SO GasEx results and satellite techniques for determining Southern Ocean CO₂ sources/sinks

Pete Strutton, Andrea Vander Woude and Burke Hales College of Oceanic and Atmospheric Sciences Oregon State University

with the Takahashi, Letelier and NOAA/PMEL groups

Funding from

SO GasEx

Mixed layer carbon budget, calculation of air-sea CO_2 flux Preliminary physical, chemical and biological observations

Satellite techniques for oceanic pCO₂

Explanation and first Southern Ocean maps

Comparison with other climatologies (Takahashi, 2009; McNeil, 2007)

Part 1: Southern Ocean GasEx

GasEx 2001: Lagrangian study of CO₂ exchange

Figure 1. Ship track (solid line) and CTD/O_2 cast positions during GasEx-2001 including noon casts following the instrument array drift (circles), casts taken following the array during the two intensive observation periods (crosses), and casts taken mostly away from the array during the two regional butterfly surveys (stars). Select times along the track indicated in yeardays (pluses with numbers).

Johnson et al., 2004

Mixed layer carbon and nutrient dynamics: GasEx2001

Validation of the gas transfer velocity

SO GasEx: Modeled mixed layer depth

Dwivedi, Haine and Del Castillo, submitted.

SO GasEx: Measured mixed layer depth

From Dave Hebert

SO GasEx: Mooring- and ship-based pCO₂

From Sabine et al.

SO GasEx: Mooring- and ship-based pCO₂

From Sabine et al.

SO GasEx: Mooring-based carbon chemistry

Moore and DeGrandpre (5m data)

SO GasEx: ¹⁴C and ¹⁵N productivity measurements

Lance, Strutton, Vaillancourt and Hargreaves

SO GasEx: O₂/Ar measurements

Constructing a mixed layer carbon budget

Part 2: Satellite techniques for oceanic pCO₂

Global CO₂ data coverage

North American west coast almost neutral

9 Tg C yr⁻¹ source to the atmosphere

Overview of satellite algorithm development

Calculate fluxes

Central America changes from 9 Tg year⁻¹ source to 1.5 Tg year⁻¹sink

Chavez *et al.*, SOCCR 2007: 8°N to 55°N, -13 Tg C year⁻¹

This analysis: 5°N to 50°N, -30 Tg C year⁻¹

Why might this better than other observational methods?

In some (many) places there <u>are no observations:</u> _____pCO₂ from co-varying parameters is a way forward

We can investigate smaller spatial scales: Limited by the resolution of the satellite data (kilometers), not sparse observations (~10² to 10³ km)

We can investigate seasonal and interannual variability: Links to long term changes in forcing: Southern Ocean winds

Southern Ocean Self Organized Maps (SOMs)

Accuracy of regional algorithms

SO GasEx observations *cf* satellite predictions

SO GasEx observations *cf* McNeil

SO GasEx observations *cf* Takahashi

Expanded observations

Conclusions and future work

Despite 3 million global observations of pCO_2 , uncertainties remain: In the link between ΔpCO_2 and fluxes In pCO_2 for many regions: In particular the Southern Ocean

Field efforts are helping to refine the gas transfer velocity

Measurement campaigns are helping to fill in some data gaps

Satellite algorithms offer a way to fill gaps and better quantify spatial and temporal variability

Next: Seasonal and interannual variability More rigorous comparison with climatologies and models.

Estimating pCO₂

alk		p_0	1	a_1	a_2	a_3
DIC		latitude	1	b_1	b_2	b_3
t ₀	Π	longitude	1	C_1	C_2	C_3
mixing		seasonality	1	d_1	d_2	d_3
						_

Develop and apply regional algorithms