Waves in shallow water, I Lecture 4

600 m pier at Duck, NC - Hurricane Grace, 1991

Waves in shallow water, I

This lecture: Korteweg-de Vries equation

- A. Derive the Korteweg-de Vries (KdV) equation as a model of waves of moderate amplitude in shallow water
- B. Properties of the KdV equation
- C. Accuracy of KdV as a model of water waves

Waves in shallow water (coming attractions)

Lecture 7:

- A. Tsunami of 2004, Hurricane Katrina, 2006
- B. Kadomtsev-Petviashvili (KP) equation:
 - a 2-D generalization of KdV
 - theory and experiment

Lecture 8:

- The shallow water equations
- (a different model for waves in shallow water)

A. Derive the KdV equation

General method to derive approximate models of water waves (KdV, KP, NLS, 3-wave,...) Start with "exact" water wave equations

1) Identify a specific limit of interest

(ex: small amplitude waves in shallow water)

- 2) Scale equations to show that limit explicitly
- 3) Solve eq'ns approximately, order-by-order
- 4) Introduce "multiple scales" as needed

Small amplitude
 a << h

Small amplitude
 a << h

• Shallow water (long waves) $h \ll L_x$

Small amplitude
 a << h

- Shallow water (long waves) $h \ll L_x$
- Motion primarily in one direction
 If exactly true → KdV
 If approximately true → KP

• Small amplitude a << h $|L_x|$ = a $\frac{h}{h}$ (h = const)

- Shallow water (long waves) $h \ll L_x$
- Motion primarily in one direction
 If exactly true → KdV
 If approximately true → KP
- All small effects balance

KdV:
$$\frac{a}{h} = \varepsilon \ll 1$$
, $(\frac{h}{L_x})^2 = O(\varepsilon)$, $\partial_y \equiv 0$.

2) Scale variables to impose ε -limit

Characteristic length: *h*

$$z^* = \frac{z}{h}, \qquad x^* = \frac{x}{L_x} = \sqrt{\varepsilon} \frac{x}{h}, \qquad \eta = \varepsilon h[\eta^*(x^*, t^*, \varepsilon)]$$

2) Scale variables to impose ε -limit

Characteristic length: h

$$\Rightarrow z^* = \frac{z}{h}, \qquad x^* = \frac{x}{L_x} = \sqrt{\varepsilon} \frac{x}{h}, \qquad \eta = \varepsilon h[\eta^*(x^*, t^*, \varepsilon)]$$
Characteristic speed: \sqrt{gh}

$$\Rightarrow u = \varepsilon \sqrt{gh}[u^*] \qquad \Rightarrow \qquad \phi = h \sqrt{\varepsilon gh}[\phi^*(x^*, z^*, t^*, \varepsilon)]$$

2) Scale variables to impose ε -limit

Characteristic length: h

$$z^* = \frac{z}{h}, \qquad x^* = \frac{x}{L_x} = \sqrt{\varepsilon} \frac{x}{h}, \qquad \eta = \varepsilon h[\eta^*(x^*, t^*, \varepsilon)]$$

Characteristic speed: \sqrt{gh}

Characteristic time: $T = \frac{L_x}{\sqrt{gh}} = \frac{h}{\sqrt{\epsilon gh}}$ $\Rightarrow t^* = \frac{\sqrt{\epsilon gh}}{h}t$

We will also need a "slow time": $\tau = \varepsilon t^* = \varepsilon \frac{\sqrt{\varepsilon g h}}{h} t$

a) Laplace' equation, and b.c. at z = -h: Write ϕ as a convergent Taylor series in (z+h). After some algebra,

$$\phi = h\sqrt{\varepsilon gh} [\phi_0(x^*, t^*, \varepsilon) + \sum_{m=1}^{\infty} \frac{(-\varepsilon)^m}{(2m)!} \cdot (1+z^*)^{2m} \cdot \frac{\partial^{2m} \phi_0}{\partial (x^*)^{2m}}]$$

Where series converges, this is exact.

a) Laplace' equation, and b.c. at z = -h: Write ϕ as a convergent Taylor series in (z+h). After some algebra,

$$\phi = h\sqrt{\varepsilon gh} [\phi_0(x^*, t^*, \varepsilon) + \sum_{m=1}^{\infty} \frac{(-\varepsilon)^m}{(2m)!} \cdot (1+z^*)^{2m} \cdot \frac{\partial^{2m} \phi_0}{\partial (x^*)^{2m}}]$$

Where series converges, this is exact.

$$u \sim \varepsilon \sqrt{gh} \cdot [\hat{u}^*(x^*, t^*, \varepsilon) - \frac{\varepsilon}{2} (1 + z^*)^2 \frac{\partial^2 \hat{u}^*}{\partial (x^*)^2} + O(\varepsilon^2)],$$

$$w \sim -\varepsilon \sqrt{\varepsilon gh} \cdot [(1 + z^*) \frac{\partial \hat{u}^*}{\partial x^*} - \frac{\varepsilon}{6} (1 + z^*)^3 \frac{\partial^3 \hat{u}^*}{\partial (x^*)^3} + O(\varepsilon^2)].$$

b) At free surface:

• Two evolution equations, to be solved for

 $\eta^*(x^*,t^*,\varepsilon), \ \hat{u}^*(x^*,t^*,\varepsilon).$

b) At free surface:

• Two evolution equations, to be solved for

 $\eta^*(x^*,t^*,\varepsilon), \ \hat{u}^*(x^*,t^*,\varepsilon).$

 Solve these approximately, by expanding each in formal asymptotic series, and solving order by order:

$$\eta^* \sim \eta_1(x^*, t^*, \varepsilon) + \varepsilon \eta_2(x^*, t^*, \varepsilon) + O(\varepsilon^2),$$
$$\hat{u}^* \sim u_1(x^*, t^*, \varepsilon) + \varepsilon u_2(x^*, t^*, \varepsilon) + O(\varepsilon^2).$$

c) At $O(\varepsilon)$,

$$\frac{\partial \eta_1}{\partial t^*} + \frac{\partial u_1}{\partial x^*} = 0, \qquad \qquad \frac{\partial u_1}{\partial t^*} + \frac{\partial \eta_1}{\partial x^*} = 0.$$

Solution:
$$\eta_1(x^*, t^*, \varepsilon) = f(x^* - t^*, \varepsilon) + F(x^* + t^*, \varepsilon),$$

 $u_1(x^*, t^*, \varepsilon) = f(x^* - t^*, \varepsilon) - F(x^* + t^*, \varepsilon).$

c) At $O(\varepsilon)$,

$$\frac{\partial \eta_1}{\partial t^*} + \frac{\partial u_1}{\partial x^*} = 0, \qquad \qquad \frac{\partial u_1}{\partial t^*} + \frac{\partial \eta_1}{\partial x^*} = 0.$$

Solution:
$$\eta_1(x^*, t^*, \varepsilon) = f(x^* - t^*, \varepsilon) + F(x^* + t^*, \varepsilon),$$

 $u_1(x^*, t^*, \varepsilon) = f(x^* - t^*, \varepsilon) - F(x^* + t^*, \varepsilon).$

d) At O(
$$\mathcal{E}^2$$
): $\frac{\partial \eta_2}{\partial t^*} + \frac{\partial u_2}{\partial x^*} = RHS_a$, $\frac{\partial u_2}{\partial t^*} + \frac{\partial \eta_2}{\partial x^*} = RHS_b$.

Find (η_2, u_2) grow linearly in t^* . (Bad!)

4) Introduce slow time-scale

• Find $\eta(x,t,\varepsilon) \sim \varepsilon h[\eta_1 + \varepsilon \eta_2 + O(\varepsilon^2)]$ ~ $\varepsilon h[(bdd) + (\varepsilon t^*)(bdd) + O(\varepsilon^2)]$

so formal expansion disordered when $\varepsilon t^* = O(1)$.

4) Introduce slow time-scale

• Find
$$\eta(x,t,\varepsilon) \sim \varepsilon h[\eta_1 + \varepsilon \eta_2 + O(\varepsilon^2)]$$

~ $\varepsilon h[(bdd) + (\varepsilon t^*)(bdd) + O(\varepsilon^2)]$

so formal expansion disordered when $\varepsilon t^* = O(1)$.

• Introduce a slow time-scale, $\tau = \varepsilon t^*$, to eliminate this problem. Then

$$\eta_j(x^*,t^*,\varepsilon) \rightarrow \hat{\eta}_j(x^*,t^*,\tau), \qquad \frac{\partial}{\partial t^*} \rightarrow \frac{\partial}{\partial t^*} + \varepsilon \frac{\partial}{\partial \tau}.$$

• <u>Choose</u> $\left(\frac{\partial \eta_1}{\partial \tau}, \frac{\partial u_1}{\partial \tau}\right)$ to eliminate unphysical growth at $\varepsilon t^* = O(1)$.

5) Result At O(ε), $\eta_1(x^*, t^*, \tau) = f(x^* - t^*, \tau) + F(x^* + t^*, \tau),$ $u_1(x^*, t^*, \tau) = f(x^* - t^*, \tau) - F(x^* + t^*, \tau),$

essentially as before. Define $r = x^* - t^*$, $s = x^* + t^*$.

5) Result - 2 KdV equations At O(ε), $\eta_1(x^*, t^*, \tau) = f(x^* - t^*, \tau) + F(x^* + t^*, \tau),$ $u_1(x^*, t^*, \tau) = f(x^* - t^*, \tau) - F(x^* + t^*, \tau),$

essentially as before. Define $r = x^* - t^*$, $s = x^* + t^*$. Then at O(ε^2),

KdV:
$$2\frac{\partial f}{\partial \tau} + 3f\frac{\partial f}{\partial r} + (\frac{1}{3} - \frac{\sigma}{\rho g h^2})\frac{\partial^3 f}{\partial r^3} = 0,$$
$$-2\frac{\partial F}{\partial \tau} + 3F\frac{\partial F}{\partial s} + (\frac{1}{3} - \frac{\sigma}{\rho g h^2})\frac{\partial^3 F}{\partial s^3} = 0.$$

Also find η_2 , u_2 .

What did Korteweg & de Vries know?

Rescale equation:

$$\partial_{\tau}v + 6v\partial_{\xi}v + \partial_{\xi}^{3}v = 0$$

Solitary wave:

$$v(\xi,\tau) = 2p^2 \sec h^2 \{ p(\xi - 4p^2\tau + \xi_0) \}$$

Solitary waves in the ocean

Both photos taken in Hawaii by Robert Odom App. Phys. Lab., U of Washington see www.amath.washington.edu/~bernard/kp/waterwaves.html

Properties of the KdV equation What did Korteweg & de Vries know?

$$\partial_{\tau} v + 6 v \partial_{\xi} v + \partial_{\xi}^{3} v = 0$$

Solitary wave:

$$v(\xi,\tau) = 2p^2 \sec h^2 \{ p(\xi - 4p^2\tau + \xi_0) \}$$

Periodic "cnoidal" wave:

$$v = 2p^{2}\kappa^{2}cn^{2}\{p(\xi - c\tau + \xi_{0};\kappa)\} + v_{0}$$

A cnoidal wavetrain near Panama

National Geographic, 1933

Cnoidal waves near Lima, Peru

photo by Anna Segur, 2004

Miracles!

discovered mostly by Zabusky & Kruskal (1965), Gardner, Greene, Miura...

Consider

$$\partial_{\tau} v + 6 v \partial_{\xi} v + \partial_{\xi}^{3} v = 0, \qquad -\infty < \xi < \infty,$$

with $v \rightarrow 0$ rapidly as $|\xi| \rightarrow \infty$, and infinitely differentiable

1) A <u>conservation law</u> is a relation of the form $\partial_{\tau} \{ density \} + \partial_{\xi} \{ flux \} = 0.$

KdV has *infinitely many* conservation laws:

$$\begin{split} \partial_{\tau} \{v\} + \partial_{\xi} \{3v^{2} + \partial_{\xi}^{2}v\} &= 0, \\ \partial_{\tau} \{v^{2}\} + \partial_{\xi} \{4v^{3} + 2v\partial_{\xi}^{2}v - \frac{1}{2}(\partial_{\xi}v)^{2}\} &= 0, \\ \partial_{\tau} \{v^{3} - \frac{1}{2}(\partial_{\xi}v)^{2}\} + \partial_{\xi} \{....\} &= 0, \\ \partial_{\tau} \{v^{4} - 2v(\partial_{\xi}v)^{2} + \frac{1}{5}(\partial_{\xi}^{2}v)^{2}\} + \partial_{\xi} \{....\} &= 0, \end{split}$$

→ Any solution of KdV is very constrained.

2) The inverse scattering transform Let $v(\xi, \tau)$ be smooth, real and $v \rightarrow 0$ rapidly as $|\xi|^2 \rightarrow \infty$ Consider the Schrödinger equation,

$$\partial_{\xi}^{2}\psi + [\lambda + v(\xi,\tau)]\psi = 0,$$

2) The inverse scattering transform Let $v(\xi, \tau)$ be smooth, real and $v \rightarrow 0$ rapidly as $|\xi|^2 \rightarrow \infty$ Consider the Schrödinger equation,

$$\partial_{\xi}^{2}\psi + [\lambda + v(\xi,\tau)]\psi = 0,$$

and

$$\partial_{\tau}\psi = [\partial_{\xi}v + \alpha]\psi + [4\lambda - 2v]\partial_{\xi}\psi.$$

2) The inverse scattering transform Let $v(\xi, \tau)$ be smooth, real and $v \rightarrow 0$ rapidly as $|\xi|^2 \rightarrow \infty$ Consider the Schrödinger equation,

$$\partial_{\xi}^{2}\psi + [\lambda + v(\xi,\tau)]\psi = 0,$$

and

$$\partial_{\tau}\psi = [\partial_{\xi}v + \alpha]\psi + [4\lambda - 2v]\partial_{\xi}\psi.$$

 $\partial_{\xi}^{2}(\partial_{\tau}\psi) = \partial_{\tau}(\partial_{\xi}^{2}\psi) \qquad \Longleftrightarrow \qquad \partial_{\tau}v + 6v\partial_{\xi}v + \partial_{\xi}^{3}v = 0.$

2) Inverse scattering transform as a nonlinear Fourier transform: Start with

ν(ξ, 0)

(KdV) *v*(ξ, τ)

- 2) Inverse scattering transform to solve KdV as an initial value problem
- At $\tau = 0$, solve $\partial_{\xi}^2 \psi + [\lambda + v(\xi, 0)]\psi = 0$.

- 2) Inverse scattering transform to solve KdV as an initial-value problem
- At $\tau = 0$, solve $\partial_{\xi}^2 \psi + [\lambda + v(\xi, 0)]\psi = 0$.
- Every discrete eigenvalue represents one solitary wave (or "soliton").
- Continuous spectrum leads to an oscillatory wave train, which disperses (as in a linear problem).
- Arbitrary initial data evolves into N solitons, plus dispersing oscillatory waves.
- Everything is predicted explicitly.

C. Accuracy of the KdV model

1) How accurately does a KdV solution predict the behaviour of actual water waves, in the appropriate limit?

2) How accurately does a KdV solution approximate the corresponding solution of the water wave equations, in the appropriate limit?

C(1). Laboratory tests of KdV

Experimental equipment (J.L. Hammack)

References: Hammack, 1973, Hammack & Segur, 1974, 1978

Laboratory tests of KdV

Positive Initial data (solitons!)

Laboratory tests of KdV

Negative initial data: (dispersive waves, no solitons)

C(2). Mathematical accuracy

- 1) Craig (1985)
- 2) G. Schneider & C. E. Wayne (2000, 2002)
- 3) Bona, Colin & Lannes (2005),Bona, Chen & Saut (2002, 2004)
- 4) J.D. Wright (2006)
- 5) Shen & Sun (1991), Beale (1991) Vanden-Broeck (1991)

Thursday: tsunami of 2004, KP theory, shallow water equations, ...

Forty years later

Martin Kruskal (d. 2006) Peter Lax Clifford Gardner Robert Miura

John and Alice Greene (d. 2007)

Waves in shallow water, I Lecture 5

600 m pier at Duck, NC - Hurricane Grace, 1991