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Lecture 7: Solitary Waves

The basic paradigms for nonlinear waves, at least for small amplitudes, is
the central role played by model equations, such as the KdV equation
and the NLS equation . In turn, the solution of these equations are often
controlled by their soliton solutions. This suggests that even in the full
system from which these model equations are derived, solitary waves
will be of great importance. Here we will indicate how small-amplitude
solitary waves can be found by an asymptotic perturbation procedure
directly from the full system, rather than from a model equation.

Because solitary waves are required to decay in their tail regions, some
information about their possible existence or otherwise can often be
obtained by an examination of these tail regions, where, except in certain
exceptional cases, a linearized analysis is applicable. One-dimensional
steady solitary waves, propagating in the x-direction with speed c are
functions of ξ = x − ct, together with a set of other spatial transverse
variables which define the modal structure. For instance, for surface or
internal solitary waves, the dependence is on ξ and z (x is horizontal and
z is vertical), and there is no dependence on the remaining horizontal
variable y .



7.1 Linear spectrum

In the tail region, where we assume that a linearized analysis holds, we
seek solutions proportional to

Re {exp (ik(x − ct))} . (1)

The linearized equations will then yield the linear dispersion relation

c = c(k) , (2)

written here for the phase speed c rather than the frequency ω = ck .
Whereas usually this dispersion relation (which may have several
branches) is considered as an equation for c given a real wavenumber k,
for solitary wave tails it needs to be considered as an equation for a
complex-valued k given a real speed c . Indeed, it is immediately clear
that if there exist real-valued solutions of (2) for the given value of c ,
then it is unlikely that the solitary wave can decay to zero in its tail
region. Instead, it will probably be accompanied by a non-decaying
co-propagating oscillatory wave field. This consideration leads to the
notion that solitary waves generally can only exist in the gaps in the
linear spectrum.



7.2 Linear spectrum: water waves

For instance, for water waves, the dispersion relation is

c2

gh
=

(1 + Bq2)

q
tanh q , q = kh , (3)

where the Bond number B = Σ/gh2 and ρΣ is the coefficient of surface
tension (ρ is density), and has a value of 74 dynes/cm at 20oC .

It may then be shown that solitary waves of the KdV type can exist only
when either B = 0, c2 > gh or when B > 1/3, c2 < gh with a bifurcation
from wavenumber zero (k = 0) and c2 = gh in both cases.

Otherwise when 0 < B < 1/3 solitary waves can exist for |c | < cm where
c2
m is the minimum value that c2 can take in (3) as q takes all real values

(in deep water, |q| → ∞, c2
m = 2(gΣ)1/2 and occurs at

|k | = km = (gΣ)1/2). These solitary waves bifurcate at a finite
wavenumber km and from the speed cm, and have decaying oscillations in
their tail regions. They are envelope solitary waves, of a quite different
kind from the afore-mentioned KdV-type solitary waves, and closely
related to the NLS equation.



7.3 Linear spectrum: water waves

Plot of the water wave dispersion relation (3) for B = 0 (violet), B = 0.2
(red), B = 0.4 (blue).



7.4 Reformulation as a dynamical system

This approach has recently been developed into the basis of a rigorous
approach to finding solitary waves, often called the “dynamical-systems”
method . Since here we are considering only solitary waves which occur
in conservative systems, which is the common and traditional scenario
for solitary waves, we shall suppose that the underlying physical system is
Hamiltonian (that is, energy-conserving) and reversible (that is, there
is a symmetry under the transformation ξ → −ξ). In this case it can be
shown the the solutions k of the dispersion relation (2) for each real
value of c have the property that −k and k∗ (complex conjugate) are
also solutions. It follows that generically the solutions form a quartet
(k, k∗,−k ,−k∗), with an associated four-dimensional subspace for the
corresponding wave mode. For solitary waves we require solutions with
Im(k) > 0(< 0) when ξ →∞(→ −∞), in order to ensure that the
solution decays to zero in its tail region. In the general case when
Im(k) 6= 0 we see that there are generically two such roots available as
ξ →∞ and, due to the reversible symmetry, two other roots available as
ξ → −∞. Thus, for the corresponding wave mode, as ξ →∞ two
boundary conditions are needed at each of ±∞. This count is consistent
with the existence of a solitary wave solution, which from this dynamical
systems point of view, is a homoclinic orbit.



7.5 Reformulation as a dynamical system

Next, consider how this quartet structure may change as some system
parameter is varied. Bifurcations arise when two solutions for k coalesce,
for which the necessary condition is that ∂c/∂k = 0 simultaneously with
the dispersion relation (2). When this occurs at a real value of k, it is
equivalent to the condition that c = cg where

cg = dω/dk = c + k dc/dk

is the group velocity. Generically, there are four possibilities:

(1) (0, 0, iγ,−iγ) where γ > 0 is real-valued .

(2) (0, 0, β,−β) where β > 0 is real-valued .

(3) (β, β,−β,−β) where β > 0 is real-valued .

(4) (iγ, iγ,−iγ,−iγ) where γ > 0 is real-valued .

Case (1) corresponds to a KdV-type solitary wave, and case (3)
corresponds to an envelope (NLS) solitary wave. Case (2) corresponds to
a so-called generalized solitary wave, which does not decay at infinity, but
instead is accompanied there be small-amplitude co-propagating
oscillations. Case (4) has only rarely been studied and corresponds to a
transition from a KdV-type solitary wave to an envelope solitary wave.



7.6 Reformulation as a dynamical system

The full system is now projected onto the appropriate four-dimensional
subspace, and the resulting bifurcation analyzed within the framework of
this subspace. Of course, rigorous results require a delicate and
sophisticated justification of this process. Here we shall instead briefly
describe the structure of the subspace, which we suppose is represented
by the 4-vector W(ξ). It satisfies an equation of the form

Wξ = L(W; ε) + N(W) . (4)

Here L(W; ε) is a linear operator and N(W) contains all the nonlinear
terms. The bifurcation parameter is ε, and is such that the spectrum of L
at ε = 0 reproduces one of the cases (1) to (4) describe above. That is,
the eigenvalues λ = ik of the linear operator L(W; 0) are respectively :

(1) (0, 0,−γ, γ) .

(2) (0, 0, iβ,−iβ) .

(3) (iβ, iβ,−iβ,−iβ)

(4) (−γ,−γ, γ, γ) .



7.7 Case (1)

Let us first consider case (1). At the bifurcation point (ε = 0) the
linearized system (4) has a double-zero eigenvalue, and generically there
is a corresponding single eigenvector V0, and a single generalized
eigenvector V1. Small-amplitude solutions are then sought in the form

W = A(ξ)V0 + B(ξ)V1 + W(2) . (5)

Here A,B are real variables of O(α), α << 1, where α measures wave
amplitude. The leading terms form a two-dimensional subspace (A,B),
while W(2) is a small error term of O(α2, αε), where ε, α << 1 are both
small parameters. Note that the two remaining eigenvalues ∓γ play no
role at the leading order here, since they correspond to strong
exponential decay at infinity, and their effects are included in the small
error term W(2).



7.8 Case (1)

Projection onto the two-dimensional subspace and a normal form analysis
then reveals that (A,B) satisfy the system

Aξ = B ,

Bξ = εA + µA2 + · · · , (6)

where µ is a real-valued coefficient, specific to the system being
considered, and the omitted terms are O(αε2, α2ε, α3). The coefficient ε
yields the perturbed eigenvalues ±ε1/2 for ε > 0, and ±i |ε|1/2 for ε < 0;
the former case yields the solitary wave solution. Comparison with the
dispersion relation (2) leads to the identification of ε as

ε = −2(c − c(0))

ckk(0)
. (7)

It follows that for solitary waves, c > (<)c(0) according as
ckk(0) < (>)0, as expected. When the error terms in (6) are omitted, the
resulting system can be recognised as the steady-state KdV equation,
and has the well-known “sech2” solution. It is then a delicate and
intricate task to establish that this solitary wave solution persists when
the error terms are restored.



7.9 Case (2)

Next consider case (2). At the bifurcation point (ε = 0) the linearized
system (4) again has a double-zero eigenvalue, with a corresponding
single eigenvector V0, and a single generalized eigenvector V1. However,
account must now be taken of the other two eigenvalues ±iβ, with their
associated eigenvectors V2,V∗

2 , since they do not now lead to decaying
solutions at infinity. Small-amplitude solutions are sought in the form

W = A(ξ)V0 + B(ξ)V1 + C (ξ)V2 + C∗(ξ)V∗
2 + W(2) . (8)

Here C is a complex-valued variable, and the leading terms form a
four-dimensional subspace (A,B,C ), while W(2) is again a small error
term. Projection onto this four-dimensional subspace, and a normal form
analysis reveals that (A,B,C ) satisfy the system

Aξ = B ,

Bξ = εA + µA2 + ν|C |2 · · · ,
Cξ = iγ(1 + δA)C + · · · . (9)

Here µ, ν, δ are real-valued coefficients specific to the system being
considered, and the omitted terms are small error terms as above.



7.10 Case (2)

When the error terms are omitted the system is integrable. Indeed in that
limit, |C | = C0 is a constant, and after a change of origin, the system
reduces to the same form as (6) in case (1). Thus, for the case ε > 0
(when case (1) is a KdV-type solitary wave), the solution is a
one-parameter family of homoclinic-to-periodic solutions, with |C | = C0

constant and (A,B)→ (A0, ) as ξ → ±∞ where A0 is a real constant,
given by εA0 + µA2

0 + νC 2
0 = 0. The solution is a generalized solitary

wave which typically has a “sech2” core, and decays at infinity to
non-zero oscillations of constant amplitude C0 and wavenumber γ.
A delicate analysis of the full system (4) with the the small error terms
shows that at least two of these solutions persist; the minimal amplitude
C0 being exponentially small, that is O(exp (−K/|ε|1/2)) where K is a
positive real constant. Although such waves are permissible as solutions
of the steady-state equations, they have infinite energy and their
associated group velocity is inevitably inward at one end and outward at
the other end. Hence, they cannot be realised in a physical system from
any localized initial condition. Instead localized initial conditions will
typically generate a one-sided generalized solitary wave, whose central
core is accompanied by small-amplitude outgoing waves on one side only.
Such waves cannot be steady, and instead will slowly decay with time.



7.11 Generalized solitary wave



7.12 Case (3)

Finally we consider case (3), when there is a double eigenvalue λ = iβ
with generically a corresponding single eigenvector V0, and a single
generalized eigenvector V1, while the complex conjugate double
eigenvalue λ = −iβ has corresponding complex conjugate eigenvectors.
Small-amplitude solutions are now sought in the form

W = A(ξ)V0 + B(ξ)V1 + A∗(ξ)V∗
0 + B∗(ξ)V∗

1 + W(2) . (10)

Here A,B are complex-valued variables, forming a four-dimensional
subspace while W(2) is again a small error term. Projection onto this
subspace and a normal form analysis reveals that

Aξ = iβA + B + iAP(ε, |A|2,K ) + · · · ,
Bξ = iβB + iBP(ε, |A|2,K ) + AQ(ε, |A|2,K ) + · · · . (11)

where K = i(AB∗ − A∗B) , (12)

Here P,Q are real-valued polynomials of degree 1, that is we may write

P(ε, |A|2,K ) = ε+ ν1|A|2 + ν2K ,

Q(ε, |A|2,K ) = 2εβ + µ1|A|2 + µ2K (13)

where all coefficients are real-valued.



7.13 Case (3)

Aξ = iβA + B + iAP(ε, |A|2,K ) ,

Bξ = iβB + iBP(ε, |A|2,K ) + AQ(ε, |A|2,K ) .

where K = i(AB∗ − A∗B) ,

This truncated system, which has the error terms omitted, is integrable.
There are two integrals, K ,H both constants, where

H = |B|2 − (2εβ|A|2 +
µ1

2
|A|4 + µ2K |A|2) . (14)

For a solitary wave solution we must have K = H = 0 and it then follows
that

|A|2ξ = 2εβ|A|2 +
µ1

2
|A|4 . (15)

Thus solitary wave solutions exist provided that ε > 0, and that the
nonlinear coefficient µ1 < 0. The condition ε > 0 implies that the
perturbed eigenvalues, λ ≈ iβ + (2εβ)1/2 have split off the imaginary
axis, and so provide the conditions needed for exponential decay at
infinity; the condition µ1 < 0 depends on the particular physical system
being considered.



7.14 case (3)

The solution of the truncated system is

A = a exp (i [β + ε]ξ)sech(γξ) , where γ = (2εβ)1/2 , |a|2 = −4εβ

µ1
. (16)

This solution describes an envelope solitary wave , with a carrier
wavenumber β + ε and an envelope described by the “sech”-function.
These solitary waves can also be obtained from the soliton solutions of
the NLS equation , for that special case when the phase velocity equals
the group velocity, c = cg , or more precisely when c + Ω/K = cg + V ,
where V is the soliton speed and Ω,K are the frequency and
wavenumber corrections. Note that the solution (16) contains an
arbitrary phase in the complex amplitude a, meaning that the location of
the crests of the carrier wave vis-a-vis the maximum of the envelope
(here located at ξ = 0) is arbitrary. However, restoration of the error
terms leads to the result that only two of these solutions persist,
namely, those for which a carrier wave crest or trough is placed exactly at
ξ = 0, so that the resulting solitary wave is either one of elevation or
depression. This result requires very delicate analysis, but could be
anticipated by noting that these are the only two solutions which persist
under the symmetry transformation ξ → −ξ.



7.15 Water Waves

For water waves, for which the dispersion relation is (3), these two cases
(1) and (2) imply that pure solitary waves of elevation exist for B = 0,
and of depression for B > 1/3, while generalized solitary waves arise
whenever 0 < B < 1/3.

For the case of generalized solitary waves, there is always the possibility
that the amplitude of the oscillations is zero, and the solution then
reduces to a pure solitary, called an “embedded” solitary wave. There
are now many examples of such embedded solitary waves arising in
various physical systems, notably for internal waves, but from various
numerical and analytical studies, it would seem that they do not arise in
the water wave context. This “dynamical-systems” approach to finding
solitary waves has also been applied to interfacial waves, where again the
linear dispersion relation holds the key to where solitary waves can be
found.

Concerning case (3) the conditions are met for capillary -gravity waves
with 0 < B < 1/3, where it can be shown that the coefficient µ1 < 0 as
required. Hence we find envelope solitary waves.
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