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Explosive instability

due to 3-wave or 4-wave mixing

A. Review 3-wave mixing (resonant triads)

 and 4-wave (including NLS)

B. Explosive instability in ODEs

  3-wave mixing, 4-wave mixing

C. Open problem: a physical application of
explosive instability due to 4-wave mixing

D. Effect of dissipation

E. Effect of spatial structure



A. Recall derivation of 3-wave

equations

Start with physical problem that admits waves,

but has no dissipation.

Linearize, and find dispersion relation, !(k).



Recall derivation of 3-wave eq’ns

Start with physical problem that admits waves,
but has no dissipation.

Linearize, and find dispersion relation, !(k).

Q: Does !(k) admit 3 pairs

so

If yes ! 3-wave equations (resonant triads)

If no  ! 4-wave equations (resonant quartets)
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3-wave equations

Suppose

Then 

and

 

 3-wave mixing

 (capillary-gravity waves; !2 materials)
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3-wave equations

• Coppi, Rosenbluth & Sudan (1969) showed that if

{"1, "2, "3} all have the same sign, then {A1, A2, A3}

can all blow up at the the same time, everywhere in

space.  This is the explosive instability.
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3-wave equations

• Coppi, Rosenbluth & Sudan (1969) showed that if

{"1, "2, "3} all have the same sign, then {A1, A2, A3}

can all blow up at the the same time, everywhere in

space.  This is the explosive instability.

• The blow-up occurs even with no spatial structure,
so  A

m
 = A

m
(#).
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4-wave equations

• Start with !(k)

• Need
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4-wave equations

• Start with !(k)

• Need

• Special case:

!  nonlinear Schrödinger equation
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Nonlinear Schrödinger equations

For one wave field (in 1-D):

! 

i("#A + c"$A) + %[& '"$
2
A + ( | A |2 A] = 0.



Nonlinear Schrödinger equations

For one wave field (in 1-D):

For two coupled wave fields (in 1-D):

(also called vector NLS)
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NLS equations with 4-wave mixing
(in 1-D)

(Benney & Newell, 1967)

(gravity-driven surface water waves; !3 materials)! 
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NLS equations with 4-wave mixing
(in 1-D)

Q: Does the “new” 4-wave mixing term

     permit new phenomena?

A: Yes - explosive instability

(even with no spatial structure, so NOT wave
collapse)
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B. Explosive instability

with no spatial dependence

• 3-wave equations (1969)

• 4-wave equations (2007)



3-wave equations

no spatial dependence

3 coupled, complex ODEs – {"1, "2, "3} known, real-valued
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3-wave equations

no spatial dependence

3 coupled, complex ODEs – {"1, "2, "3} known, real-valued

Necessary and sufficient conditions for blow-up in finite time:

• at least two of {A1(0), A2(0), A3(0)} are non-zero;

• {"1,"2,"3} all have the same sign (and non-zero).

   (Coppi, Rosenbluth, Sudan, 1969)
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Necessary:

Manley-Rowe relations (constants of motion):

If  sign ("m) !"sign ("n)  for any m ! n,

!no blow-up.

(Results for 4-wave mixing are similar, but slightly more

complicated.)
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Sufficient:   Suppose {"1, "2, "3} have same sign.

A  3-parameter family of singular solutions is

The 3 free, real-valued parameters are {#0, $1, $2}.

(This justifies name: “explosive instability”)
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Q:  General solution of the ODEs?

A:  Assume             is the first term in a

   Laurent series, in the neighborhood of a pole:

Determine complex coefficients, order by order
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General solution of the ODEs:

Find:  %m= 0,     Im(&m) = 0,     Re(&1+ &2+ &3) = 0,
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General solution of the ODEs:

Find:  %m= 0,     Im(&m) = 0,     Re(&1+ &2+ &3) = 0,

Re('m) = 0,        Im('1) = Im('2) = Im('3) = '.
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General solution of the ODEs:

Find:  %m= 0,     Im(&m) = 0,     Re(&1+ &2+ &3) = 0,

Re('m) = 0,        Im('1) = Im('2) = Im('3) = '.

6 real-valued, free constants: {#0, $1, $2, &1, &2, '}

" every nontrivial solution of the ODEs near  # = #0

       blows up at   # = #0.
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General solution of the ODEs:

Free constants:  {#0, $1, $2, &1, &2, #}

Series converges absolutely if:

     (i)    &1 = &2 = 0,                           or

     (ii)
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Q: What does it mean physically for all three wave
trains to blow up in finite time?
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Q: What does it mean physically for all three wave
trains to blow up in finite time?

The end of the world?

A: Perhaps, but probably not.

The 3-wave equations evolve on a long time-scale

(t = O(($1)).  Blow-up in finite time usually means
that assumptions in model have broken down at
this time, or earlier.

Before model breaks down completely, there is
significant energy transfer into the wave modes.
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4-wave equations

no spatial dependence

      m,p,q,r = 1,2,3,4

4 coupled, complex ODEs – coefficients known, real-valued

Necessary and sufficient conditions for blow-up in finite time:

• at least three of {A1(0), A2(0), A3(0), A4(0)} are non-zero;

• {"1,"2,"3,"4} all have the same sign (and non-zero);

•
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For NLS-type models with

4-wave mixing

• Self-focussing singularity (or wave collapse)

– requires 2 or more spatial dimensions

– a finite amount of energy collapses to a point

 – solution blows up at one point, in finite time 

• Explosive instability

– works in any number of spatial dimensions (including 0)

– draws an infinite amount of energy from a background 

       source

– solution blows up everywhere, in finite time



C. An open problem

Find a physical example of the explosive

instability due to 4-wave mixing, (with or)

without spatial structure
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Final result for ODEs
when necessary conditions hold

• 3 wave mixing

A 6-parameter family of solutions all blow up

• 4-wave mixing

An 8-parameter family of solutions all blow up
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D. Can damping stop blow-up in ODES?

With no damping:

Add damping:

Simplest case: uniform damping
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Can damping stop blow-up?

No damping:

(1)

Uniform damping:

(2)

! 

" A m (#) = i$m Ap

*
Aq

*
,

! 

" A m (#) = i$m Ap

*
Aq

*
%&Am ,



Can damping stop blow-up?

No damping:

(1)

Uniform damping:

(2)

CHANGE VARIABLES:

This maps (2) into (1), exactly  (Miles, 1984)
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Result: uniform damping provides

a threshold for blow-up

3-wave mixing with uniform damping:

If

• {"1, "2, "3} all have the same sign

•  (threshold)

then solutions blow-up in finite time.

(A similar result holds for 4-wave mixing)
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Can non-uniform damping

stop blow-up in ODES?

Seek a  formal series solution:

This is too restrictive – singularity is not a pole
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Effect of non-uniform damping

Try

Find: {%m} real, determined by {)n}

         {bm} real, determined by {)n}

         {&m} real, {&1, &2} free

Continue…
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Effect of non-uniform damping

Result (for ODE model):

• The ODEs are no longer completely integrable

• The singularity is no longer a pole
! 
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Effect of non-uniform damping

Result (for ODE model):

• The ODEs are no longer completely integrable

• The singularity is no longer a pole

But

• Blow-up persists for a  6-parameter family of

(formal) solutions of the ODEs

• Damping does not quench blow-up, except

    perhaps by inserting a threshold for blow-up.
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Thank you for your attention



E. Blow-up in PDES?
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Blow-up in PDES?

Zakharov & Manakov, 1976

   3-wave PDEs are completely integrable

Kaup, 1978

   Solved equations in 1-D on whole line (comp. sup.)

   Numerics + analysis to learn about blow up
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Blow-up in PDES?

Zakharov & Manakov, 1976

   3-wave PDEs are completely integrable

Kaup, 1978

   Solved equations in 1-D on whole line (comp. sup.)

   Numerics + analysis to learn about blow up

Unknown: periodic boundary conditions?

                 more than 1-D in space?
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What about the PDEs?

Alternative approach: variation of parameters

{#0, $1, $2, &1, &2, '} are real-valued and free
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What about the PDEs?

Alternative approach: variation of parameters

{#0, $1, $2, &1, &2, '} are real-valued and free

Suppose we allow {&1 = &1(x), &2 = &2(x), ' = '(x)}?
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What about the PDEs?

Result:

{&1(x), &2(x), #(x)} are real-valued and arbitrary

{gm(x)} are real-valued, known (in terms of &m(x))

(Function space is arbitrary at this point.)
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More of the same

Allow {$1(x), $2(x), &1(x), &2(x), #(x)}:

This family of (formal) solutions of the PDEs admit 5

arbitrary functions of (x), in any function space.
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The last step (V. Putkaradze)
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What’s left for 3-wave mixing?

• Convergence of the series?

      (Cauchy-Kovalevskaya theory?)

• Constraints on the free functions for blow-up?

• Physical Application?

  

! 

"# (Am ) +
! 
c m $ %Am = i&m Ap

*
Aq

*
,

! 

m, p,q =1,2,3

  

! 

Am (
! 
x ," ) =

#m

#
1
#
2
#
3

$m (
! 
x )e

i% m (
! 
x )

("
0
(
! 
x ) & ")

[1+ iam (
! 
x )("

0
& " )

+{'m (
! 
x ) + ibm (

! 
x )}("

0
& " )2

+{gm (
! 
x ) + i((x)}("

0
& t)

3
+ ...],



Can damping stop blow-up?

With no damping:

Add damping:

Simplest case: uniform damping
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Can damping stop blow-up?

No damping:

(1)

Uniform damping:

(2)

Change variables:

This maps (2) into (1), exactly.
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Damping provides a

threshold for blow-up
4-wave mixing with uniform damping:

If

• {"1, "2, "3, "4} all have the same sign

•

•

Then solutions blow-up in finite time.
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