
Waves in shallow water, I
Lecture 4

       600 m pier at Duck, NC - Hurricane Grace, 1991



Waves in shallow water, I

This lecture:  Korteweg-de Vries equation

A. Derive the Korteweg-de Vries (KdV)
equation as a model of waves of moderate
amplitude in shallow water

B. Properties of the KdV equation

C. Accuracy of KdV as a model of water
waves



Waves in shallow water
(coming attractions)

Lecture 7:
A. Tsunami of 2004, Hurricane Katrina, 2006
B. Kadomtsev-Petviashvili (KP) equation:

a 2-D generalization of KdV
theory and experiment

Lecture 8:
The shallow water equations
(a different model for waves in shallow water)



A. Derive the KdV equation

General method to derive approximate models
of water waves  (KdV, KP, NLS, 3-wave,…)

Start with “exact” water wave equations
  1) Identify a specific limit of interest

  (ex: small amplitude waves in shallow water)

  2) Scale equations to show that limit explicitly
  3) Solve eq’ns approximately, order-by-order
  4) Introduce “multiple scales” as needed



1) Limit of interest for KdV (or KP)
Assume:
• Small amplitude

Assume:

• Long waves        (λ >> h)
 (shallow water)

• Small amplitude  (h >> a)
• Motion primarily in one direction

if exactly so,         KdV
if approximately so,  KP

• All small effects are comparable
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1) Limit of interest for KdV (or KP)
Assume:
• Small amplitude

• Shallow water (long waves)
• Motion primarily in one direction
    If exactly true             KdV
    If approximately true  KP
• All small effects balance
   KdV:   

Assume:

• Long waves        (λ >> h)
 (shallow water)

• Small amplitude  (h >> a)
• Motion primarily in one direction

if exactly so,         KdV
if approximately so,  KP
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2) Scale variables to impose ε−limit

Characteristic length: h
 
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2) Scale variables to impose ε-limit

Characteristic length: h
 

Characteristic speed:
  

Characteristic time:


We will also need a “slow time”:
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3) Solve equations, order by order

a) Laplace’ equation, and b.c. at z = -h:
Write φ as a convergent Taylor series in (z+h).
After some algebra,

Where series converges, this is exact.
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3) Solve equations, order by order

b) At free surface:
•  Two evolution equations, to be solved for
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3) Solve equations, order by order

b) At free surface:
•  Two evolution equations, to be solved for

• Solve these approximately, by expanding each in
formal asymptotic  series, and solving order by
order:! 
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3) Solve equations, order by order
c) At O(ε),

Solution:
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3) Solve equations, order by order
c) At O(ε),

Solution:

d) At O(ε2):

Find (η2, u2) grow linearly in t*.   (Bad!)
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4) Introduce slow time-scale
• Find


so formal expansion disordered when εt*= O(1).
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4) Introduce slow time-scale
• Find

so formal expansion disordered when εt*= O(1).

• Introduce a slow time-scale, τ = εt*, to eliminate
this problem. Then

• Choose         to eliminate unphysical growth
at  εt*= O(1).
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5) Result
At O(ε),

essentially as before. Define
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5) Result - 2 KdV equations
At O(ε),

essentially as before. Define
Then at O(ε2),

KdV:

Also find η2, u2.

! 

"
1
(x

*
,t
*
,#) = f (x

* $ t*,#) + F(x
*

+ t
*
,#),

u
1
(x

*
,t
*
,#) = f (x

* $ t*,#) $ F(x* + t
*
,#),

! 

r = x
*
" t

*
, s = x

*
+ t

*
.

! 

2
"f

"#
+ 3 f

"f

"r
+ (
1

3
$

%

&gh2
)
" 3 f

"r3
= 0,

$2
"F

"#
+ 3F

"F

"s
+ (
1

3
$

%

&gh2
)
" 3F

"s3
= 0.



B. Properties of the KdV equation
What did Korteweg & de Vries know?
Rescale equation:

Solitary wave:
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Properties of the KdV equation
Solitary waves in the ocean

Both photos taken in Hawaii by Robert Odom
App. Phys. Lab., U of Washington

see www.amath.washington.edu/~bernard/kp/waterwaves.html



Properties of the KdV equation
What did Korteweg & de Vries know?

Solitary wave:

Periodic “cnoidal” wave:! 
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Properties of the KdV equation
A cnoidal wavetrain near Panama

National Geographic, 1933



Properties of the KdV equation
Cnoidal waves near Lima, Peru

     photo by Anna Segur, 2004



Properties of the KdV equation
Miracles!
discovered mostly by
Zabusky & Kruskal (1965),
Gardner, Greene, Miura…

Consider

with            rapidly as               and infinitely differentiable
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Miracles of the KdV equation
1) A conservation law is a relation of the form

KdV has infinitely many conservation laws:

  Any solution of KdV is very constrained.
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Miracles of the KdV equation
2) The inverse scattering transform
Let v(ξ,τ)  be smooth, real and        rapidly as

Consider the Schrödinger equation,
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Miracles of the KdV equation
2) The inverse scattering transform
Let v(ξ, τ) be smooth, real and        rapidly as

Consider the Schrödinger equation,
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Miracles of the KdV equation
2) Inverse scattering transform as a

  nonlinear Fourier transform:
Start with
     v(ξ, 0)

(KdV)

    v(ξ, τ)



Miracles of the KdV equation
2) Inverse scattering transform as a

  nonlinear Fourier transform:
Start with            direct scattering
     v(ξ, 0) scattering data|τ=0

(KdV)      (linear ODEs)

    v(ξ, τ) scattering data|τ> 0

  inverse scattering



Miracles of the KdV equation
2) Inverse scattering transform - to solve KdV

as an initial value  problem

• At τ = 0, solve
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Miracles of the KdV equation
2) Inverse scattering transform - to solve KdV

as an initial-value  problem

• At τ = 0, solve

• Every discrete eigenvalue represents one solitary
wave (or “soliton”).

• Continuous spectrum leads to an oscillatory wave
train, which disperses (as in a linear problem).

• Arbitrary initial data evolves into N solitons, plus
dispersing oscillatory waves.

• Everything is predicted explicitly.
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C. Accuracy of the KdV model
1) How accurately does a KdV solution

predict the behaviour of actual water
waves, in the appropriate limit?

2) How accurately does a KdV solution
approximate the corresponding solution of
the water wave equations, in the
appropriate limit?



C(1). Laboratory tests of KdV

Experimental equipment (J.L. Hammack)

References:  Hammack, 1973,
Hammack & Segur, 1974, 1978



Laboratory tests of KdV

Positive
Initial data
(solitons!)



Laboratory tests of KdV
Negative
initial data:
(dispersive waves,
  no solitons)



C(2). Mathematical accuracy

1) Craig (1985)
2) G. Schneider & C. E. Wayne (2000, 2002)
3) Bona, Colin & Lannes (2005),

Bona, Chen & Saut (2002, 2004)
4)  J.D. Wright (2006)
5)  Shen & Sun (1991), Beale (1991)
    Vanden-Broeck (1991)



Waves in shallow water

Thursday: tsunami of 2004, KP theory,
shallow water equations, …



Forty years later

Martin Kruskal (d. 2006) John and Alice Greene
Peter Lax (d. 2007)

Clifford Gardner
Robert Miura



Waves in shallow water, I
Lecture 5

  600 m pier at Duck, NC - Hurricane Grace, 1991


