Assist with management questions
-Data assimilation

But... many caveats...

 Model are only as good as the information we put into them...

Many different "carbon cycles" can fit the same data

Requirements

- Physical model
- Biogeochemical module
- Computers
- People
 - Physical model
 - Physical data
 - Biogeochemical model
 - Biogeochemical data

Physical model

- Many codes out there, most free
 - ROMS, MITgcm, FVCOM, etc.
 - provided "as is"; support from discussion forum
- Some differences...
 - Grid scheme z-level, terrain following, unstructured
 - 2. Ability to run on parallel processors
- Developer familiarity is a big factor in choice

Physical model

- Many codes out there, most free
 - ROMS, MITgcm, FVCOM, etc.
 - provided "as is"; support from discussion forum
- Some differences...
 - Grid scheme z-level, terrain following, unstructured
 - 2. Ability to run on parallel processors
- Developer familiarity is a big factor in choice

Physical Data

- To make it go
 - Bathymetry
 - Atmospheric forcing (NCEP Reanalysis, NARR)
 - Boundary conditions
 - A global model? A climatology?
 - Perhaps, data for assimilation
- To know if its right Validation data
 - Currents, SSTs, T profiles
 - Coverage in all dimensions of space and time

Who to build physical model?

 Ideally a physical oceanographer with modeling experience – or a lot of time to learn

Or a good postdoc with modeling experience

Collaborate!

A passive tracer released Jan 1 with concentration ~6x10⁴. When lake fully mixed, concentration=1 everywhere. 2 year animation.

Biogeochemical Module – Water Column

- Codes out there, but fewer
- Less support
- Maybe already coupled to physical model?
- Much "structural uncertainty"

 i.e. are the equations you
 are using appropriate to your
 system?

Bennington 2010; Dutkiewicz et al. 2005

Depending on system, other modules

- Sedimentation
- Benthic processing
- Rivers
- Estuaries
- Coastal Vegetation
- Other...

Biogeochemical Data

- Initialization
- Boundary Conditions
- Validation and/or formal optimization
- Nutrients, DIC, DOC
- Chl satellite, if algorithm OK
- Observed rates most helpful, but scarce

Computers:

Lots of processors and lots of disk space

- Your lab?
- Your institution?
- NCAR
- NASA

- Biogeochemistry typically makes computation 10x's larger than physical only
- Terrabytes of output

What can you get?

Lake Superior's Multiple "realities"

Phosphorous Model

Hand-tuned to best fit available data

No Phosphorous Model

GPP from T, PAR (Sterner 2010)

Formal Optimization in 1-D

Model - Observation Comparisons

Data not used in NoPhos optimization

Open Lake pCO₂

 Both models capture spring and summer open lake pCO₂ within reason

SAMI pCO₂ Time Series

 No phosphorous model misses effects of internal mixing to and from P

Model Summary

	Phosphorous Model	No P Model
Chlorophyll		Better
Open Lake	Okay	Okay
pCO ₂ (EPA)		
High frequency	Better	
pCO ₂		

Given the lack of data constraints, these models only begin to cover the potential ecosystem / carbon cycle realities of Lake Superior.

Nevertheless, the models do begin to cover the state space and so are reasonable tools for further carbon cycle analysis.

Seasonal cycle of air-lake CO₂ flux remains poorly constrained

