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9.1 Linear waves

Part 1: Water waves and currents

In the linear approximation, the surface elevation for sinusoidal
unidirectional waves is

ζ(t, x) = a cos θ , θ = kx − ωt + α , (1)

for waves of amplitude a, wavenumber k > 0 and frequency ω. Here α is
an arbitrary constant ensemble parameter. The dispersion relation is

ω = Uk + ω∗ , ω∗2 = gk tanh kH . (2)

Here U is a constant horizontal mean current, g is gravity and H is the
constant mean water depth. The total frequency is decomposed into the
Doppler shift Uk and the intrinsic frequency ω∗, which has two
branches.



9.2 Slowly varying, small amplitude waves

Now suppose that the amplitude, wavenumber, frequency, mean current
and mean depth vary slowly relative to the wave field. Then (1) is
replaced by

ζ(t, x) ∼ a(x , t) cos θ + ν2a
2 cos 2θ + O(a3) , (3)

θ = φ(x , t) + α , k = φx ω = −φt . (4)

The ensemble parameter α is constant, and the coefficient ν2 depends on
ω∗, k,U,H. The equation for conservation of waves is, from (4),

kt + ωx = 0 . (5)

The issue now is to determine how the amplitude, wavenumber,
frequency, mean current and mean depth vary (slowly) in space and time.
The mean current and depth U(x , t),H(x , t) can be decomposed into
background components u(x , t), h(x) and a wave-induced O(a2)
component.



9.3 Averaged Lagrangian

The modulation equations for the wave amplitude, etc. are found using
Whitham’s averaged Lagrangian method. The water wave system
can be obtained from a Lagrangian, which is averaged to give

L̄ =
1

2π

∫ 2π

0

Ldα = L̄(m)(U,B,H, h) + L̄(w)(E∗, ω∗, k,H) , (6)

E∗ =
ga2

2
, k = φx , ω = −φt , U = ψx , B = −ψt . (7)

Mean : L̄(m) = (B − U2

2
)H − gH2

2
+ gHh , (8)

Wave : L̄(w) =
DE∗

2
+

D2k
2E∗2

2g
+ · · · , (9)

D =
ω∗2

gkT
− 1 ,D2 = −9T 4 − 10T 2 + 9

8T 4
,T = tanh kH. (10)



9.4 Modulation equations

The modulation equations are obtained from L̄ by variations of
E∗, φ, ψ,H, to yield the dispersion relation, the wave action equation,
the mean flow and mean momentum equations. To these we add
equation (5) for conservation of waves.

L̄
(w)
E∗ =

D(ω∗, k ,H)

2
+

k2D2E
∗

g
+ · · · = 0 , (11)

At + Fx = 0 , A = L̄(w)
ω , F = −L̄

(w)
k , (12)

Ht + (HV )x = 0 , V = U +
kA

H
, (13)

(HV )t + (HV 2)x + (
gH2

2
)x + Sx = gHhx , (14)

S = k(F − VA) + L̄(w) − HL̄
(w)
H , (15)

kt + ωx = 0 . (16)



9.5 Wave action

These equations are fully nonlinear. A is the wave action density and F
is the wave action flux. In the linearized approximation the dispersion
relation (11) becomes

D(ω∗, k, h) = 0 , ω = ω∗ − ku , ω∗2 = gk tanh kh , (17)

A = Dω∗
E∗

2
=

E∗

ω∗
, F = cgA = (c∗g + u)A , (18)

where c∗g = ∂ω∗/∂k is the intrinsic group velocity. S is the radiation
stress, and in the linearized approximation is

S = (kc∗g + hω∗h)A = (2kc∗g −
ω∗

2
)A . (19)

since for water waves, hω∗h = kc∗g − ω∗/2. The equation for conservation
of waves (16) becomes

kt + cgkx = −kux − ω∗hhx , ωx + cgωx = −kut . (20)

Note that for steady backgrounds the frequency is conserved.



9.6 Waves on a current

Consider a unidirectional steady current u = u(x) with constant depth h.
Then in the linearized approximation , H,U ≈ h, u and equation (16)
becomes

kt + ωx = 0 , ω = uk + ω∗ , ω∗2 = gk tanh kh . (21)

The steady solution is ω = ω0 (a constant), with k(x) then being found
from the dispersion relation (21). The wave amplitude is obtained from
the wave action equation (12), which reduces to

At + (cgA)x = 0 , cg = u + c∗g , A =
E∗

ω∗
(22)

The steady solution has constant wave action flux F0,

2cgA = cgc∗a2 = 2F0 , c∗ =
ω∗

k
. (23)



9.7 Waves on an advancing current

For simplicity, we now make the deep-water approximation kh→∞, so
that ω∗2 = gk, c∗g = c∗/2 . To fix ideas suppose that u(x = 0) = 0, and
at x = 0, the intrinsic phase speed c∗ = c0 > 0. Then the solution of
(21) is

c∗(x) =
c0

2
± {c0u(x) +

c2
0

4
}1/2 . (24)

Here we must initially at x = 0 choose the plus sign. Note that the group
velocity is

cg (x) = u(x) +
c∗

2
= u(x) +

c0

4
± 1

2
{c0u(x) +

c2
0

4
}1/2 . (25)

Thus for an advancing current u(x) > 0, x > 0, we must choose only
the plus sign, and so c∗(x), cg (x) both increase as u(x) increases, while
then k(x) = g/c∗2 decreases. Since cgc∗a2 = 2F0, the wave amplitude
decreases.



9.8 Waves on an opposing current

The solutions (24, 25) are

c∗(x) =
c0

2
± {c0u(x) +

c2
0

4
}1/2 ,

cg (x) = u(x) +
c0

4
± 1

2
{c0u(x) +

c2
0

4
}1/2 .

Hence for an opposing current u(x) < 0, x > 0, there is a stopping
velocity at x = xc , u(xc) = −c0/4, and the waves cannot penetrate past
this point, since cg (xc = 0). Instead the waves reflect, with the minus
sign in (24, 25). Both c∗(x), cg (x) decrease as |u(x)| increases, while
k(x) increases. Since cgc∗a2 = 2F0 = c2

0a2
0, the wave amplitude increases

from the initial value a0, and a2 →∞ as x → xc . Of course, this result is
outside the linear approximation, and in practice the waves will break at
xb < x = xc . Here we use a breaking criterion, ak(x = xb) = 0.44; note
that xb depends on a0, c0.



9.9 Waves on an opposing current: breaking waves

This rather simple theory has applications to the formation of giant
(rogue, freak) waves in the ocean, for example on the Agulhas current.
There also applications to the modulation of water waves by an
underlying internal solitary wave, whose surface current is
u(x) = u0 sech2(Kx) say. To explore these further, we take a wave packet
solution of the wave action equation (22)

cgA = cgc∗a2 = c2
0a2

0b
2(t − τ) , τ =

∫ x

0

dx

cg
. (26)

Here a0b(t) is the wave amplitude at x = 0, and we assume that the
shape function b(t) is localized (e.g. Gaussian), varying from 0 to a
maximum of 1 at t = 0. Then the waves break throughout the zone,
xb < x < xc , over a time interval determine by the width of the packet.



9.10 Waves on an opposing current: breaking zones

Wave steepness ak versus u/c0; a0k0 = 0.1, 0.2 (black, blue); wave
breaking criterion ak = 0.44 (red dash), yields breaking for
|u|/c0 > 0.18, 0.092.



9.11 Waves on an internal wave current

Breaking waves on the internal wave current u = u0sech2(Kx). for
u0/c0 = −0.2,−0.1 (black, blue), where the red lines give the breaking
zones for a0k0 = 0.1, 0.2(upper, lower).



9.12 Waves on a current: nonlinear effects

In deep water, the wave-induced components of U,H are negligble and so
the Lagrangian (6) becomes just (9) given now by

L̄(w) = (
ω∗2

gk
− 1)

E∗

2
− k2E∗2

2g
+ · · · , (27)

where now ω∗ = ω − ku(x). The nonlinear dispersion relation (11)

becomes, from L̄
(w)
E∗ = 0,

ω∗2 = gk + 2k3E∗ + · · · , (28)

Conservation of wave action (12) and conservation of waves (16) again
yield, for a steady solution

F = −L̄
(w)
k = F0 , ω0 = ω∗ + u(x)k , (29)

where F0, ω0 are constants. When combined with (28) these yield two
coupled equations for k ,E∗ in terms of u(x).



9.13 Waves on an opposing current: nonlinear effects

Now the dispersion relation (28) depends on the amplitude,
ω∗ = ω∗(k ,E∗) as well as the wavenumber. Conservation of wave action
flux becomes

WA = F0 ,W = −
L̄

(w)
k

L̄
(w)
ω

= u(x) +
ω∗

2k
+ k2A , (30)

A = L̄(w)
ω =

E∗

ω∗
(1 +

2k2E∗

g
) . (31)

These are combined with (28) and (29),

ω∗2 = gk + 2k3ω∗A , ω0 = ω∗ + u(x)k , (32)

to yield two equations for k ,A in terms of u(x). Note that for an
opposing current u(x) < 0 (x > 0) there is now no stopping velocity, as
W → 0,A→∞ is not allowed.



9.14 Waves on an opposing current: nonlinear effects

Wave steepness ak versus u/c0; a0k0 = 0.1, 0.2, 0.3 (black, blue,red);
wave breaking criterion ak = 0.44 (red dash) yields breaking for |u|/c0 >
0.27, 0.21, 0.13. The dash line is the linear solution for a0k0 = 0.1.



9.15 Waves on a beach: Modulation equations

We recall that the full modulation equations are

At + Fx = 0 , A = L̄(w)
ω , F = −L̄

(w)
k , (33)

Ht + (HV )x = 0 , V = U +
kA

H
, (34)

Vt + VVx + g ζ̄x +
Sx

H
= 0 , (35)

S = k(F − VA) + L̄(w) − HL̄
(w)
H , H = ζ̄ + h(x) , (36)

kt + ωx = 0 , L̄
(w)
E∗ = 0 , (37)

where L̄(w)(ω∗, k ,H,E∗) =
DE∗

2
+

D2k
2E∗2

2g
+ · · · , (38)

and D(ω∗, k,H) =
ω∗2

gk tanh kH
− 1 , ω∗ = ω − Uk . (39)

The mean momentum equation (35) has been rewritten.



9.16 Waves on a beach: wave set-up

Suppose that h = h(x)→ 0 as x → 0, and that there is no background
current. Then the steady solution (∂/∂t = 0) of these modulation
equations yields the dispersion relation (37, 39), constant frequency
ω = ω0, and constant wave action flux and zero mass transport,

−L̄
(w)
k = F0 , V = U +

kA

H
= 0 , ω∗ = ω0 − Uk . (40)

Thus there is a mean Eulerian flow U = −kA/H, opposing the
Stokes drift due to the waves. The mean momentum equation (35)
then yields the wave set-up ζ̄,

gH ζ̄x + Sx = 0 , S = kF0 + L̄(w) − HL̄
(w)
H . (41)

From (40), S as known in terms of H, and so

g ζ̄ = −
∫ H SH

H
dH . (42)



9.17 Waves on a beach: wave set-up in linear theory

To illustrate, first make the small amplitude approximation. Then
ω∗ ≈ ω0, so that the dispersion relation becomes ω2

0 = gk tanh kh and
yields k = k(h). The constant wave action flux condition reduces to

cga2 = cg0a
2
0 , (43)

where the subscript ”0” indicates the values at the depth h = h0

offshore. The expression (42) becomes

ζ̄ = − ka2

2 sinh 2kh
, (44)

where ζ̄0 = 0. This is always negative, and so is a set-down. In shallow
water as kh→ 0, cg ≈ (gh)1/2, and

k

k0
≈ (

h0

h
)1/2 ,

a

a0
≈ (

h0

h
)1/4 , ζ̄ ≈ − a2

4h
(
a2
0h

1/2
0

4h3/2
) . (45)



9.18 Waves on a beach: nonlinear effects

Since this small-amplitude theory predicts infinite amplitudes as h→ 0,
we must consider nonlinear effects. One option is to impose an empirical
wave-beaking condition a/h = 0.44, which defines the depth h = hb,
beyond which there is a surf zone. Here, we shall examine nonlinear
effects in h > hb in the shallow water approximation kH → 0. Then the
Lagrangian (38) becomes

L̄(w) ≈ DE∗

2
− 9E∗2

16gk2H4
, D ≈ ω∗2

gHk2
(1 +

k2H2

3
)− 1 . (46)

It is apparent that this can only be valid when ak << k3H3, that is for a
very small Stokes number. Using the linear shallow water expressions
we require that S0 = a0/k

2
0h3

0 << (h/h0)9/4, which must fail as h→ 0.
Hence, we infer that in shallow water we need to use a new theory, valid
for Stokes number of order unity, that is the Korteweg-de Vries model.



9.19 Waves on a beach: Korteweg-de Vries model

The Korteweg-de Vries (KdV) equation for weakly nonlinear long water
waves, propagating on a constant undisturbed mean depth H, is given by

ζt + c0ζx +
3c0

2H
ζζx +

c0H
2

6
ζxxx = 0 , c0 = (gH)1/2 . (47)

The KdV balance has linear dispersion, represented by H3ζxxx , balanced
by nonlinearity, represented by ζζx . To leading order, the waves propagate
unchanged in form with the linear long wave speed c0 = (gH)1/2.
Nonlinearity leads to wave steepening, opposed by wave dispersion,
resulting in the KdV balance and the well-known solitary wave

ζ = as sech2κ(x − ct) ,
c

c0
− 1 =

as

2H
=

2κ2H2

3
. (48)



9.20 Waves on a beach: cnoidal waves

The periodic wave solution of the KdV equation (47) is

ζ = 2a{b(m) + cn2(γθ); m)} , ω = −θt , k = −θx , (49)

b =
1−m

m
− E (m)

mK (m)
,

a

H
=

2

3
mγ2(kH)2 , γ =

K (m)

π
, (50)

and c =
ω

k
= c0{1 +

a

H
[
2−m

m
− 3E (m)

mK (m)
]} , (51)

Here cn(x ; m) is the elliptic function of modulus m where 0 < m < 1,
and K (m),E (m) are elliptic integrals of the first and second kind. The
amplitude is a and the mean value is 0. As m→ 1, this becomes a
solitary wave, since then b → 0 and cn2(x)→ sech2(x). As m→ 0,
γ → 1/2, and it reduces to sinusoidal waves of small amplitude a ∼ m.
This cnoidal wave (49) contains two free parameters; we take these to be
the amplitude a and the wavenumber k .



9.21 Waves on a beach: modulated cnoidal waves

We now use the cnoidal wave expression (49) to evaluate the averaged
Lagrangian (6), incorporating a mean current U,

L̄(w) = (
c∗2

gH
− 1)G (m)

E∗

2
+ · · · , E∗ =

ga2

2
, (52)

where G (m) = 8(< cn4(γθ; m) > − b2) , (53)

or G (m) =
8(EK (4− 2m)− 3E 2 − K 2(1−m))

3K 2m2
. (54)

To leading order the phase speed c∗ = W = (gH)1/2, while the wave
action density, wave action flux and radiation stress now become, to
leading order,

A = L̄(w)
ω =

G (m)E∗

ω∗
, F = −L̄

(w)
k = (U + c∗)A , (55)

S =
3ω∗A

2
=

3G (m)E∗

2
. (56)



9.22 Waves on a beach: steady case

As before, we now seek the steady solutions, that is ∂/∂t = 0, so that
again ω = ω0 is the constant wave frequency, so that to leading order

kh1/2 = k0h
1/2
0 is constant. Next F = F0 is the constant wave action

flux, implying that, to leading order in wave amplitude,

h1/2G (m)a2 = constant , (57)

Then using the expression (50) we find that a ∝ mK 2k2h3 and so finally
we get that

G̃ (m) = K 4m2G (m) = constant h−9/2 . (58)

As m→ 0, G ∝ 1, G̃ ∝ m2, and so m ∝ h−9/4, a ∝ h−1/4 which is the
linear Green’s law result. But, as m→ 1, G ∝ K−1, G̃ ∝ K 3, a ∝ h−1.



9.23 Waves on a beach: cnoidal wave modulus

As h decreases, E (m) increases and m→ 1. As the waves progress
shorewards they become solitary waves, whose amplitude a ∝ h−1. But
for small-amplitude sinusoidal waves m→ 0, E (m) ∝ m2 and a ∝ h−1/4.



9.24 Waves on a beach: cnoidal wave amplitude

The wave amplitude is determined from (57, 58). The plots are for an
initial modulus m0 = 0.1, 0.5 (black, blue), while the linear solution
ζ ∝ h−1/4 is the red curve.



9.25 Waves on a beach: cnoidal wave set-up

Wave set-up is found from (35, 56) and is given by

g ζ̄ = −Sx

h
, S =

3ωA

2
=

3G (m)E∗

2
. (59)

But since the wave frequency ω = kc0, c0 = (gh)1/2 and the wave action
flux c0A are conserved (see (57)), we readily find that

ζ̄ = −a2G (m)

4h
= −a2

0h
1/2
0 G (m0)

4h3/2
, (60)

This is just the linear law again, and is independent of how the wave
amplitude varies. Note that for a0/h0 << 1,m0 ≈ 0 , G (m0) ≈ 1.
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