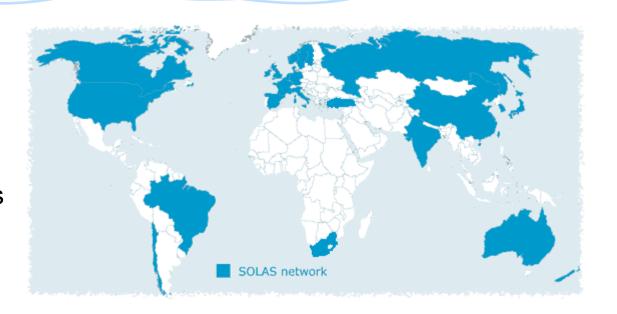
SOLAS Update Overview:

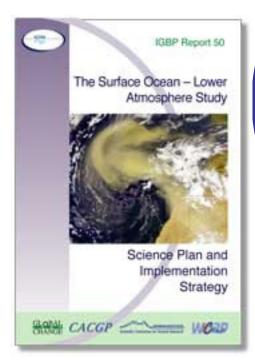
- Brief Program Overview
- Cooperation with GEOTRACES
- Carbon coordination (with IMBER, IOCCP, OCB, NACP)
- New initiatives, planning with coordination

Sponsors: WC

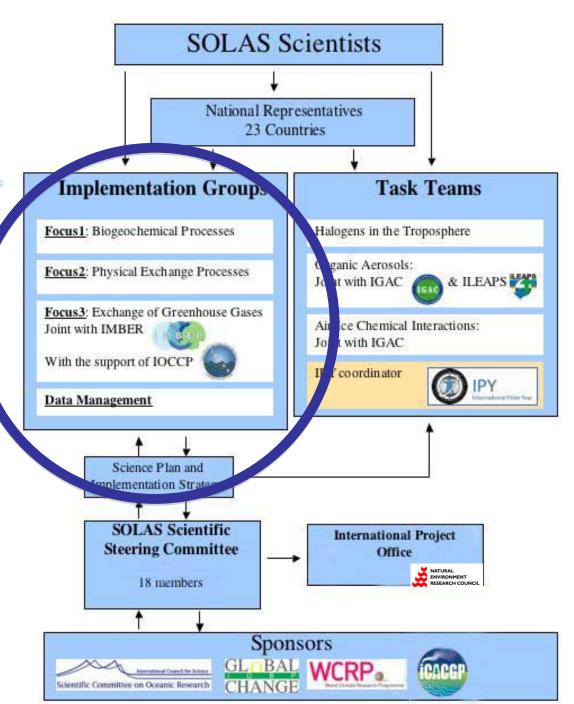
SOLAS IPO sponsor:



Doug Wallace Chair, International SOLAS


Dr Emilie Brévière, SOLAS Executive Officer SOLAS International Project Office School of Environmental Sciences University of East Anglia Norwich UK e.breviere@uea.ac.uk

SOLAS Community


- SOLAS Network from 26 countries
- National representatives and/or national coordinators
- SSC members from 12 countries
- SOLAS Science Plan published 2004.10 year program

Implementation Groups

SOLAS Science Plan published 2004. 10 year program

in close collaboration with the International Ocean **Carbon Coordination Project (IOCCP)**

1. Surface ocean systems

Chair: Nicolas Metzl

Interior ocean

Chair: Niki Gruber

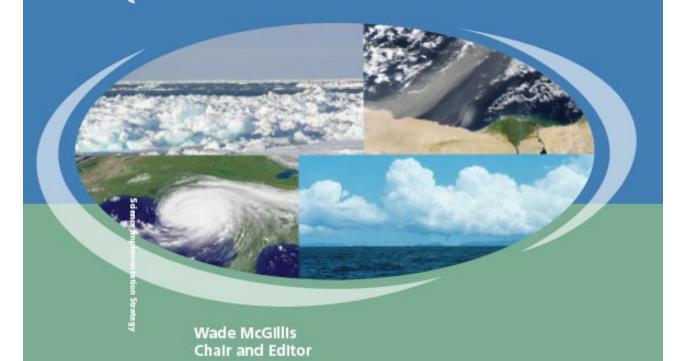
3. **Ocean Acidification**

Chair: Jean-Pierre Gattuso

IMBER Report No.1 / SOLAS Report

Joint SOLAS-IMBER Ocean Carbon Research

Implementation Plan


The United States
Surface OceanLower Atmosphere Study

Science Implementation Strategy

US SOLAS Science and Implementation Strategy

- 1.1 Global Ocean Trace Gas Surveys
- 1.2 The North-Atlantic African Dust-Aerosol Experiment (NafDAE)
- 1.3 Ocean-Atmosphere-Sea-Ice-Snowpack (OASIS)
- 1.4 Climate Modeling in SOLAS (CLIMAS)
- 2.1 World Ocean Gas Exchange Process Studies
- 2.2 Surface Spray *In-Situ* and Modeling Studies
- 2.3 Halogens in the Troposphere US-SOLAS (HiT-US)
- 2.4 Cape Verde Air-Sea Interaction Time-series Station
- 3.1 Air-Water CO₂/Volatile Carbon Compounds in the Coastal Margins
- 3.2 Southern Ocean Carbon Dioxide Studies
- 3.3 Global Surface Ocean Carbon Concentration Surveys
- 3.4 Perturbation Experiments in Ocean-Atmosphere CO₂ Studies
- 4.1 Autonomous and Lagrangian Platforms (ALPS) for SOLAS
- 4.2 Diagnostic Modeling and Remote Sensing
- 4.3 US-SOLAS Linkages to the United States Ocean Carbon and
- Biogeochemistry (OCB) Program and the (OOI)
- 4.4 Data Management for US-SOLAS

US SOLAS Science and Implementation Strategy

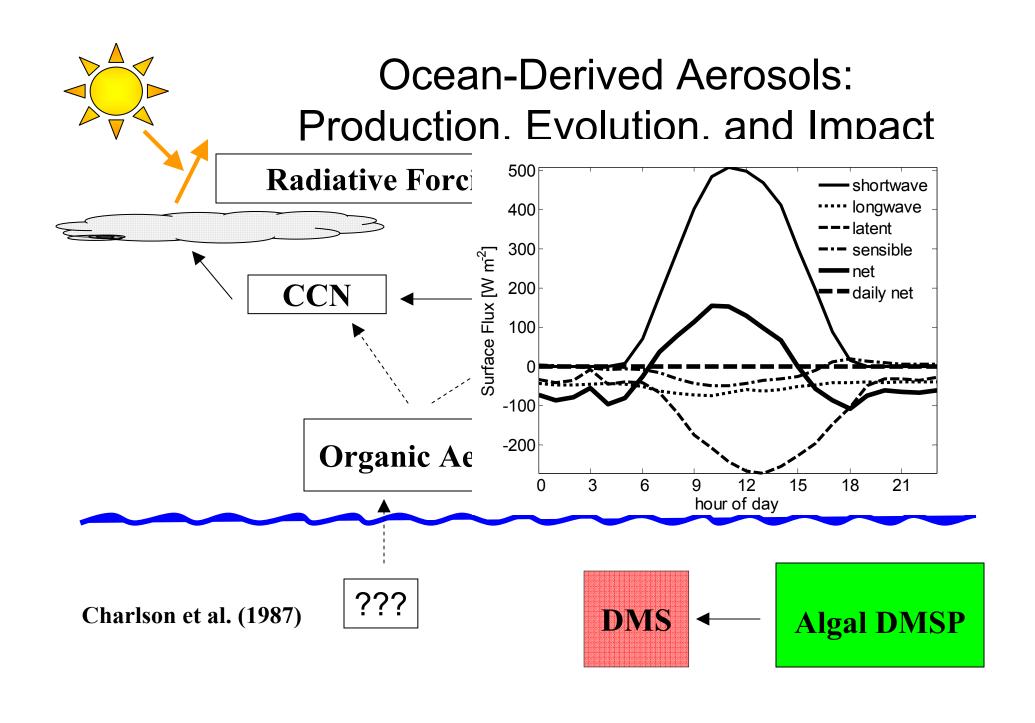
- 1.1 Global Ocean Trace Gas Surveys
- 1.2 The North-Atlantic African Dust-Aerosol Experiment (NafDAE)
- 1.3 Ocean-Atmosphere-Sea-Ice-Snowpack (OASIS)
- 1.4 Climate Modeling in SOLAS (CLIMAS)
- 2.1 World Ocean Gas Exchange Process Studies
- 2.2 Surface Spray *In-Situ* and Modeling Studies
- 2.3 Halogens in the Troposphere US-SOLAS (HiT-US)
- 2.4 Cape Verde Air-Sea Interaction Time-series Station
- 3.1 Air-Water CO₂/Volatile Carbon Compounds in the Coastal Margins
- 3.2 Southern Ocean Carbon Dioxide Studies
- 3.3 Global Surface Ocean Carbon Concentration Surveys
- 3.4 Perturbation Experiments in Ocean-Atmosphere CO₂ Studies
- 4.1 Autonomous and Lagrangian Platforms (ALPS) for SOLAS
- 4.2 Diagnostic Modeling and Remote Sensing
- 4.3 US-SOLAS Linkages to the United States Ocean Carbon and
- Biogeochemistry (OCB) Program and the (OOI)
- 4.4 Data Management for US-SOLAS

SOLAS Mid-Term Strategic Planning (underway)

Coordinated, Cross-Cutting Issues suited to Coordinated International Research

Surface Ocean Lower Atmosphere Observations

Atmospheric control on nutrient cycling/productivity


Air-sea gas fluxes at Eastern boundary upwelling systems

Sea ice as a habitat, reaction surface and barrier

Marine aerosol formation

Ship plumes

Large scale experiments for hypothesis testing

Sea ice biogeochemistry

a habitat, reaction surface, source, sink and barrier for gas exchange

Background:

Main properties of sea ice in models:

- reflective surface
- deep water formation
- prevents gas exchange from water

Increased attention to biogeochemical cycles:

- Impact of biology on climate relevant gases
- Impact of biology on ice structure: porosity, energy absorption
- Strong precipitation/dissolution processes of CO₂ in brines
- Photochemistry and optical properties
- Source for major and minor nutrients

Call for potential "Large-scale SOLAS field experiments"

Why large-scale?

- time/space scales of observation
- survey/process studies multiplatform, multi-Pl
- need to leverage resources from mutiple nations/agencies.

Key Issues:

- Atmospheric nutrient input/ocean response
- Imprint of ocean emissions on atmospheric aerosol/cloud properties
- Impact of ocean emissions on atmospheric reactivity

"Aerosols, climate, ecosystem experiments"

Background and Relevance:

- Evidence for connection between seasonally-driven phytoplankton blooms, atmospheric aerosol, and cloud properties.
- Chemical/physical mechanisms not understood.
- Regional experiments proposed to investigate major blooms on scales where significant atmospheric perturbation occurs.
- North Atlantic bloom, North Pacific Asian outflow region, Southern ocean.
- Goal: to improve GCM's and distinguish between anthropogenic radiative forcing and ecosystem/climate feedbacks.

SOLAS Open Science Conference

Barcelona, Spain 16th – 19th November 2009 www.solas-int.org

Confirmed speakers:

Cécile Guieu (France)
Mary Ann Moran (USA)
Carles Pelejero (Spain)
John Plane (UK)
Ulf Riebesell (Germany)
Mitsuo Uematsu (Japan)
Rik Wanninkhof (USA)

Organised by:

Isabel Cacho
(University of Barcelona, Barcelona)
Rafel Simó
(Consejo Superior de Investigaciones Cientificas, Barcelona)
SOLAS International Project Office
(University of East Anglia, Norwich, UK)

www.solas-int.org

DEADLINES

Poster abstracts:

31 July 2009

Discussion session proposals:

31 July 2009

Early registration closes:

15 September 2009

Hotel booking: 1 October 2009

Las Ramblas, Barcelona

31 JULY 2009

ANTHROPOGENIC FORCING

IMPACTS

RADIATIVE FEEDBACKS

Ecosystem Shifts (Biodiversity, Productivity)

Ocean Acidification

Δ Nutrient Deposition

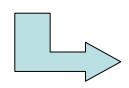
Δ Ice Cover

Δ Upwelling / Mixing

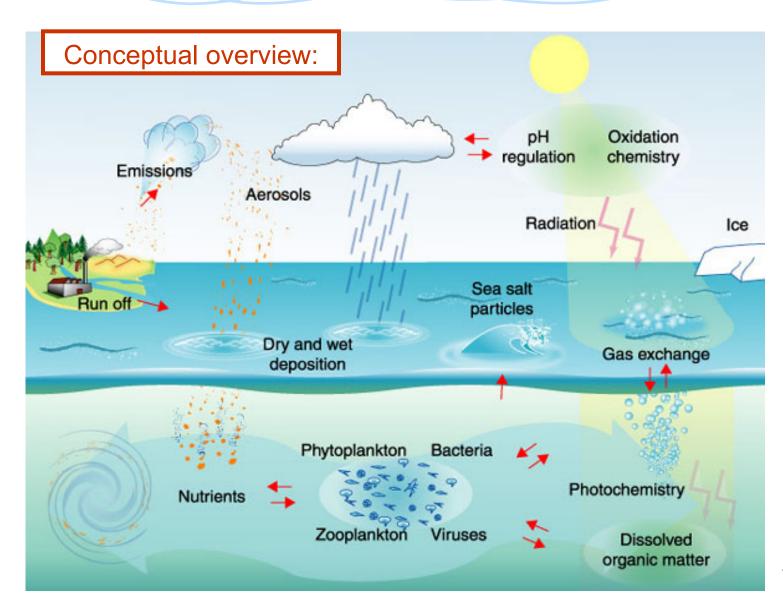
Δ Oceanic Oxygen

 Δ Trace Gas Emission (DMS, N₂O, Halogens)

Δ 1° Aerosol Formation


Δ Carbon Budget

Land-use Change / Agriculture

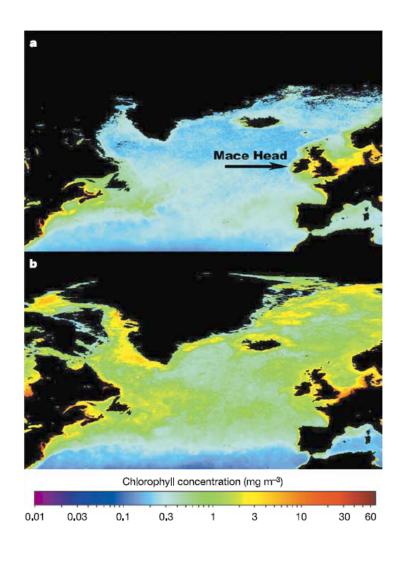

Geoengineering

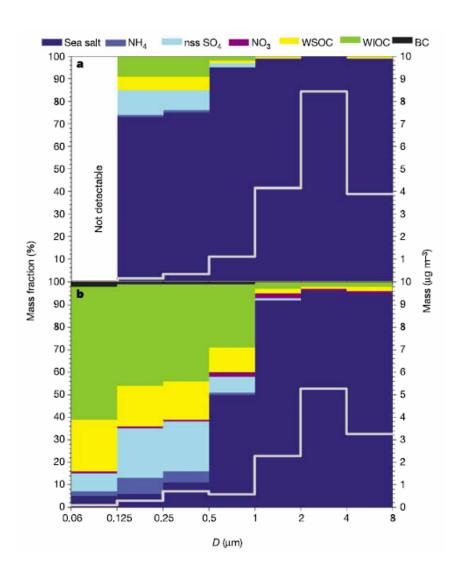
Changing Atmos.
Composition

Climate Change

SOLAS Science Domain

SOLAS Science Domain


1 km	entrainment, cloud radiative processes, condensation	1 km
100 m	turbulence, precipitation, organised circulations, gas to particle conversion	100 m
10 m	larger surface waves	10 m
1 m	spray, wave/turbulence interaction	1 m
1 cm	short wind waves	1 cm
_1 mm	capillary waves, foam	1 mm
0 -1 nm	MIR-SEA INTERFACE monolayers, evaporation, ion rejection	0 -1 nm
-1 μm	film-cap thickness	-1 µm
-1 mm	radiation absorption, heat conduction, gas exchange	-1 mm
-1 m	wave breaking/wind mixing, bubbles, turbulent mixing, convective motion, Langmuir circulation	-1 m
-10 m	mixed layer, thermocline entrainment Ekman pumping, upwelling, subduction	-10 m
-1 km	deep convection	-1 km
		19


"Large-scale SOLAS field experiments"

Next steps...

- discussions at SOLAS Open Science conference
- International/national workshops
- agency discussions ...white papers...proposals

"Aerosols, climate, ecosystem experiments"

SOLAS Science Goal

'To achieve quantitative understanding of the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere, and how this coupled system affects and is affected by climate and environmental change.'

SOLAS SSC

Focus 1: Biogeochemical Interactions and Feedbacks Between Ocean and Atmosphere

Focus 2: Exchange Processes at the Air-Sea Interface and the Role of Transport and Transformation in the Atmospheric and Oceanic Boundary Layers

Focus 3: Air-Sea Flux of CO₂ and Other Long-lived Radiatively Active

Ocean Carbon Research Coordination:

"Aerosols, climate, ecosystem experiments"

Key Questions:

- Is DMS the major aerosol precursor...what role do organics play?
- Does phytoplankton speciation/physiology exert a major influence on the emitted flux?
- To what extent do atmospheric inputs (natural or anthropogenic) influence the atmospheric imprint?
- Can we observe a bloom-induced perturbation in CN, CCN, CDN, and cloud albedo?