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Abstract

The issue of internal wave—mesoscale eddy interactiorevisited. Previous
theoretical work identified the mesoscale eddy field as ailplessource of inter-
nal wave energy and pseudomomentum. Adiabatic pseudomomédlux diver-
gences, in turn, serve as a sink of eddy potential vortieity@ntribute to potential
enstrophy (potential vorticity squared) dissipation.

A potential enstrophy budget for the Local Dynamics Expernitrof the Poly-
Mode field program is assessed using mesoscale eddy — int&wacoupling co-
efficients identified in a companion manuscriptgf 50 m? s—! anduv+]{,—ZKh &

2.5 x 1072 m? s~1. These estimates indicate that mesoscale eddy-interval wa
teractiongamayplay anO(1) role in the mesoscale eddy potential enstrophy budget
as enstrophy dissipation. This claim comes with significaneats, however, as the
Local Dynamics Experiment array data likely do not propeesolve the required
spatial gradients of the mesoscale eddy field.

Previous radiation balance equation formulations for daispling are exam-
ined. In these formulationgermanentransfer of energy and internal wave pseu-
domomentum for mesoscale eddy potential vorticity is esglbly nonlinearity in
the wavefield. Revision of these radiation balance equdbamulations to ac-
count for non-local effects returns predictions of =~ 50 — 100 m? s~! and
vy + ]{,—ZKh ~ —(0.008 m? s 1. The prediction for the effective vertical viscosity
is very sensitive to how internal wave energy is distributethe spectral domain.
The difference between observed and predicted exchandfecwods is attributed
to (i) differences between the observed internal wave specand use of the Gar-
rett and Munk model as a basis for the theoretical predicih(ii) uncertainty in
how to properly account for non-local effects in the modéhestes.

In accounting for non-local effects, length scale dependeupling coefficients
can be derived. With such length scale dependent coupligfficients, an argu-
ment is advanced that the estimates of enstrophy dissipat® biasedow and
thus the claim that mesoscale eddy-internal wave intenastnay play anO(1)
role in the mesoscale eddy potential enstrophy budget dsophy dissipation is
reinforced.

Finally, the process described here is best interpreted asnglifier of a pre-
existing or externally forced finite amplitude wavefieldw@tthan the spontaneous
imbalance of a linear field. Energy, pseudomomentum andcityrtan be trans-
fered from the slow manifold (geostrophically balanced o) to the fast mani-
fold (internal gravity waves) via linear wave propagatioasymmetric background
flows, but that transfer is reversible. The permanent tearnisfaccomplished by
nonlinearity on the fast manifold.



1. Introduction
a. Preliminaries

Winds and air-sea exchanges of heat and fresh water aratdlymesponsible for the basin-
scale currents, or general circulation of the oceans. lardwlachieve a state where the energy
and enstrophy (vorticity squared) of the ocean is not comtirsly increasing, some form of
dissipation is required to balance this forcing. While thee statement may seem obvious,
little is known about how and where this dissipation occurs.

Early theories of the wind driven circulation [Stommel (894Viunk (1950)] view the west-
ern boundary as a region where energy and vorticity inputimglsvin mid-gyre could be dissi-
pated. Those theories predict Gulf Stream transports that@proximately equal to the interior
Sverdrup transport [about 30 Sv, Schmitz et al. (1992)] Aatlare much smaller than observed
Gulf Stream transports after the Stream separates fromaast gabout 150 Sv, Johns et al.
(1995)]. Subsequent theories of the wind driven circutatiave attempted to address the role
of nonlinearity and baroclinicity in increasing Gulf Stredransports above that given by the
Sverdrup relation.

Hogg (1983) proposed the existence of two relatively baptrrecirculation gyres on either
side of the Stream that combine to increase the total trahdps now generally accepted that
the recirculation gyres result from the ‘absorption’ ofidgary and Topographic Rossby Waves
generated by the meandering of a baroclinicly unstable Swéfam. The ‘absorption’ process
is uncertain and is a focus of this manuscript.

A cornerstone of theoretical understanding concerns zoeah theory and the analysis of
wave propagation in parallel shear flows. A basic constraypically referred to as Andrews
and Mclintyre’s generalized Eliassen-Palm (EP) flux theorem

%+V-F:D+O(a3); (1)
states that in the absence of dissipatidrand nonlinearity (small wave amplitude limit),
and for steady conditions, the Eliassen-Palm fluis spatially nondivergenty - F = 0. In
terms of either linear internal wave or linear Rossby waveeRiatics, the Eliassen-Palm flux
F = kCgA, with streamwise (zonal) wavenumbiergroup velocityC, and wave actiom.
With respect to the mean fields, the attendant nonaccedartieorem (Andrews et al. 1987)
states that the mean flow remains steady ifF = 0.

The Eliassen-Palm flux theorem thus sheds light upon therpii®o process alluded to
above as mean flows can be forced by the gamut of processdsathate the EP flux diver-
gence. Hitherto, the oceanographic community has typgidattused on the effects of nonlin-
earity within the mesoscale eddy field [Rhines and Schop®1tYayne et al. (1996)].

The basics of nonlinearity for quasigeostrophic flows indd&batic and inviscid limits is
the cascade of energy to larger scales and the cascade ofigloémstrophy (potential vortic-
ity squared) to smaller scales, [Rhines (1979); Salmon&)]99rhe potential enstrophy flux
occurs without an energy flux so that the endpoint of the ephir cascadeould bedefined
by molecular dissipation, or, perhaps more likely, by ambtarbulent processes unrelated to
the enstrophy cascade. The energy budgetd beclosed by locating the energy sinks at the
boundaries, i.e. in bottom Ekman layers and through eddyedrayer interactions. The poten-
tial enstrophy budgetould beclosed by mixing potential vorticity at a molecular levathout
attendant consequences for the energy budget. But is tiei® tr



A second cornerstone of theoretical understanding is thiemaaconservation of potential
vorticity (Ertel 1942; Haynes and Mcintyre 1987). In the ebse of frictional and diabatic
effects, potential vorticity is conserved following a fluddement. What constitutes friction,
though, is not always obvious.

Despite the intellectual prejudice that views the oceantierior as inviscid and adiabatic, or
perhaps more precisely because, it seems prudent to quidnatifate at which interior processes
damp both enstrophy and energy. A companion manuscrii(P2009) examines the issue of
energetics. Here | engage in an inquiry of how internal wawegsses contribute as frictional
effects and serve to mix eddy potential vorticity.

The companion work identifies coupling coefficientsgf~ 50 m?> s~ andv,, + ]’Q—th &
2.5 x 1072 m? s~! from current meter data taken as part of the Local DynamiqseEment
(LDE) of the PolyMode field program. The purpose of this papdo place those estimates
into the LDE potential vorticity flux estimates of Brown et £1986) (Section 3). Theoretical
estimates of the coupling are reviewed and revised in SedtioLength scale dependence of
the coupling coefficients and array resolution issues avered in Section 5. A summary and
discussion concludes the paper.

2. Groundwork
a. The coupling mechanism

The required tools from the companion manuscript are: (iegrRlds decomposition of
the velocity u = (u, v, w)], buoyancy p = —gp/p, with gravitational constant and density
p] and pressurer] fields into a quasigeostrophic ‘mean) &nd small amplitude internal wave
(") perturbations on the basis of a time scale separatios: ) + ¢” with o) = 771 [T+ dt in
which 7 is much longer than the internal wave time scale but smdikan the eddy time scale;
(ii) a further assumption of a spatial scale separation depto invoke the ray tracing limit of
internal wave -mean flow interactions. In this limit the rayuations for the evolution of the
wavevectok = (k, [, m) following a ray path,

dk

—=-Vwtk W )

have solutiong oc e*(S2+5:-¢*)"/2 'in which S, = 7, + 1, is the shear component of strain,
S, = U, — T, Is the normal component,= v, — %, is relative vorticity and intrinsic frequency
w = o — k - 1. Thus a wave packet in a quasigeostrophic eddy field unde@fiamentation
process analogous to a passive tracer in incompressibléuZbDlence when the rate of strain
variance exceeds relative vorticity variance:

S2 452> (. (3)
Equation (3) is simply the Okubo-Weiss criterion [e.g.,\rarazale (1999)].

b. Potential Vorticity
The (quasigeostrophic) potential vorticity equation idijMr (1976)]:
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0z [0, + Oyv"v" + 0, (v'w" + %W)]
f

ST+ H (4)

_8y [aru//u// + ayu//v// + az (u//w// _

in which H represents modification of the mean buoyancy profile thraligbatic processes,
® is the geostrophic streamfunctig® = 7/f with Coriolis parameter) and pressure is
defined in the absence of the internal wavefield. For parbalsdo not make excursions into
the mixed layerH = 8Z%0Z(K,,EZ). In the background wavefield, = 5 x 10 m? s~!. The
potential vorticity fluxes associated with this backgrowdinpycnal process acting on the mean
buoyancy profile are an order of magnitude smaller than tkemied mesoscale eddy potential
vorticity flux divergence. Diabatic effects are thus exélddrom consideration below and the
issue will be revisited in the Discussion.

Assuming a scale separation alogal plane wave solution, Muller (1976) demonstrates
that the source terms in the potential vorticity equatiom loa cast as the horizontal curl of the

pseudomomentunk() flux divergence:

am[arvl/u//_i_ﬁyvl/v//+8Z<U//w//_|_%b//uu)]

0,0, + 0, + 0. (T — L) =

~9,V - / &k n(k,x,t) | Cg + 9,V - / &k n(k, x,t) k Cg (5)

with 3-D wave action spectrum = E /w, group velocityC, and energy density’ = £y, + E,,.
The right-hand side of (5) directly states that an internalevpacket spatially localized in
both horizontal dimensions carries with it a potential vorggiterturbation associated with the
envelope structure of the wave packet, Bretherton (196¢)jd&8 and Mcintyre (2005). A plane
wave solution having constant amplitude in both horizodi@ctions has no pseudomomentum
flux divergence and consequently no potential vorticitynaigre. A plane wave extending to
infinity in one direction has a pseudomomentum flux divergebat no curl of that divergence
field. Statements to the effect that internal waves have tenpial vorticity signature [e.g. Lien
and Miller (1992); Polzin et al. (2003)] assume this inémptane wave structure.

Finally, for steady conditions, small amplitude waves inaawy varying background con-
taining gradients in bothi( y) dimensions have a nondivergent action flfixk V - Cgn = 0
rather than a nondivergent momentum flux. As the two vargabiffier by the wavevector and
the wavevector evolves in response to the background flod/fial (2), one has the result that
potential vorticity can be traded between the fast maniftiid right-hand side of (4)] and the
slow manifold [the left hand side of (4)]. This result is ctent with the material conserva-
tion of potential vorticity, Haynes and Mcintyre (1987). gtbke is a question of how internal
wave processes contribute to a mixing of the coarse grainezhpal vorticity defined by the
Reynolds average.

c. Potential Enstrophy

The eddy potential enstrophy budget is obtained by first mposing the low frequency
field into mean and mesoscale eddy components ¢ + ¢’ with ¥ given by an additional
time averagey = 7! [J ¢ dt, over many eddy time scales. In practice, the averaging time



is defined by the length of the observational record. Multigd (4) by the quasigeostrophic
perturbation potential vorticity’ and averaging returns:

14
S AU VAT = ¢ [0,V - /d3l<: n(k,x,t) | Cg + 9,V - /di’»k: n(k,x,t) k Gy (6)

in which d - represents the material derivative following the geostioflow, V,, is the 2-D
horlzontal gradlent operator and,7 is the background potential vorticity gradient.

If closure of mesoscale eddy - internal wave coupling throughdtadient relations can be
justified, in which—2u"v" = v),(v, + @,), —u"W" = VU, —u"u" = Vi, —0V"V" = VD,
—u"V' = Kpb,, and—v"V’ = Kb, considerable simplification results. The right-handesid
of the enstrophy equation, using the thermal wind relatiod etegrating by parts, can be
rewritten as:

I IS 7 e S Ve P e YR
’+11’q’~th=—§Vh[(Cx+Cy)+z—Cz]—[ +  Hll62 + (Gr. + 5,00 ()
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3. The LDE Enstrophy Budget

We are now in a position to ask how the generation of interrealenpseudomomentum by
eddy—wave coupling can be cast as a nonconservative teta addy enstrophy budget (6) and
thereby be linked to potential vorticity dynamics. Browrakt(1986) use the LDE array data
to estimate the eddy thicknesg [ fy(¢'/p.).] and relative vorticity (') fluxes:

un = (—0.79 £ 0.53, —1.45+ 0.71) x 107" m s~*
w( = (=157 +£1.51,1.95+ 1.54) x 107 ¥ m s>

(8)

A map of planetary vorticity on the potential density= 27.0 surface in Robbins et al. (2000)
impliesV;,g = (0, 8) = (0,2x 107 m~! s71) at the level of the current meter data (the density
surface is at approximately 700 m and the current metersoaegdd at approximately 630 m
for these potential vorticity flux estimates), so that

W Vg —25x 107873,

In order to maintain the observed planetary vorticity figldsteady state, these fluxes are
balanced by nonconservative mechanisms acting on the edidly These nonconservative terms
will be evaluated assuming that the mesoscale eddy — irtesnae coupling can be cast as a
viscous process:

1 e — f2 f2 __
s of (6) = —gullC+ ) + 2200~ v+ g K + = 02 + )
(CZ+{?) =6.7%x 10 m~%~
f2

2002 =25 x 107* m™2s2

z

1The LDE array is discussed in detail in Bryden (1982) and Bramd Owens (1981). See Section 5 for
commentary regarding the limitations of the array datalas work.
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(b2 +b2)=1.9x 10" m %>
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The relative vorticity’s horizontal gradient variang? + ¢;?) was estimated as twice the
squared difference of the two possible vorticity estimatie825 m, divided by the separation
between the northeast-center-northwest and northwestresouthwest triangle centers. The

vertical vorticity gradient variance?) was estimated from the one possible (northeast-center-

northwest) triangle. The horizontal thickness gradiemtavece 62, + b;2) was estimated as

f?(u2 + v2) using data from the central mooring and current metergéaicat approximately
400, 600 and 800 m. These gradient variance terms were éstitog Fourier transforming the
respective time series and then integrating to a spectrahmim at about 0.3 cpd. Following
the previous discussion, the interior viscosity coeffitseare taken to be, = 50 nt? s~! and
vy + 5Ky =25x10° m? s,

The grand total of potential enstrophy dissipation is:

r.h.s. of (6) = —1.6 x 107573

which is of appropriate order of magnitude to balance thexaséed enstrophy production. Inter-
nal waves may therefore play a significant role in the monmmargastrophy/vorticity balances
of the Gulf Stream Recirculation.

There are significant issues about whether the potentiadogrigy gradient variance is re-
solved and whether representing mesoscale eddy — intemanad woupling as a length scale
independent viscosity provides an accurate estimate gidtential enstrophy dissipation rate.
These issues will be entertained after considering thisatlehodels of the coupling process.

4. Modelsof Coupling

A complicating factor is that the momentum flux anomaly ansbagted vorticity pertur-
bation induced by a wave packet in the linear analysis arrséye in the sense that the mean
state is unchanged after it's passage. Muller (1976) pesvihe insight that, if the result of
nonlinearity is to relax the wavefield back to an isotropitet it is possible for the associ-
ated vorticity perturbation to become permanent: nontiteeanables anettransfer of energy
and vorticity between mesoscale eddies and internal waMes. insight is at the heart of the
calculation presented below.

The evolution of the internal wavefield is governed by a raginabalance equation:

Ln=T.+5,—-—S5, =85 (9)

in which £ is the Liouville operatoll = 0, + (Cg +1) - Vx + 1 - Vi With group velocityC, =
Vxw and refraction rate given by the ray equations: = dk/dt = —Vyo (2). The termT,
represents transfer of action by nonlineariy,represents sources asgdsinks of wave action
(n). This description assumes the wave phase varies much @iy than the background
velocity field and stratification profile. In the absence sesr sinks and nonlinearity, (9) states
that the action flux is nondivergent:

/d3k£n:V~/d3k; (Cy + 1) n(k,x,t) = 0.
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Given the identification of the refraction ratevith the eikonal relation (2), which in turn
has solutions given by the Okubo-Weiss relation (3) for asytnic flow fields and wavefields
dominated by Doppler shifting, it should be of little suggithat (9) can admit to a linear wave
stress — mean strain relation.

a. Muller (1976)
1) OVERVIEW

The quasigeostrophic potential vorticity (4) and radiati@lance equation (9) form a cou-
pled system. Miuller closes the system by invoking pertiimbeexpansions associated with

andn: 59
(Lo +0L)n® +n® 4 . ]:S[(>]+5—n[ P+ n® 4] (10)

inwhichLy = 0, + Cg - Vx + r(® .V, 6L is the perturbation introduced by the mean flow and
0S/én denotes the functional derivative. The zeroth order eqonadiescribes the generation,

propagation, interaction, and dissipation processesstatip the background internal wave-

field. The first-order equation describes perturbationsé¢ed by wave—mean interactions and
the relaxation of those perturbations by nonlinearity. Tdrenal solution forn(! is:

nt = —D7sLn'Y] (11)

in which D=1 is the functional inverse oD = £, — 65/én. The keys to recognizing the
importance of nonlinearity are (a), # = 0, the average perturbation i) = 0, and (b)
nonlinear transfers conserve energy:] and pseudomomenturk#), not their spatial fluxes.
Wave propagation in geostrophic background flows is based apnondivergent action flux.
In conserving energy and pseudomomentum, nonlinearityeseas a nonconservative process
relative to the issue of linear wave propagation.

Muller assumes the zeroth order state is independent afdrdal azimuth, and the effect
of the first-order wave fluxes on the mean is estimated by sutisg the first-order wavefield
(nM) into the mean source terms. These are formally written as:

B 9
3 i (0)_
/d A L (12)
MWB = / &k mP D‘l[k“%im”(ma%ﬂ“] : (13)

Expressions fofV andm” are algebraic functions of frequency and wavenumber angizee
in Muller (1976). The notation attempts to follow that ofuNEr (1976) and summation over
indicesm anda is implied. The usage of, 5 andm in (12) and (13) should not be confused
with the definitions herein.

Formal inversion obS/dn [(10) and (11) ] is intractable if nonlinearity is assumed®
represented by resonant wave—wave interactions and aléwin kinetic equation. Further
progress is possible by interpretin§/Jn as a relaxation time scale:

o DU =7x(k) . (14)
By casting the first order balance as a spatially and temlydoalal process, i.e. assuming that

e 7r(k) does not depend upon the past history of a wave packet,
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and further assuming that
e (k) = 200 hours, independent of k,

Muller is able to make analytic progress and establish tiagine estimates of the coupling
coefficients in terms of correlations between momentum faspectra{'(m, w) + iQ(m,w)],
power spectralP(m,w)] and the mesoscale gradients (Muller 1976):

C ” //(m (4}) —+ ZQU”U" (m7 ) and @x + Uy = SS,
Pu//u// (m7 CU) v (m, ) and ﬂ - @y = Sn7
[C(u//w//(ﬂ’l,7 (U), C’U"w"( s (,4})]
]

m and
[Cu”b” (m7 W), CU”b” (m7 (,U)

[@., 7.]; and
and  [by, b,] .

(15)
A zero correlation is implied between
Pu//uw (m, w) + Pvuv” (m, w) and Uy — ﬂy = C .

The physical content of this result is contained within (Bsymptotically, the rate of strain
filaments a wave and the resulting momentum flux perturbasiomiquely related to the sign
of the rate of strain. Relative vorticity simply rotates ti@izontal wavevector. The resulting
momentum flux perturbations can have either sign and heea/trage kinetic energy—relative
vorticity correlation is zero.

Integration over wavenumber and frequency returns a sictpdeacterization of the cou-
pling as a viscous process, for which2u"v” = v, (v, + 1,), —u"w” = v,U,, —u"u" = vy,

—0"" = v, —u"b’ = Kib,, and—v"b = Kb, .

The disconcerting part of the story is that the quantitgpredictions made by Miller are
inconsistent with current meter observations obtainedaats gf the PolyMode program. In
one case (Ruddick and Joyce 1979), the observed correladiwreen.”w” and vertical shear
u, was more than an order of magnitude smaller than the predictn another (Brown and
Owens 1981), the observed correlation betwegerf and eddy gradients, +u, was more than
an order of magnitude larger. See Section 1.d of the compananuscript (Polzin 2009) for a
summary of this segment of the observational literature.

2) LOCALITY AND TIME SCALES

My opinion is that the primary shortcoming of Muller (1976)hat it was written from the
perspective that the thermocline was characterized byydheal diffusivity of K, = 1 x 10~*
m? s, which implies a time scale of 5-10 days (200 hours) for nuedr interactions to
drain energy out of the background internal wavefield. Sswveecades of research (Polzin
2004a) has since demonstrated that the background wavefiakSociated with a diffusivity
of K, = 5 x 107° m? s™!, with corresponding time scale of 50-100 days. This is @iuci
for Muller’s calculation. Muller's scheme invokes theilélp of eddies to create anisotropic
conditions out of an isotropic background wavefield. Nosdinty is then invoked to relax the
perturbed internal wavefield back to an isotropic state itisdhis relaxation that creates a per-
manent exchange of pseudomomentum for potential vortitifigh order of magnitude larger
relaxation times, larger scale internal waves can progatigbugh an eddy-wave interaction
event and on to another one in which the original wave-meatuiation is erased, providing

8



minimal permanent exchange of pseudomomentum and vgrfidiese propagation effects can
be substantial.

Muller proposes thaif nonlocal effects were to be considered important, an orfleray-
nitude estimate of the functional—! is provided by :

D= D =7/ + (tr/7)] - (16)
The factorr, represents a propagation time scale:

Oz 0y ((0)z
7_70—129+ g9 _ 4 79 9

17
R R o (17)

in which L* LY, H and Q! represent the spatial and temporal scales of the mesosidye e
field. The direct implementation of (17) is not straight fand: it does not include the presence
of vertical boundaries or buoyancy frequency turning omdr does it address possible com-
plexities of the observed mesoscale field (Freeland andd3k86), i.e. the possible coupling
of barotropic and baroclinic modes and westward (but nog¢ywatd/equatorward or vertical)
phase propagation. Since the path to a realistic accouistimgt clear at this juncture, possible
resonance effects will be ignored (I will assufe= 0) and the propagation time scale will be
implemented in the horizontal and vertical coordinatesasely.

Owens (1985) estimates a zero crossing of the transversetyatorrelation function of 100
km from the LDE current meter data. The longitudinal velpaorrelation function falls off
more slowly and thus the longitudinal length scale is natikesd. For the purpose of producing
theoretical estimates of the coherence functions, thebotal propagation time scale will be
naively estimated with0 < L < 200 km. Wunsch (1997) finds that gradients of low frequency
velocity are largely confined to the first several verticald®s, and thus a vertical scal&)
representative of the baroclinic modefL (= 700 m) is assumed for the vertical propagation
time scale.

Here a cascade representation of nonlinearity Polzin @0@4ll be used to define the
relaxation timerg. This formulation is based upon an energy equation:

OE*(m,w,0) n I[CgE*(m,w,0)) n OF*(m,w,0)
ot 1 0x N om (18)
%[F¥(m,w,9) — F*(m,w,0)] .

Energy densities associated with opposing wavevedt@nsd —k are represented by and
E~; F* is the transfer of energy density to smaller vertical scales superscripts denote the
sign of the vertical wavenumber and azimuthal argl&he group velocityC,) is assumed to
be sign definite and the direction of propagation is given bgraesponding-t) prefactor. The
right-hand side of (18) serves to conserve pseudomomerfominternal waves, pseudomo-
mentum is a signed quantity. A choice was made in this cagegulesentation (18) to conserve
pseudomomentum by backscattering wave energy betweenawesvof similar, but oppositely
signed wavevectors, at a rate in proportion to the spectrasport of energy to smaller scales.
The backscattering is consistent with observations okasing vertical isotropy at small verti-
cal wavelengths.

| regard the cascade representation as a heuristic highnwantger closure scheme rather
than a representation of resonant interactions. As a Hieudsscription, frequency and az-
imuthal domain cascades are neglected. The frequencydmaschelieved to be of secondary
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importance [Polzin (2004a)] and observational recordsataantain information from which
an azimuthal cascade could be defined. If the azimuthal daessets a shorter timescale, it
would be more appropriate here. However, it is difficult te Bew either might exceed the time
scale defined below based upon the vertical wavenumbepivass

The transfer* is given by:

FE(m,w,0) =am® N~! ¢(w) E¥(m,w,0) E(m) , (29)

with ¢ = 0.20 and
Pw) = (W = F2)/(N? = ?))2

The factorE(m) = fjfv T EY (m,w,0)+ E~(m,w, d)] dwdf is the energy spectrum integrated
over frequency and horizontal azimuth. The functional representation denoteddinplies
increasing transport with increasing wave frequency, agested by the observations. The
transport magnitude set lay= 0.20 is taken from the validation studies of Polzin et al. (1995)
and Gregg (1989).

| address the issue of defining the nonlinear time scale feciip moments of the momen-
tum flux tensor by introducing a spatially homogeneous yistdropic perturbatioth (m, w, 0) =
E* — E~. The governing radiation balance equationfobecomes:

88—? + %am‘lN_IQbE(m)A = —am*N'¢gE(m)A (20)

Simply backscattering energy froknto —k does not alter the momentum flux: whike&” /w
and—kFE/w have opposite sign€;,(k) = —C,(—k), and a momentum flux anomaly is not
erased by backscattering. In order to define the time scakecan either follow McComas
and Muller (1981b)’s example of scaling the flux divergeasé,, F' ~ F'/m, or integrate (20)
and the associated equation f6r + £~ over frequency and horizontal azimuth and solve the
coupled system of equations as in Polzin (2004b). Eithergutore returns

Thi = ———t =am’ N '¢(w)E(m) . (21)
Because of the non-specificity of the momentum flux anomadgaated withA, this cascade
formulation permits identification ofz as a generic time scale for any specific moment of the

momentum flux tensor.

3) THE HORIZONTAL DIMENSION

In the hydrostatic approximation, the horizontal viscpbiécomes:

B 1 (ra/r) Ok (22)

in which &, represents the magnitude of the horizontal wavevector coemts k;, = (k? +
l2)1/2
The zeroth order wavefield is represented using the GamdtMaunk (GM76) distribution,
B 2f 1

EQ (m,w) = ) v o T (23)

2there is a typo in (Polzin et al. 1995) that leads teeing misquoted as = 0.1 in (Polzin 2004a).
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with a slight modification. The spectral level is set by theensional constan® so that the
total energy is30 x 10~* m? s72 at N, = 3 cph. A low-wavenumber roll-offn, equivalent
to mode-4 (not mode-3) is used to obtain both an appropraaté €nergy and high vertical
wavenumber shear spectral densityg/2r s=2 rad nt'). See the Appendix of Gregg and
Kunze (1991) for details. The relation between the 2-D enspmectrum and a 3-D isotropic
action spectrum dictates:

ng” (m,w) = By (m, w)/knw , (24)
so that withr, = L/C}' (22) becomes:
fNQ/ / 4w? — 3f?] dwdm
i 25
4ma wsms w2 + N3L(;n;irgb2)]z] (25)

Numerical evaluation returns
vp 22 50 ms! (26)

for parameters3(1° latitude, N=2.6 cph,L=100 km) appropriate to the Polymode LDE data.
The parameter regime is such that numerical evaluationsalggests an approximate linear
dependence upol, spectral amplitudés and eddy length scale. The viscosity coefficient
depends only weakly upon the strength of the cascade pragemsd the Coriolis parametgt
These dependencies come with a note of cautibey may pertain only to the GM spectrum
Muller's estimate was;, = 7 m? s~!, lower than that estimated here. That low estimate results
from a relaxation timey, significantly smaller than implied by (21).

Direct comparison with the observed coherence functioasgsrted in the companion paper
(Polzin 2009) can be had be multiplying the integrand of (&b)he appropriate strain estimate
[[S,]=141x10"%s"or[ S, | =1.07 x 10-% s~!] and dividing by the GMP'/2>P/2 power
spectral density functions. So constructed, the modelreoice function estimates mimic the
observed estimates (Fig. 1) reasonably well. Coherenadifumestimates tend to zero as
approacheg and attain levels of 0.05-0.1 within the continuum freqydoend. The observed
cospectral estimates tend to increase towards higherdreguvhereas the theoretical predic-
tion decreases. Coherence function levels uging 100 and L = 200 km tend to bracket the
observations.

A second comparison can be made by comparing cumulativgraiseof the observed co-
herence functions normalized by the respective rate ahsivith their counterparts based upon
(25), Fig. 2. In this instance semidiurnal frequencies malgggnificant contribution to the
shear stress — rate of strain relation and so a second caopasi made by excluding semi-
diurnal frequencies from the cumulative integrals of theeskied coherence functions. In so
doing, the frequency integrated estimates of horizonsdosity of 30-40 rhs~! are bounded
by the theoretical estimates with length scales of 50-100kao details are worth noting. The
first is that near-inertial frequencies make a larger cbation in the observations than in the
theory. The observed background frequency spectrum frasmegion (Polzin et al. 2007) con-
tains significantly more near-inertial than the GM modelmupdich the theoretical estimate is
based. Second, the shear component of the rate of straibshexdensive axis oriented along
in the NE-SW and NW-SE directions. This is essentially gar&b the crests and troughs of a
topographic Rossby wave noted at the beginning of the LDEaly be that the longer length
scales in this direction enable a coupling between the t@pdgc Rossby wave and a low-mode
baroclinic tide emanating from the Blake Escarpment (Hed&77).
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The agreement is impressive given the relatively unsoighistd treatment of the relaxation
mechanism, the propagation time scale and unquestionathptien that the GM spectrum is
an adequate representation of the local background wavefiel

4) THE VERTICAL DIMENSION

In the hydrostatic approximation, the effective verticalcosity becomes:

For a GM wavefield (23) and with, = H/C;, this translates into:
" f / / (w? — f2)[2m2w? — 3(m2 + m?) 7] dwdm |
w3m3(m2 + m?) w2 + [N2(m£+$gff;—f2)1/2]2]
(28)

Direct comparison with the observed coherence functiomese¢ is possible by multiplying
the integrand of (28) by the observed rms shé@r + v2)/2]'/? = 1.42 x 107 s'. The
resulting coherence estimates are near zero at high fregpgeand negative at near-inertial,
and qualitatively mimic the observations, Fig. (3). Theutesg integral is distinctly negative,
Uy + JC—ZKh = —8x 1073 m? s!, rather than the observed positive valug JC—ZK;L =3x1073

m? s~!. The difference between observed and predicted exchargfeiceents is associated
with small but distinctly positive coherence function esdies at high frequency, Fig. 3, and
dominance of the/w” andv”w” cospectra by high frequency contributions, Fig. 4.

The near zero values of the coherence function predictismguhe GM76 spectrum are
easily appreciated. In the high-frequency, high-vertieatenumber limits, a power-law char-
acterization of the 2-D energy spectrum and resulting 34i®aspectrum results in:

Es(w,m) oc o m™ — ng(k) oc () ()~ .
]Ch m kh
For the GM76 spectrunis, t) = (2,2) andns(k) o k; *m°, and thus flux-gradient represen-
tations in the vertical wavenumber domain will predict miail spectral transports (McComas
and Bretherton 1977).

The observations and theoretical estimates of the ventikahange coefficient are both
much smaller than Muller’s prediction of, + Kh =~ 0.45 m? s~1. Muller’s large estimate
is a product of neglecting propagation effects for buoya‘meguency waves of large vertical
scales. That local treatment of (27) includes regions ofgrectral domain, = m,) having
Omn # 0.

Caveats about the relatively unsophisticated treatmetiteofelaxation mechanism, uncer-
tainties regarding the propagation time scale and the wstigued assumption that the GM
spectrum is an adequate representation of the local baskdnvavefield again pertain.

b. Variants of the Mller (1976) model

1) RuDDICK AND JOYCE (1979)

Ruddick and Joyce (1979) note that Muller (1976)’'s zerattheo wavefield is specified
as the isotropic universal (GM) model in an Eulerian frequyecoordinate. They argue that
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the relaxation process could very well be toward an equulibrspectrum with an intrinsic
frequency coordinate. They find just such a solution to thigateon balance equation and note
that it has a nondivergent momentum flux. Their interpreteis that this 'noninteracting state’
provides much smaller deviations from equilibrium which,turn, implies a much smaller
viscosity.

My issue with Ruddick and Joyce (1979)’s comments is that thierk concerns a greatly
simplified vertical balance in which the mean velocity is sidered to be a function only of the
vertical coordinatefu, 7] = [u(z), 0]. In this symmetric state, critical layers are approached as
w — f and wave momentum is conserved (Andrews and Mclintyre’srgéned Eliassen-Palm
flux theorem). The vertical wavenumber experiences lineaxth with time and is independent
of the evolution of the horizontal. In the three dimensigmablem under consideration here,
the critical layer is altered to a condition that the aspatibrof the wave and mean flow be
similar and wave momentum is not conserved. The verticabwamber evolves exponentially
in time and is slaved to the horizontal. The behavior of theemaean interaction problem in
three dimensions is different from that in one or two, Po(2808).

2) WATSON (1985)

The genesis of Watson (1985) is a recognition that there im@chanism in the resonant
interaction scheme of McComas and Miller (1981a) for tpantsng energy within the high
vertical wavenumberl(00 > X, > 10 m) near-inertial { < w < 2f) frequency band toward
even higher vertical wavenumber. The purpose of Watson5)1®8s to formulate a radiation
balance representation of wave—mean interactions in #mnsl o transport action to a sink at
Ay < 10m.

An ingredient of that representation is an estimate of thozd and horizontal viscosity
representing coupling of internal waves to mesoscale sddibe coupling coefficient is esti-
mated from kinetic theory as a variant of the induced difasnechanism: a near-inertial wave
scatters from a (much) lower frequency and much larger snakoscale eddy field to transfer
action to another near-inertial wave of nearly identicav@aimber.

A fundamental objection to this effort is phenomenologi¥ghtson (1985)’s representation
of wave—mean interactions assumes that the high wavenuneaerinertial waves execute a
random walk associated withanyindividual scatterings. My perception is that such waves ar
subject to nonlinearity and will dissipate irsangleevent. In Polzin (2008) | documentg =
60 m near—inertial wave interacting with mesoscale eddiesmases of a dissipation time scale
through finescale parameterization schemes are 2-3 daykigowave, which is shorter than
the O(10) day time scale for advection to terminate the interacticenevNonlinearity makes
a significant contribution in this band even though thereagepresentation in the resonant
interaction scheme for transferring this variance to senaltales.

3) THE BOUNCE

As formulated, these models assume a constant buoyanayefieg Waves are free to
propagate in the vertical and will terminate an interacgoent on a time scale, = H/Cj.
Waves of sufficiently high frequency, however, will encamturning points where their in-
trinsic frequency approaches that of the local stratificatate N(z). Curiously, the negative
vertical stress - vertical shear correlation occurs foregathat potentially encounter a buoyancy
frequency turning point (Polzin 2009). The presence ofitgpoints and a boundary can give
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rise to a variant of the wave capture scenario.

In a deformation strain horizontal wavenumber magnitugenggotically increases. Verti-
cal wavenumber undergoes either an increase or decrease dmth surface reflection or turn-
ing point there will be a sign change and opposing time elaudf the vertical wavenumber.
Over many reflections and turning points, horizontal waveber magnitude increases, the ver-
tical wavenumber remains nearly constant and consequiatlintrinsic frequency increases.
Such a wave will become progressively trapped in regionsgifdr and higher buoyancy fre-
guency. A high frequency wave reported in Joyce and Stalt@f4) may represent such an
event. It is not clear that this phenomenology is approglyatepresented in (16).

5. Array Resolution Issues

The LDE array was specifically designed to estimate termsamuasigeostrophic potential
vorticity equation with mooring spacing to optimally samyhe deformation scale horizon-
tal velocity gradients. One measure of the quality of theZuomtal gradient estimates for a
guasigeostrophic flow is given by Bryden (1976):

R | Uy + Ty |

| T [+ [y |

in which horizontal non-divergence impliéx ¢/ f) values ofR. Record length estimates &f
are 0.3-0.5, (Brown and Owens 1981), an order of magnitudeiddhan the Rossby number.
The largeR values result in part from spatial aliasing as the horizatt@rgence has significant
contributions from spatial scales smaller than those thatacterize the velocity. The lack
of adequate spatial resolution implies the estimates afivel vorticity gradient variance and
enstrophy dissipation are biased. In contrast, there isdetecy for the potential vorticity flux
estimates to be coherent across the array (not shown hegying that the flux is dominated
by relatively large horizontal scales.

To assess the bias of the enstrophy dissipation estimatesui@ the following consistency
check. The estimates of kinetic energy, enstrophy, ensyrgpadient variance and enstrophy
dissipation can be represented as the following momentsedfinetic energy spectrum:

variable estimated “fully resolved” (29)
E, / :OEk(kh) dk / " Be(kn) i,
2¢? 2 / Zouok,%smc?(%)mkh) dky / V(kn) K2 Ep (k) dk
¢? / :Ok,‘ismc?(kif ) By (k) dk /0 k2B (k) dkp o In kS
| ViC |? /:Okﬁsmcﬁ‘(k};ifd)Ek(kh) dky, Oki ki By (k) dky, o< (kf,)?
%y | Va2 % / :Oyokﬁsinc‘l(%)Ek(kh) dky % /O ) B (k) b o kS

Enstrophy and relative vorticity gradient variance estesgresented in Section 3 used a first
difference scheme. The transfer function for a first diffee operator over a length scdle;
differs from the gradient by factor ofinc(k,Lsq/27) in which sinc(x) = sin(nx)/mx. The
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observed enstrophy gradient variance is approximately. ;,)* rather than¢/L4)?, which is
consistent with the enstrophy gradient variance being datad by scales smaller thap and
raises concerns that those estimates are not resolved.tifmesthe degree of bias, the first
difference estimates can be compared to 'fully resolvedmiies determined by integrating
the formulae to scales/k; where the spectrum rolls off due to dissipation. The sddle
can be identified as the scale at which eddy potential vortisitransfered to relative vorticity
associated with the dipole structure of a wave packet. Tlite filifference estimates would be
considered resolved in the two agree.

The estimates of energy and enstrophy dissipation are dokipt of the gradient variances
and a coupling coefficient. From (25) one can anticipate threzntal viscosity to be scale
dependenty,  k;'. The observed viscosity represents the coupling betweewdve stress
and resolved horizontal gradients, which are characeiimescales of approximateli,/2.

Thus as ammd hocgeneralization:
2v,

knLg’

with v, = 50 m? s~! . Within the nominal enstrophy cascade regimg(k;) o k;;?’, so that
integrals representing enstrophy, relative vorticitydigat variance and enstrophy dissipation
do not converge unless an explicit dissipation scalg is invoked.

Particularly problematic is the attempt at estimating thetephy dissipation as the product
of a significantly underestimated relative vorticity grali variance with a horizontal viscosity
(v,) unrepresentative of the scales which dominate that vegiarmfo be quantitative | have
taken the kinetic energy spectrum from AVIS@veraged over an extended area of the Western
North Atlantic, extended the spectrum at wavenumbers gréaan3 x 10~ m~! with a k;*
power law, normalized the spectrum to the LDE array eddytlgrenergy estimate at 800 m
and then integrated the spectral moments o@titd:; = 10 km. The factor of two agreement
between the array estimates and the nominal finite differemements, Table 1, lends credence
to the methodology. My first difference estimate of enstyogissipation is almost an order of
magnitude smaller than the “resolved” moment fdr,d spectrum.

| conclude that the enstrophy dissipation estimate may hsebi low. But then we are
precisely where we started: an assertion that mesoscale-eddernal wave couplingnay
result in enstrophy dissipation making @1) contribution to the enstrophy variance equation.

Similar considerations apply to the vertical coordinatédble theoretical estimates can be
formulated and length scale variability identified.

v(ky) =

6. Summary and Discussion
a. Summary

Current meter array data from the Local Dynamics Experir{leDE) of the PolyMode field
program were used in investigate the coupling of the mesoscaly and internal wave fields
in the Southern Recirculation Gyre of the Gulf Stream. Thepting was characterized as a
viscous process. In terms of momentum budgets, the trankéeidy vorticity to internal wave
pseudomomentumayplay anO(1) role in the eddy potential enstrophy budget. These results
may be specific to the LDE region, which is situated at the @xihe Southern Recirculation
Gyre. Further research is required to extrapolate thesétses

3Spectrum supplied by Rob Scott, p.c. 2008.
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A modified version of the mesoscale eddy—internal wave é¢ogphechanism described
by Muller (1976) is used to predict an effective horizontilcosity of 50-100 rhs~!. This
result is in good agreement with observations obtainedhdutie Local Dynamics Experiment
(v, = 50 n¥ s71). Similar modifications to Miiller’s theory for the coupdjrbetween vertical
eddy gradients and vertical wave fluxes results in a prexfidor an effective vertical viscosity
of —8 x 107 m? s~! which is inconsistent with the observed value2af x 103 m? s71. A
possible reason for this discrepancy lies in the differerimween the GM76 spectrum used to
make the theoretical prediction and the observed spectrum.

Subtle differences between the regional background speaand the GM model are docu-
mented in Polzin et al. (2007). Most notably, the observettgpaund spectrum is nonseparable
in the frequency-vertical wavenumber domain with neartiaewaves being much more band-
width limited than the internal wave continuum. High waverher/frequency power laws of
the observed spectrum also differ from the GM model. It ifidift to further refine the theo-
retical estimates of eddy-wave coupling without having & 2ertical wavenumber—frequency
spectrum on which to base the calculations.

This study comes with many caveats:

e First and foremost is that the LDE array does not spatialiplie the enstrophy gradient
variance. However, the estimate of enstrophy dissipatmpears to be biased low, and
thus the claim that enstrophy dissipatimayplay anO(1) role in the enstrophy budget
is reinforced.

e The maximum observational record length for the LDE arrata adliscussed in Section
(3) is 15 months, but the failure of certain instruments ceduthe usable record length to
225 days. Stable estimates of time mean quantities typicadjuire averaging periods of
order 500 days (Schmitz 1977). The mean quantities quotedrapresent record length
means with associated record length uncertainties. Se#eBr{1982) and Brown et al.
(1986) for further discussion of these uncertainties. kenbbwever, that the available
15 month estimates are consistent with the 225 day recordsr(@awithin uncertainty).
Any differences do not change the interpretation presemtee.

e The estimated viscosity coefficients could vary signifigam response to variability
in the amplitude and spectral characteristics of the iewavefield. In the scenario
considered by Muller (1976), the net transfers of energyranmentum between eddies
and waves is accomplished by nonlinearity relaxing wawvefggrturbations back to an
isotropic state. The strength of the nonlinearity will viagyin response to variability in
the background wavefield. Characterization of variabilityesponse to spatial/temporal
variations of sources and sinks is an open question.

e The characterization of enstrophy dissipation throughxadi@adient relation (15) neces-
sarily omitted flux divergence terms and thus the flux-gnaidearacterization need not
completely characterize the eddy-wave coupling process.

e The characterization of the coupling through a flux gradielation applies only to quasi-
geostrophic flows in which the flow field is horizontally noneligent toO(Rossby num-
ber squared). Symmetric flow structures such as rings asdietnot coupled in the same
manner.

The discussion below tries to flesh out some of the broaddidgatns of eddy-wave cou-
pling.
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b. Discussion
1) THE END OF THE ENSTROPHY CASCADE

Potential vorticity is conserved in the absence of diabaticesses and friction. The dom-
inant intellectual prejudice in Physical Oceanographyisegard frictional processes as being
turbulent (essentially diabatic) in nature and sufficiemtbak within the oceanic interior that
potential vorticity modification following a parcel occursly at the boundaries.

Diabatic mixing occurs in the ocean when small-scale sH#srseme strong enough to over-
turn the stable stratification. Geostrophically balancddies are not efficient at generating
small-scale shear as enstrophy conservation arrestsathe&fér of energy to small scales. At
small scales the mesoscale eddy kinetic energy spectruessgih a power law ofy (k)

k, . Thus the shear variance is independent of scale and tijpamismall that small-scale

overturns (e.g., Kelvin-Helmhotz billows) do not develdghe picture is one of potential vor-

ticity anomalies in the enstrophy cascade being filamewrt@thpsing, and eventually removed
by ambient diabatic processes.

If, on the other hand, mesoscale eddies are coupled to thnaitwavefield as described
here, then the enstrophy cascade can be short-circuitedexidnange of eddy relative vorticity
for wave pseudomomentum accomplishes enstrophy dissipalihe removal of energy into
the internal wavefield implies a diabatic dissipation medtira (ultimately through internal
wavebreaking) even though the direct eddy—wave intenacsiadiabatic.

One relevant question is, “at what scale does mesoscale-édligynal wave coupling com-
pete with nonlinearity on the slow manifold?” This is difficto address with the data at hand,
but consider an example (Wilson and Williams 2004) of an lided eddy resolving model
that has been used to explore eddy dynamics and the conseguetidies have for the mean
circulation. A tentative generalization of such model batiais that eddy fluxes typically are
along, rather than across, mean potential vorticity caistcand that the mean tends to a state
of potential vorticity homogenization, in which the dowradrent potential vorticity flux con-
tribution to the enstrophy budget is small. Wilson and &ittis (2004) attribute this behavior
to the eddy advection of enstrophy. The dominant balanckeim enstrophy equation is be-
tween eddy advection (nonlinearityy, - V¢, and enstrophy productian¢’ - V. The model
used in Wilson and Williams (2004) employs a biharmonic mgxof momentum. This func-
tional representation permits the creation of high ens$tyogt the deformation scale and its
dissipation at the smallest scales: large enstrophy gresdége permitted and eddy advection of
these gradients balance the down gradient potential wtyrfluxes. Eddy enstrophy can then
be carried to the boundary where it is efficiently dissipat€de biharmonic frictional coeffi-
cientA, = 2.5 x 10° m* s~! used by Wilson and Williams (2004) implies a deformationeca
(Lg = 5 x 10* m) Reynolds number of:

u'LY /Ay = 2500

with rms velocityu’ = 0.05 m s~1. Given a viscous representation to the eddy-wave coupling
mechanism, a deformation scalg;(= 5 x 10* m) Reynolds number is:

UILD/I/h =50

with v, = 50 m? s~. If variation of v, asv;, o L is considered, the Reynolds number decreases
with decreasing length scalB¢ « L in the enstrophy cascade regime. Based upon experience
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with 3-dimensional turbulence, | suspect that this paranreggime may not exhibit an extended
inertial subrange.

A second way of stating this is to consider the ratio betweaearstrophy dissipation time
scalery = k}Ej/ivk;iE, and nonlinear time scate,2/T, with I' = (S2 + 52 — ¢?)'/? an
effective deformation scale strain rate. Unity values ¢f thme scale ratio occur at horizontal
wavelengths\, = 10 km.

Defining the end of the enstrophy cascade will be complicasegotential vorticity pertur-
bations associated with the enstrophy cascade coexistvattital modes (Polzin et al. 2003;
Polzin and Ferrari 2004) and internal wave dipoles (Polfid& on submesoscales.

2) IMPLICATIONS FOR THESLOW MANIFOLD — FAST MANIFOLD DEBATE

The slow manifold — fast manifold moniker is a recognitiomttithe equations of mo-
tion support two distinct linearized modes: fast gravitywes and slow motions in approxi-
mate geostrophic balance. The debate is essentially aiguedtwhether initially balanced
(geostrophically balanced) states can evolve withoutifsogimt coupling to gravity waves.

With respect to mechanisms, the debate is cast either irstefan analogy to to the forcing
of linear acoustic waves by turbulence (vortical motioesy. Ford et al. (2000), or the linear
instability of a parallel shear flow (notably a symmetridsjaMolemaker et al. (2005). There
is a growing body of evidence that such spontaneous forditigedfast manifold is weak.

The thesis of this work is that internal waves can intera¢hwgeostrophically balanced
flows, exchanging pseudomomentum, energy and potentiatNpmwithout the requirement of
diabatic effects or resonance conditions. In this studymasetry of the background and non-
linearity in the internal wavefield are the key propertiesoagated with irreversible exchanges.
Small amplitude waves propagating in a larger scale geaisicdlow field obey an action con-
servation principle. Since the horizontal wavevector eeslfollowing a wave-packet in non-
axisymmetric background flows, it follows from (4) and (5atla momentum flux divergence
will induce a potential vorticity perturbation, and thatstitan be accomplished adiabatically.
This vorticity perturbation is reversible in the sense tih@t mean state is unchanged after the
passage of a linear packet. Muller (1976) provides theghtdhat, if the action of nonlinear-
ity is to relax the wavefield back to an isotropic state, itasgible for the associated vorticity
perturbation to become permanent: nonlinearity enablest ransfer of energy and vorticity
between mesoscale eddies and internal waves.

An action conservation principle is essentially conseovadf a real valued phase func-
tion [(2), see Andrews and Mcintyre (1978)] and needs to Bardjuished from an instability
problem, which describes the transfer from slow to fast fiadohs with a complex valued phase
function. One can think of mesoscale eddy—internal waveplogi as an amplifier of a pre-
existing or externally forced finite amplitude wavefieldhat than the spontaneous imbalance
of a linear field. The issue of nonlinearity needs to be kephind when interpreting numer-
ical simulations, such as those presented in Dritschel ande¥ (2007). A nondimensional
landmark is the ratio of linear to nonlinear timescale (1i7(1i6).

3) GENERAL CIRCULATION ISSUES

At the LDE site we have an observation of potential vorti¢itikes. As the observed flux
is directed across isopleths of background vorticity, thaential vorticity flux also represents
potential enstrophy production. In steady state, eitheaduective flux divergence (nonlinear-
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ity) or dissipation is required. | infer an approximate puotion—dissipation balance associated
with mesoscale eddy — internal wave coupling.

This work started by noting the degree to which the symmetyiconstrained Eliassen—
Palm flux theorem (1) has focussed intellectual effort orneusidnding the effects of nonlinear-
ity. | make the case in this manuscript that “dissipatiorédeequal footing.

In a one-dimensional vertical advection - vertical diffusibalance of the buoyancy equa-
tion, diapycnal diffusivities o0 (1 x 10~* m* s71) are required to balance the upwelling of some
30 x 10° m? s Bottom and Deep Waters produced in polar regions, Munk (L98tere may
be sufficient diapycnal mixing above topographically roughions driven by internal wave
breaking (Polzin et al. 1997) or associated with topogregdhi constrained passages (Polzin
et al. 1996; St.Laurent and Thurnherr 2007) to upwell DeepBottom waters to Intermediate
Water levels (1000-2000 m water depth over much of the Wafeans). However, diapycnal
mixing is sufficiently weakO(1 x 10 m? s7!), over much of the thermocline region [e.g.
Ledwell et al. (1993)], that advocacy of a diapycnal adweetliffusion balance is difficult to
defend.

Something must give, and the conceptual paradigm that anfspthe vertical advection —
vertical diffusion balance is that of Luyten et al. (1983) which mean streamlines coincide
with mean potential vorticity contours, with streamlinessisting of Rossby wave trajectories.
A competing hypothesis is that, if one takes the ideal fluiitliof an adiabatic and inviscid
interior and considers the effect of mesoscale eddies, caswariability will tend to produce
interiors with small mean potential vorticity gradientd)iffes and Young (1982).

The relative contributions of eddies and interior diabatiocesses to the mean potential
vorticity balance of gyre interiors can be gauged by scalenases of the respective terms:
eddy contributionsare V - ¢u’ ~ O(1 x 107"m s™2/5 x 10°m) and diabatic effectsare
0.fN720,K,N=2 ~ O(10~*s7! x 10~°m?s~'/(700m)?, an order of magnitude smaller.

My preference is to consider the upper limb of the Meridio@akrturning Circulation to
be closed along isopycnals with mesoscale eddy — internad waupling playing a significant
role in potential vorticity modification. | emphasize theug of potential vorticity modification
as | put more weight on McCartney (1982)’s characterizadiopotential vorticity increase and
water mass modification of Mode Waters along likely advecpaths than the corresponding
analyses of McDowell et al. (1982) and Keffer (1985).

4) ISSUES OFVARIABILITY

Variability of the viscosity coefficients acting on the meeale field will depend upon vari-
ability in the background wavefield. Such variability egi$Polzin et al. (2007)]. A possi-
ble implication of this work is that the variability in bothé mesoscale eddy field (Zang and
Wunsch 2001) and the internal wavefield (Polzin et al. 200&)ralated through mesoscale
eddy—internal wave coupling. In terms of understandingyé@graphic variability of viscosity
coefficients, there is a simplicity if the energetics of theernal wave field are dominated by
an interior coupling to the mesoscale eddy field, as appears the case in the Southern Re-
circulation Gyre. This represents the dynamic balance eated by Muller and Olbers (1975),
albeit at somewhat reduced interaction rates. Simplisigi$o attained if the mesoscale eddy

“Here | have taken the observed potential vorticity fluxebatiDE site and divided by a length scale of 5000
km.

SHere | takef to be representative df° degrees latitude, a background diapycnal diffusivityt of 10~° m?
s~! and thermocline scale of 700 m.
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spectrum rolls-off uniformly at the deformation radius @he propagation scalds in (17) can
be related td_,.

The internal wave—eddy coupling becomes more complicditéet igeostrophic flow field
locally forces the zeroth order wavefield though quasikstaty internal lee wave generation.
An associated issue is posed by non-equilibrium (vergiaidicaying) internal wave states asso-
ciated with tidal forcing at mid-ocean ridges [Polzin (20604 These factors may help explain
why the mesoscale eddy field above the Mid-Atlantic Ridgel$eto be more baroclinic than
topologically smooth regions, Wunsch (1997).

| leave the reader with the following questions:

e How spatially variable are these effective viscosities® Agsults from the Gulf Stream
Recirculation applicable to more climatologically sensitregions such as the South-
ern Ocean [(Naveira-Garaboto et al. 2004), (Polzin anch§iti998)] or the Greenland—
Iceland—Norwegian Seas, Naveira-Garaboto et al. (2005)?

e The behavior of simplified oceanic general circulation medepends upon how viscous
damping is implemented [(Cessi and lerley 1995), (Fox-Kemgnd Pedlosky 2004)].
What happens to the behavior of the general circulation eshirmocline tightens, the
eddy scale decreases, or the rms eddy velocity increases?

e One perspective of climate change is that temporal trendscatasingly longer time
scales represent increasingly smaller imbalances in thatiegs of motion. If true, can
we really claim to understand how the climate system workdGMs are simply tuned
to today’s conditions and do not address the proper subsgete physics?
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FIG. 1. Coherence functions created by averaging{@)n(S,)[Purwr — Pyror] /Pul,{i,,Pj/i,,,
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» with C,»,» being the real part of the”v” cross-spectrum and
(c) the average of the preceding panels. Over plotted dslthies are GM76 based estimates for
the coherence functions using (25). These model coheremotidns use eddy decorrelation
scales of 50, 100 and 200 km, with model coherence increagitigincreasing horizontal
length scald.. Estimates are based upon 512 point transform intervalsxagrdging data from
both triangles at 825 m water depth.
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FiG. 2. Cumulative integrals of the spectral functiehsyn (.S, ) [Py — Py ] (thick lines) and
—2sgn(Ss)Cyny (dashed lines), divided by rate of straif,, | and| S; |, to provide estimates
of the horizontal viscosity,,. Two estimates of each appear. The lower curves ignoreieontr
butions at semi-diurnal frequencies. Over plotted as timesl are GM76 based estimates for
the corresponding viscosity estimate using (25). Thesmatds employ an eddy decorrelation
scale ofL. =50, 100 and 200 km.
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Fic. 3. Coherence function created by averaging-sgn(a,)[Cyrwr —
FN2Cop] [ T(w) Potn Polir and —sgn(@.)[Conur +  FN2Cump] JT(w) Pils Pali.
The factorC,~,» represents the real part of theéy” cross-spectrum. The transfer function
T(w) = (w? — f?)/(w* + f?) accounts for cancelation of the Reynolds stress by the megya
flux and renders the denominator consistent with the numer@ver plotted as thick a line is
a GM76 based estimate for the coherence functions using {@8 coherence estimates are
based upon 1024 point transform intervals of data at botre®@0825 m levels. Data are from
the Center, Northeast and Northwest moorings.
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FIG. 4. Cumulative integrals of the spectral functiengn (. ) [Cyrwr — fCyryr /N?]/ (W2)/2 —
sgn(T.) [Cyrwr+ fCumyr /N?] / (02)*/2, 10 provide estimates of the vertical viscosﬂw+}§—22Kh).
Over plotted as a thick line is a GM76 based estimate for teesponding viscosity estimate
(28).
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TABLE 1. Moments of the kinetic energy spectrum, (29). Column temwotains the observed
estimates, column three the moment representation of thiediiference estimates and the
fourth “fully resolved” estimates of the moments integdate “dissipation scale” o% =10

h

km .

| variable | observed | estimated | “fully resolved” |
| E, ]| 40x107°m? s? | | 40x107°m? 572 |
| 2v¢® | 30x107"W/kg | 39x107"W/kg | 4.6x107°Wikg |
| ¢ | 35x107%s? [ 39x107%s? | 70x10"s? |
| [V 67x100"m2s?[13x107"m?2s?[38x107Ym?s?|
| WV 17x107%s? | 33x10Ys? | 12x107%s3 |
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