
Nonlinear Waves:
Woods Hole GFD Program 2009

Roger Grimshaw

Loughborough University, UK

June 22, 2009



Lecture 6: Transcritical flow over an obstacle

A tidal bore on the Dordogne river in France.



Internal Solitary Waves in the Atmosphere

An atmospheric undular bore in Northern Australia:
the “Morning Glory”.



Internal Solitary Waves in the Ocean



6.1: Shallow water flow over an obstacle

Consider one-dimensional shallow-water flow past topography. The flow
variables are the total local depth H = ζ + h − F (x) and the
depth-averaged horizontal velocity V . Here ζ is the surface elevation
above the undisturbed depth h and the bottom is located at
z = −h + F (x) where F (x) is the obstacle. Then the fully nonlinear
shallow water equations for conservation of mass and momentum are

ζt + (HV )x = 0, (1)

Vt + VVx + gζx = − (H2D2H)x

3H
− (H2D2F )x

2H
− FxD

2(ζ + F )

2
, (2)

where D =
∂

∂t
+ V

∂

∂x
.

Equation (1) is exact, but equation (2) is a long-wave approximation; the
terms on the right-hand side are the leading order effects of wave
dispersion. They form the Su-Gardner equations (also known as the
Green-Naghdi equations).



6.2: Linearized shallow water theory

If the Su-Gardner equations are linearized about the constant state U, h,
that is V = U + u, |u| << V , |ζ| << h, and also the dispersive terms are
omitted, they reduce to the forced linear wave equation

D2
l ζ − c2ζxx = U2Fxx , Dl =

∂

∂t
+ U

∂

∂x
, c =

√
gh . (3)

Here c is the linear long-wave speed, and a key parameter is the Froude
number Fr = U/c. Provided that Fr 6= 1, this initial-value problem is
easily solved, and as t →∞, we get the steady solution

ζ =
U2

U2 − c2
F (x) , (4)

describing a stationary depression (elevation) over the obstacle for
subcritical (supercritical ) flow, that is Fr < (>)1. But clearly this
solution fails when Fr ≈ 1 and then it is necessary to invoke weak
nonlinearity and weak dispersion. The outcome is then the forced
Korteweg-de Vries equation.



6.3: Forced Korteweg de Vries equation

For water waves this is, in nondimensional form based on a length scale h
and a velocity scale c ,

−ζt −∆ζx +
3

2
ζζx +

1

6
ζxxx +

1

2
Fx = 0 . (5)

Here ∆ = Fr − 1 measures the degree of criticality, subcritical for
∆ < 0 or supercritical for ∆ > 0. The equation describes the usual
KdV balance between nonlinearity, dispersion and time evolution,
supplemented here by forcing and criticality. Note that the scaling
requires that the response ζ scales with

√
F and with the detuning ∆,

typical of resonantly forced systems. In canonical form, the fKdV
equation is

−At −∆Ax + 6AAx + Axxx + Fx(x) = 0 . (6)

That is, ζ = 2A/3,∆ = ∆̃/6, t = 6t̃,F = 2F̃/9, and then omit “tilde”.
The forcing function is localized at x = 0 with a maximum height of
FM > 0, and is typically of a “Gaussian” shape.



6.4: fKdV equation, localized forcing, critical case

A typical solution of the fKdV equation (6) in canonical form at exact
criticality ∆ = 0. The forcing (not shown in the plot) is located at x = 0
and has a maximum height of FM = 1.



6.5: fKdV equation, localized forcing, subcritical case

A typical solution of the fKdV equation (6) in canonical form for a
subcritical case, ∆ = −1.5. The forcing (not shown in the plot) is
located at x = 0 and has a maximum height of FM = 1.



6.6: fKdV equation, localized forcing, supercritical case

A typical solution of the fKdV equation (6) in canonical form for a
supercritical case ∆ = 1.5. The forcing (not shown in the plot) is located
at x = 0 and has a maximum height of FM = 1.



6.7: Asymptotic analysis for localized forcing

The origin of the upstream and downstream wavetrains can be found in
the structure of the locally steady solution over the obstacle. In the
transcritical regime this local steady solution is characterised by a
transition from a constant elevation A− > 0 upstream (x < 0) of the
obstacle to a constant depression A+ < 0 downstream (x > 0) of the
obstacle, independently of the details of the localized forcing term F (x).
Explicit determination of A+ and A− requires some knowledge of the
forcing term F (x). However, in the dispersionless, or “hydraulic”, limit
when the linear dispersive term in (6) can be neglected, it is readily
shown that, for all localised F (x), with a maximum height FM > 0,

6A± = ∆∓ (12FM)1/2 . (7)

This expression also serves to define the transcritical regime, which is

|∆| < (12FM)1/2 . (8)

Thus upstream of the obstacle there is a transition from the zero state to
A−, while downstream the transition is from A+ to 0; each transition is
effectively generated at the obstacle, x = 0. Both transitions are resolved
by undular bores .



6.8: Undular bore

A simple representation of an undular bore can be obtained from the
solution of the KdV equation, in canonical form

At + 6AAx + Axxx = 0 . (9)

with the initial condition of a step, A = A0H(−x) with A0 > 0; H(x) is
the Heaviside function. An asymptotic solution can be found using
Whitham’s modulation theory. The asymptotic solution of (9) with this
initial condition is represented as the modulated periodic wave train

A = a{b(m) + cn2(κ(x − Vt); m)}+ d , (10)

where b(m) =
1−m

m
− E (m)

mK (m)
, a = 2mκ2 ,

and V = 6d + 2a

{
2−m

m
− 3E (m)

mK (m)

}
. (11)

Here cn(x ; m) is the Jacobian elliptic function of modulus m, 0 < m < 1.
As m→ 1, cn(x ; m)→ sech(x) and then (10) is a solitary wave, riding
on a background level d . As m→ 0, a→ 0, cn(x ; m)→ cos x and so
(10) collapses to a linear sinusoidal wave.



6.9: Undular bore

This family of solutions contains three free parameters, which are chosen
from the set (a, κ,V , d ,m). In Whitham’s modulation theory, these
parameters are all allowed to be slowly varying functions of x , t. The
equations for these modulations are found by averaging conservation laws
for the KdV equation (9). The outcome is a set of three nonlinear
hyperbolic equations for three of the available free parameters, or rather
better, from an appropriate combinations of them. The relevant
asymptotic solution corresponding to the “step” initial condition is then
constructed in terms of the similarity variable x/t, and is given by

x

A0t
= 2

{
1 + m − 2m(1−m)K (m)

E (m)− (1−m)K (m)

}
, −6 <

x

A0t
< 4 ,(12)

a = 2A0m , d = A0

{
m − 1 +

2E (m)

K (m)

}
. (13)

Ahead of the wavetrain, x/t > 4A0, A = 0, m→ 1, a→ 2A0 and d → 0;
the leading wave is a solitary wave of amplitude 2A0. Behind the
wavetrain x/t < −6A0, A = A0, m→ 0, a→ 0, and d → A0. On any
individual crest in the wavetrain, m→ 1 as t →∞, and so, in this sense,
the undular bore evolves into a train of solitary waves.



6.10: Undular bore

A plot of the undular bore given by (12, 13) for A0 = 1, t = 5:
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If A0 < 0 in the initial condition (10), then an “undular bore” solution
analogous to that described by (12, 13) does not exist. Instead, the
asymptotic solution is a rarefraction wave,

A = 0 for x > 0 ,

A =
x

6t
for A0 <

x

6t
< 0 ,

A = A0 , for
x

6t
< A0(< 0) . (14)

Small oscillatory wavetrains are needed to smooth out the discontinuities
in Ax at x = 0 and x = −6A0.



6.11: Asymptotic analysis for localized forcing, upstream

We now return to the asymptotic solution of the fKdV equation, and
resolve the upstream and downstream transitions by these “undular-bore”
asymptotic solutions. That in x < 0 occupies the zone

∆− 4A− <
x

t
< max{0, ∆ + 6A } . (15)

Note that this upstream wavetrain is constrained to lie in x < 0, and
hence is only fully realised if ∆ < −6A−. Combining this criterion with
(7) and (8) defines the regime

−(12FM)1/2 < ∆ < −1

2
(12FM)1/2 , (16)

where a fully developed undular bore solution can develop
upstream. On the other hand, the regime ∆ > −6A− or

−1

2
(12FM)1/2 < ∆ < (12FM)1/2 , (17)

is where the upstream undular bore is only partially formed, and is
attached to the obstacle. In this case the modulus m varies from 1 at
the leading edge (a solitary wave) to a value m− (< 1) at the obstacle,
where m− can be found from (12) by replacing x with ∆t, A0 with A−.



6.12: Asymptotic analysis for localized forcing, downstream

The “undular-bore” aysmptotic solution in x > 0 occupies the zone

max {0, ∆− 2A+} <
x

t
< ∆− 12A+ . (18)

The downstream wavetrain is constrained to lie in x > 0, and hence is
only fully realised if ∆ > 2A+. Combining this criterion with (7) and (8)
defines the regime (17), and so a fully detached downstream undular
bore coincides with the case when the upstream undular bore is
attached to the obstacle. On the other hand, in the regime (16), when
the upstream undular bore is detached from the obstacle, the
downstream undular bore is attached to the obstacle, with a
modulus m+(< 1) at the obstacle, where m+ can be founding from (12)
by replacing x with ∆− 6A+, A0 with −A+. Indeed, now a stationary lee
wavetrain develops just behind the obstacle.
For the case when the obstacle has negative polarity (that is F (x) is
negative, and non-zero only in the vicinity of x = 0), the upstream and
downstream solutions are qualitatively similar. However, the solution in
the vicinity of the obstacle remains transient, and this causes a
modulation of the “undular bore” solutions.



6.13: Localized negative forcing

Numerical simulation of the fKdV equation (5) (water wave case) for
localized negative forcing, FM = −0.1 and ∆ = 0.0.



6.14: fKdV equation, step forcing, ∆ = 0.0

Next the localized obstacle is replaced by a step (Zhang & Chwang
2001, Grimshaw, Zhang & Chow 2007, 2009),

F (x) =
FM

2
(tanh γx − tanh γ(x − L)) , (19)

that is, a step up FM > 0 at x = 0 and a step down at x = L >> 1.
Numerical simulation of the fKdV equation (5) (water wave case) at
exact criticality ∆ = 0 for FM = 0.1, γ = 0.25, L = 50,
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6.15: fKdV equation, step forcing, ∆ = 0.2, ∆ = −0.2
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6.16: Euler equations, step forcing Fr = 1, ∆ = 0
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6.17: Euler equations, step forcing, ∆ = 0.2, ∆ = −0.2
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6.18: fKdV equation, asymptotic analysis for step forcing

Consider positive and negative steps, where

F (x) = 0 , for x < 0 ,

F (x) = FM , for x > W , (20)

and F (x) varies monotonically in 0 < x < W . A positive (negative) step
has FM > 0(< 0). Strictly F (x) should return to zero for some L >> W .
For this analysis we ignore this, and in effect assume that L→∞. It
means that the asymptotic solutions constructed below are only valid for
some limited time, determined by how long it takes for a disturbance to
travel the distance L.
We shall sketch how the asymptotic solution for the localized forcing
described above becomes modified for a step. Thus, in the forcing region,
A = A(x), 0 < x < W , while otherwise

A = A− for x → −∞ , (21)

A = A+ for x →∞ . (22)



6.19: fKdV equation, asymptotic analysis for step forcing

Omitting the dispersive term in (6) it is readily found that

−∆A + 3A2 + F = C , (23)

or 6A = ∆± (∆2 + 12C − 12F )1/2 (24)

There are thus two branches. Application of the limits (21, 22) yields

C = −∆A− + 3A2
− = −∆A+ + 3A2

+ + FM , (25)

The system is closed by determining the constant C from the long-time
limit of the unsteady hydraulic solution. That is, we omit the linear
dispersive term in (6) and write the resulting nonlinear hyperbolic
equation in the characteristic form

dx

dt
= ∆− 6A ,

dA

dt
= Fx(x) . (26)

with the initial condition that A = 0 at t = 0. It follows that all
characteristics have an initial slope ∆ which then decreases. The key
issue is whether the characteristics reach a turning point, where ∆ = 6A.



6.20: fKdV equation, positive step FM > 0

For ∆ ≤ 0, all characteristics have a negative slope, and there are no
turning points; in this case, clearly A+ = 0,C = FM and the upper
branch must be chosen in (24). Similarly, for ∆ > (12FM)1/2, there are
no turning points, and all characteristics have a positive slope; in this
case A− = 0,C = 0 and the lower branch is chosen. But, for
0 < ∆ < (12FM)1/2, characteristics emerging from the step at
F = F0, 0 < 12F0 < 12FM −∆2 have a turning point and then go
upstream into x < 0, while those with 12FM −∆2 < F0 < 12FM pass
over the step and go downstream into x > W ; it follows that
12C = 12FM −∆2, and that 6A+ = ∆, while A− is then obtained from
the upper branch of (24). In summary, the outcome is,

∆ ≤ 0 : 6A− = ∆ + (∆2 + 12FM)1/2 , 6A+ = 0 ,(27)

0 < ∆ < (12FM)1/2 : 6A− = ∆ + (12FM)1/2 , 6A+ = ∆ , (28)

∆ > (12FM)1/2 : 6A− = 0 , 6A+ = ∆− (∆2 − 12FM)1/2 .(29)

Upstream A− > 0 and an undular bore forms. Downstream A+ > 0
(in (27) A+ = 0), and an undular bore is not needed. Instead the
solution is terminated by a rarefraction wave .



6.21: fKdV equation, positive step FM > 0

In all cases, the upstream solution A− > 0 is a “jump” in the
hydraulic limit (in (29) it has zero strength), which needs to be resolved
by an undular bore, given by

∆− x

t
= 2A−

{
1 + m − 2m(1−m)K (m)

E (m)− (1−m)K (m)

}
, (30)

for ∆− 4A− <
x

t
< max{0,∆ + 6A−} , (31)

a = 2A−m , d = A−

{
m − 1 +

2E (m)

K (m)

}
. (32)

For a fully detached undular bore, ∆ + 6A− < 0, and combining this
criterion with (27, 28, 29), we get the regime

∆ < −2(FM)1/2 < 0 . (33)

On the other hand the regime where ∆ + 6A− > 0 but ∆− 4A− < 0, or

−2(FM)1/2 < ∆ < (12FM)1/2 , (34)

is where the upstream undular bore is only partially formed and is
attached to the obstacle.



6.22: fKdV equation, negative step FM < 0

In this case, the analogous procedure yields C = 0,−∆2/12,FM

respectively, and so

∆ ≥ 0 : 6A− = 0 , 6A+ = ∆− (∆2 − 12FM)1/2 ,(35)

−(|12FM |)1/2 < ∆ < 0 : 6A− = ∆ , 6A+ = ∆− (|12FM )1/2 , (36)

∆ < −([12FM ])1/2 : 6A− = ∆ + (∆2 + 12FM)1/2 , 6A+ = 0 .(37)

In all cases the downstream solution A+ < 0 is a jump, and needs to
be resolved by an undular bore, occupying the zone

max {0, ∆− 2A+} <
x −W

t
< ∆− 12A+ . (38)

where A+ is given by (35, 36, 37). For a fully detached (partially
attached) undular bore, ∆− 2A+ > 0(< 0), and combining with the
criteria (35, 36, 37) we get the regimes

∆ > −(−3FM)1/2 , or −(−12FM)1/2 < ∆ < −(−3FM)1/2 < 0 . (39)

For ∆ < −(−12FM)1/2 a stationary lee-wave train forms downstream.
For ∆ < 0 the upstream solution, A− < 0, is terminated by a
rarefraction wave. For ∆ > 0 the upstream solution is zero.



6.23: Comparison between Euler and fKdV equations

A quantitative comparison of the results from the fKdV equation (5) and
the Euler equations. A−(A+) is the elevation just upstream (downstream)
of the positive (negative) step at x = 0(50) respectively, and Aw−(Aw+)
is the amplitude of the leading wave in the corresponding undular bore

                    fKdV                Theory
   Δ Aw- A- Aw+ A+ Aw- A- Aw+ A+

0.2 0.83 0.44 0.31 -0.16 0.80 0.40 0.32 -0.16
0.1 0.66 0.38 0.39 -0.20 0.66 0.33 0.40 -0.20
0.0 0.50 0.30 0.51 -0.26 0.52 0.26 0.52 -0.26
-0.1 0.39 0.22 0.64 -0.33 0.40 0.20 0.66 -0.33
-0.2 0.30 0.16 0.84 -0.40 0.32 0.16 0.80 -0.40
-0.3 0.24 0.13 0.64 -0.38 0.26 0.13 0.92 -0.46
-0.4 0.19 0.10 0.00 0.00 0.20 0.10 0.00 0.00

fKdV               Euler
Δ Aw- A- Aw+ A+ Aw- A- Aw+ A+

0.2 0.83 0.44 0.31 -0.16 0.75 0.40 0.28 -0.18
0.1 0.66 0.38 0.39 -0.20 0.57 0.36 0.32 -0.21
0.0 0.50 0.30 0.51 -0.26 0.44 0.33 0.37 -0.25
-0.1 0.39 0.22 0.64 -0.33 0.32 0.20 0.43 -0.30
-0.2 0.30 0.16 0.84 -0.40 0.23 0.13 0.53 -0.36
-0.3 0.24 0.13 0.64 -0.38 0.16 0.08 0.57 -0.38
-0.4 0.19 0.10 0.00 0.00 0.10 0.01 0.00 0.00



6.24: fKdV equation, long-time limit for step forcing

The long-time solution for flow over a step of finite length L (that is,
(19) for instance with FM > 0, γL >> 1) will be that predicted by
Grimshaw and Smyth (1986) in the framework of the fKdV equation for
flow over a localised obstacle. Indeed, at exact criticality ∆ = 0, the
wavetrains generated by the elongated step are in fact exactly the same
as those predicted for flow over a localised obstacle. Otherwise, for
∆ 6= 0, the upstream and downstream undular bores initially generated
by the positive and negative steps have (slightly) different amplitudes to
those generated by a localized obstacle, but for sufficiently long times
(t > L/|∆|) there is communication between the two steps by a
rarefraction wave, followed by an adjustment to precisely the same
solution predicted for localized forcing.



6.25: fKdV equation, negative step forcing, ∆ = 0.0

Numerical simulation of the fKdV equation (5) for the step forcing

F (x) =
FM

2
(tanh γx − tanh γ(x − L)) , (40)

where FM = −0.1, γ = 0.25, L = 50 >> 1 and ∆ = 0.
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6.26: fKdV equation, negative step forcing, ∆ = 0.2

Numerical simulation of the fKdV equation (5) for the step forcing

F (x) =
FM

2
(tanh γx − tanh γ(x − L)) ,

where FM = −0.1, γ = 0.25, L = 50 >> 1 and ∆ = 0.2.
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6.27: fKdV equation, negative step forcing, ∆ = −0.2

Numerical simulation of the fKdV equation (5) for the step forcing

F (x) =
FM

2
(tanh γx − tanh γ(x − L)) ,

where FM = −0.1, γ = 0.25, L = 50 >> 1 and ∆ = −0.2.
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6.28: Euler equations, negative step forcing, ∆ = 0.0

Numerical simulation of the full Euler equations for the step forcing

F (x) =
FM

2
(tanh γx − tanh γ(x − L)) ,

where FM = −0.1, γ = 0.25, L = 50 >> 1 and Fr = 1.0,∆ = 0.0.
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