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Abstract

Several claims have been made about the efficiency of internal wave scattering
from rough topography with consequent implications for thelocality of the energy
balance. In the limit that the topographic height is smallerthan the vertical wave-
length and the topographic slope is smaller than the wave slope, the scattering and
generation problems are virtually equivalent when the internal tide kinetic energy
frequency spectrum is regarded as the barotropic tidal energy. A direct consequence
is that the energy balance of the internal tide is essentially local to within a single
bottom bounce of the baroclinic tide above rough topographyover the Mid-Atlantic
Ridge. In the absence of other sources (near-inertial forcing by winds, internal lee
waves or coupling with the geostrophic flow field), the observed internal wavefield
results from a nonlinear equilibration process in which theboundary conditions
figure prominently and interior inhomogeneity of the background buoyancy profile
can be important in determining the global evolution of the wavefield.
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1. Introduction
Various claims have been made regarding the efficiency of scattering from rough topography

on the Mid-Atlantic Ridge. One scenario (St.Laurent and Garrett 2002) claims anO(10%)
efficiency for the scattering process and regards the energybalance as inherently nonlocal. The
bulk of the energy resulting from the conversion from barotropic to baroclinic energy is viewed
as being able to propagate away from the ridge and ultimatelydissipates elsewhere. A second
scenario (Polzin 2004) presents a scale analysis of the spatial energy flux divergence terms
to argue that the energy balance of the internal tide is one-dimensional (vertical). The two
works differ in their respective interpretations of the first principle’s derivation of a scattering
transform presented in Müller and Xu (1992). St.Laurent and Garrett (2002) claim their ’second
generation’ calculation of anO(10%) efficiency is consistent with Müller and Xu (1992), while
Polzin (2004) claims that Müller and Xu (1992) should return an O(1) transformation when
applied to Mid-Atlantic Ridge topography. This work seeks to resolve those differing opinions.

Section 2 discusses a spectral representation of the internal tide generation process. Sec-
tion 3 discusses a spectral representation of the internal wave scattering problem. A Summary
section discusses the implications.

2. Internal Tide Generation
The vertical velocity associated with barotropic tidal flowimpinging upon a corrugated

boundary will excite internal waves in a stratified fluid. A representation of the radiating internal
wavefield is (Bell 1975):
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In (1), Eflux is the vertical energy flux,f is the Coriolis frequency,ω1 is the fundamental
frequency of the barotropic tide (M2), n an integer restricted so wave frequencies are smaller
than the buoyancy frequencyN (nω1 < N with ωn = nω1 thenth harmonic), the horizontal
wavevector is(k, l) with magnitudekh, ω is the wave frequency and the vertical wavenumber
m follows from a linear dispersion relation. The functionJn is a Bessel function of ordern
and the factorsUo andVo in its argument represent the barotropic tide amplitude. The factor
H(k, l) is the topographic spectrum. The convention that the dimensions of the spectrum are
indicated by its arguments will be adopted here, i.e.E(ω, k, l) is the frequency and 2-d hori-
zontal wavenumber energy density. Subscripts will be used to indicate specific moments of the
total energy, i.e.Ek represents the horizontal kinetic energy density.

The description of the energy flux in the horizontal wavenumber – frequency domain is:
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(2)
Bell (1975)’s quasi-linear model assumes infinitesimal amplitude bathymetry but includes the
barotropic tidal advection in the momentum equations. In the linear limit that horizontal tidal
excursions are smaller than the topographic scales, the internal wave energy density is propor-
tional to the topographic slope spectrum. In the advective (kUo/ω ≫ 1, small-horizontal-scale)
limit, the energy density of the internal tide is no longer proportional the topographic slope,
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but rather proportional to the amplitude of the topographicperturbations. The appearance of
this roll-off is key. It avoids an ultraviolet catastrophe of linear models (infinitesimal or finite
amplitude bathymetry) that lead to an unphysical prediction of infinite shear variance and en-
ergy when realistic (i.e. fractal) topographic descriptions are used. The roll-off also enables a
parametric assessment of the vertical profile of turbulent dissipation, Polzin (2004).

In the linear limit that tidal excursions are much smaller than the topographic scales, the
harmonics can be neglected and the remaining Bessel function expressed in terms of its small
argument expansion,J1(z) = z/2 + higher order terms, so that (2) becomes:
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If we further assume that the tide is horizontally isotropicand represent the velocity variance of
the tide as twice the barotropic kinetic energy,U2
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3. Internal Wave Scattering
The bottom boundary condition for a radiation balance equation takes the form:

CgzE
+ = CgzΦ(E−) + Eflux (5)

whereΦ(E−) represents a scattering transform,E− is the energy spectrum of the downward
propagating wavefield,E+ represents the upward propagating wavefield andEflux is prescribed
by a model of internal wave generation at the bottom. The scattering transform describes the
spectral redistribution of energy as a downgoing wave impinges upon a rough boundary. The
simplest representation views scattering as a linear process from infinitesimal amplitude topog-
raphy. That is, the topographic height is assumed to be smallrelative to the vertical scale of the
incident wave and the topographic slope is assumed everywhere smaller than the ray character-
istic slope.

The linear, infinitesimal amplitude scattering transform describing the redistribution of en-
ergy at the bottom boundary is given by (Müller and Xu 1992):
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The scattered spectrum is dominated by the first term on the right-hand-side of (6) (Müller
and Xu 1992) and thus is proportional to the topographic slope spectrum and the down-going
internal tide frequency spectrum. This response characterizes generation in the linear (non-
advective) limit with the barotropic tidal amplitude beingreplaced by theE−(ω) factor. Invok-
ing the dominance of this first term and using linear kinematics to express the bottom boundary
condition in terms of the horizontal kinetic (E−

k ), rather than total (E−), energy spectrum, (6)
becomes:
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Apart from a factor of 2, (7) is identical to (4). The factor oftwo appears to arise from the
internal wavefield consisting of kineticand potential energy in the scattering problem, whereas
conversion of barotropic horizontal kinetic energy is considered in the generation problem.
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4. Discussion
Müller and Xu (1992) characterize the scattering transform as resulting in anO(1) rear-

rangement of internal wave energy from large scales to smallwhen internal wave ray char-
acteristic slopes are similar to topographic slopes associated with the dominant bathymetric
scales, as is the case in the Brazil Basin for semi-diurnal frequencies [e.g. see Fig. 8 of Polzin
(2004)]. Direct evaluation of (6) using a parametric representation ofH(k, l) presented in Polzin
(2004) confirms Müller and Xu (1992)’s characterization. The scattering assists in preventing
energy from escaping horizontally beyond one bottom bounce. This conclusion is at odds with
St.Laurent and Garrett (2002)’s characterization ofO(10%) scattering efficiency with a “second
generation” calculation. Their calculation does not recognize that waves of a given frequency
are phase locked for the purpose of estimating the kinematicboundary condition that the ve-
locity be normal to the topographic slope with the attendantimplication that wave scattering
is linear in the frequency domain energy density. St.Laurent and Garrett (2002) treat wave
scattering as being linear in the vertical wavenumber - frequency energy density.

The strong similarities between baroclinic tide generation and the scattering problem point
to possible extensions of the infinitesimal amplitude scattering transform. In particular, the
concerns expressed in Polzin (2004) about 2-D, finite amplitude topography and an ultraviolet
catastrophe in the generation problem carry over to the scattering problem. Comparison of
observed spectra returned good agreement with predictionsbased upon (2) in that no dramatic
enhancement of the small scale wavefield associated with finite amplitude bottom boundary
conditions was in evidence. A justification presented for this was that, for 2-D finite amplitude
anisotropic topography, flow blocking in the minor axis (steep) direction may result in flow in
the major axis (shallow) direction. Comparison of observedspectra and dissipation data were
also deemed to be consistent with (2) in that the transition to the advective limit(kUo, lVo) >> 1
leads to a prediction of finite energy and shear variance, whereas (3) returns energy and shear
spectra whose integrals do not converge as the topographic spectra are not sufficiently red.
Inclusion of advection in the momentum equations in the scattering problem may provide a
physical rationale for effectively truncating the topographic slope spectrum, as opposed to the
ad hoc truncation invoked in Müller and Xu (1992) to avoid the issue. Following the logic
behind (1) and (6), I suspect a simple reinforcement of the downgoing internal tide and the
barotropic tide in terms of affecting the advective regime roll-off.

The implications of a local balance are significant. In the absence of other external energy
inputs (e.g. near-inertial inputs of energy by the wind, thegeneration of lee waves and energy
exchange associated with internal wave - mean flow interactions), the boundary conditions are
mediated by spectral transfers associated with buoyancy scaling and nonlinearity. Documenting
this spectrum could give important clues to how the background internal wave spectrum is
formed.
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