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Abstract

The issue of internal wave–mesoscale eddy interactions is revisited. Previous
theoretical work identified the mesoscale eddy field as a possible source of inter-
nal wave energy and pseudomomentum. Adiabatic pseudomomentum flux diver-
gences, in turn, serve as a sink of eddy potential vorticity and contribute to potential
enstrophy (potential vorticity squared) dissipation.

A potential enstrophy budget for the Local Dynamics Experiment of the Poly-
Mode field program is assessed using mesoscale eddy – internal wave coupling co-
efficients identified in a companion manuscript ofνh

∼= 50 m2 s−1 andνv+
f2

N2Kh
∼=

2.5× 10−3 m2 s−1. These estimates indicate that mesoscale eddy-internal wave in-
teractionsmayplay anO(1) role in the mesoscale eddy potential enstrophy budget
as enstrophy dissipation. This claim comes with significantcaveats, however, as the
Local Dynamics Experiment array data likely do not properlyresolve the required
spatial gradients of the mesoscale eddy field.

Previous radiation balance equation formulations for thiscoupling are exam-
ined. In these formulationspermanenttransfer of energy and internal wave pseu-
domomentum for mesoscale eddy potential vorticity is enabled by nonlinearity in
the wavefield. Revision of these radiation balance equationformulations to ac-
count for non-local effects returns predictions ofνh

∼= 50 − 100 m2 s−1 and
νv + f2

N2Kh
∼= −0.008 m2 s−1. The prediction for the effective vertical viscosity

is very sensitive to how internal wave energy is distributedin the spectral domain.
The difference between observed and predicted exchange coefficients is attributed
to (i) differences between the observed internal wave spectrum and use of the Gar-
rett and Munk model as a basis for the theoretical predictionand (ii) uncertainty in
how to properly account for non-local effects in the model estimates.

In accounting for non-local effects, length scale dependent coupling coefficients
can be derived. With such length scale dependent coupling coefficients, an argu-
ment is advanced that the estimates of enstrophy dissipation are biasedlow and
thus the claim that mesoscale eddy-internal wave interactionsmayplay anO(1)
role in the mesoscale eddy potential enstrophy budget as enstrophy dissipation is
reinforced.

Finally, the process described here is best interpreted as an amplifier of a pre-
existing or externally forced finite amplitude wavefield rather than the spontaneous
imbalance of a linear field. Energy, pseudomomentum and vorticity can be trans-
fered from the slow manifold (geostrophically balanced motions) to the fast mani-
fold (internal gravity waves) via linear wave propagation in asymmetric background
flows, but that transfer is reversible. The permanent transfer is accomplished by
nonlinearity on the fast manifold.

1



1. Introduction
a. Preliminaries

Winds and air-sea exchanges of heat and fresh water are ultimately responsible for the basin-
scale currents, or general circulation of the oceans. In order to achieve a state where the energy
and enstrophy (vorticity squared) of the ocean is not continuously increasing, some form of
dissipation is required to balance this forcing. While the above statement may seem obvious,
little is known about how and where this dissipation occurs.

Early theories of the wind driven circulation [Stommel (1948), Munk (1950)] view the west-
ern boundary as a region where energy and vorticity input by winds in mid-gyre could be dissi-
pated. Those theories predict Gulf Stream transports that are approximately equal to the interior
Sverdrup transport [about 30 Sv, Schmitz et al. (1992)] and that are much smaller than observed
Gulf Stream transports after the Stream separates from the coast [about 150 Sv, Johns et al.
(1995)]. Subsequent theories of the wind driven circulation have attempted to address the role
of nonlinearity and baroclinicity in increasing Gulf Stream transports above that given by the
Sverdrup relation.

Hogg (1983) proposed the existence of two relatively barotropic recirculation gyres on either
side of the Stream that combine to increase the total transport. It is now generally accepted that
the recirculation gyres result from the ‘absorption’ of Planetary and Topographic Rossby Waves
generated by the meandering of a baroclinicly unstable GulfStream. The ‘absorption’ process
is uncertain and is a focus of this manuscript.

A cornerstone of theoretical understanding concerns zonalmean theory and the analysis of
wave propagation in parallel shear flows. A basic constraint, typically referred to as Andrews
and McIntyre’s generalized Eliassen-Palm (EP) flux theorem:

d kA

dt
+ ∇ · F = D +O(α3); (1)

states that in the absence of dissipationD and nonlinearity (small wave amplitudeα limit),
and for steady conditions, the Eliassen-Palm fluxF is spatially nondivergent,∇ · F = 0. In
terms of either linear internal wave or linear Rossby wave kinematics, the Eliassen-Palm flux
F = kCgA, with streamwise (zonal) wavenumberk, group velocityCg and wave actionA.
With respect to the mean fields, the attendant nonacceleration theorem (Andrews et al. 1987)
states that the mean flow remains steady if∇ · F = 0.

The Eliassen-Palm flux theorem thus sheds light upon the absorption process alluded to
above as mean flows can be forced by the gamut of processes thatbalance the EP flux diver-
gence. Hitherto, the oceanographic community has typically focused on the effects of nonlin-
earity within the mesoscale eddy field [Rhines and Schopp (1991); Jayne et al. (1996)].

The basics of nonlinearity for quasigeostrophic flows in theadiabatic and inviscid limits is
the cascade of energy to larger scales and the cascade of potential enstrophy (potential vortic-
ity squared) to smaller scales, [Rhines (1979); Salmon (1998)]. The potential enstrophy flux
occurs without an energy flux so that the endpoint of the enstrophy cascadecould bedefined
by molecular dissipation, or, perhaps more likely, by ambient turbulent processes unrelated to
the enstrophy cascade. The energy budgetcould beclosed by locating the energy sinks at the
boundaries, i.e. in bottom Ekman layers and through eddy–mixed layer interactions. The poten-
tial enstrophy budgetcould beclosed by mixing potential vorticity at a molecular levelwithout
attendant consequences for the energy budget. But is this true?

2



A second cornerstone of theoretical understanding is the material conservation of potential
vorticity (Ertel 1942; Haynes and McIntyre 1987). In the absence of frictional and diabatic
effects, potential vorticity is conserved following a fluidelement. What constitutes friction,
though, is not always obvious.

Despite the intellectual prejudice that views the oceanic interior as inviscid and adiabatic, or
perhaps more precisely because, it seems prudent to quantify the rate at which interior processes
damp both enstrophy and energy. A companion manuscript (Polzin 2009) examines the issue of
energetics. Here I engage in an inquiry of how internal wave processes contribute as frictional
effects and serve to mix eddy potential vorticity.

The companion work identifies coupling coefficients ofνh
∼= 50 m2 s−1 andνv + f2

N2Kh
∼=

2.5 × 10−3 m2 s−1 from current meter data taken as part of the Local Dynamics Experiment
(LDE) of the PolyMode field program. The purpose of this paperis to place those estimates
into the LDE potential vorticity flux estimates of Brown et al. (1986) (Section 3). Theoretical
estimates of the coupling are reviewed and revised in Section 4. Length scale dependence of
the coupling coefficients and array resolution issues are covered in Section 5. A summary and
discussion concludes the paper.

2. Groundwork
a. The coupling mechanism

The required tools from the companion manuscript are: (i) a Reynolds decomposition of
the velocity [u = (u, v, w)], buoyancy [b = −gρ/ρo with gravitational constantg and density
ρ] and pressure [π] fields into a quasigeostrophic ‘mean’ () and small amplitude internal wave
(′′) perturbations on the basis of a time scale separation:ψ = ψ + ψ′′ with ψ = τ−1

∫ τ
0 ψ dt in

which τ is much longer than the internal wave time scale but smaller than the eddy time scale;
(ii) a further assumption of a spatial scale separation in order to invoke the ray tracing limit of
internal wave -mean flow interactions. In this limit the ray equations for the evolution of the
wavevectork = (k, l,m) following a ray path,

dk

dt
= −∇(ω + k · u) (2)

have solutionsk ∝ e±(S2
n+S2

s−ζ2)1/2t/2, in whichSs ≡ vx + uy is the shear component of strain,
Sn ≡ ux − vy is the normal component,ζ ≡ vx −uy is relative vorticity and intrinsic frequency
ω = σ − k · u. Thus a wave packet in a quasigeostrophic eddy field undergoes a filamentation
process analogous to a passive tracer in incompressible 2-Dturbulence when the rate of strain
variance exceeds relative vorticity variance:

S2
s + S2

n > ζ2 . (3)

Equation (3) is simply the Okubo-Weiss criterion [e.g., Provenzale (1999)].

b. Potential Vorticity

The (quasigeostrophic) potential vorticity equation is [Müller (1976)]:

(∂t + u∂x + v∂y)(∂
2
xΦ + ∂2

yΦ + ∂z[
f 2

N2
∂zΦ] + βy) =
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∂x[∂xv′′u′′ + ∂yv′′v′′ + ∂z(v′′w′′ +
f

N2
b′′u′′)]

−∂y[∂xu′′u′′ + ∂yu′′v′′ + ∂z(u′′w′′ −
f

N2
b′′v′′)] + H (4)

in which H represents modification of the mean buoyancy profile throughdiabatic processes,
Φ is the geostrophic streamfunction(Φ = π/f with Coriolis parameterf ) and pressureπ is
defined in the absence of the internal wavefield. For parcels that do not make excursions into
the mixed layer,H = ∂z

f
N2∂z(Kρbz). In the background wavefieldKρ

∼= 5× 10−6 m2 s−1. The
potential vorticity fluxes associated with this backgrounddiapycnal process acting on the mean
buoyancy profile are an order of magnitude smaller than the observed mesoscale eddy potential
vorticity flux divergence. Diabatic effects are thus excluded from consideration below and the
issue will be revisited in the Discussion.

Assuming a scale separation andlocal plane wave solution, Müller (1976) demonstrates
that the source terms in the potential vorticity equation can be cast as the horizontal curl of the
pseudomomentum (kn) flux divergence:

∂x[∂xv′′u′′ + ∂yv′′v′′ + ∂z(v′′w′′ +
f

N2
b′′u′′)]

−∂y[∂xu′′u′′ + ∂yu′′v′′ + ∂z(u′′w′′ −
f

N2
b′′v′′)] =

−∂x∇ ·
∫
d3k n(k,x, t) l Cg + ∂y∇ ·

∫
d3k n(k,x, t) k Cg (5)

with 3-D wave action spectrumn ≡ E/ω, group velocityCg and energy densityE = Ek +Ep.
The right-hand side of (5) directly states that an internal wave packet spatially localized in
bothhorizontal dimensions carries with it a potential vorticity perturbation associated with the
envelope structure of the wave packet, Bretherton (1969); Bühler and McIntyre (2005). A plane
wave solution having constant amplitude in both horizontaldirections has no pseudomomentum
flux divergence and consequently no potential vorticity signature. A plane wave extending to
infinity in one direction has a pseudomomentum flux divergence, but no curl of that divergence
field. Statements to the effect that internal waves have no potential vorticity signature [e.g. Lien
and Müller (1992); Polzin et al. (2003)] assume this infinite plane wave structure.

Finally, for steady conditions, small amplitude waves in a slowly varying background con-
taining gradients in both (x, y) dimensions have a nondivergent action flux,

∫
dk ∇ · Cgn = 0

rather than a nondivergent momentum flux. As the two variables differ by the wavevector and
the wavevector evolves in response to the background flow field via (2), one has the result that
potential vorticity can be traded between the fast manifold[the right-hand side of (4)] and the
slow manifold [the left hand side of (4)]. This result is consistent with the material conserva-
tion of potential vorticity, Haynes and McIntyre (1987). Atstake is a question of how internal
wave processes contribute to a mixing of the coarse grained potential vorticity defined by the
Reynolds averageψ.

c. Potential Enstrophy

The eddy potential enstrophy budget is obtained by first decomposing the low frequency
field into mean and mesoscale eddy componentsψ = ψ + ψ′ with ψ given by an additional
time average,ψ = τ−1

∫ τ
0 ψ dt, over many eddy time scales. In practice, the averaging timeτ
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is defined by the length of the observational record. Multiplying (4) by the quasigeostrophic
perturbation potential vorticityq′ and averaging returns:

1

2

d

dt
q′2 +u′q′ ·∇hq = −q′ [−∂x∇ ·

∫
d3k n(k,x, t) l Cg + ∂y∇ ·

∫
d3k n(k,x, t) k Cg] (6)

in which d
dt

represents the material derivative following the geostrophic flow, ∇h is the 2-D
horizontal gradient operator and∇hq is the background potential vorticity gradient.

If closure of mesoscale eddy - internal wave coupling through flux gradient relations can be
justified, in which−2u′′v′′ = νh(vx + uy), −u′′w′′ = νvuz, −u′′u′′ = νhux, −v′′v′′ = νhvy,
−u′′b′′ = Khbx, and−v′′b′′ = Khby, considerable simplification results. The right-hand-side
of the enstrophy equation, using the thermal wind relation and integrating by parts, can be
rewritten as:

1

2

d

dt
q′2 + u′q′ · ∇hq = −

1

2
νh[(ζ2

x + ζ2
y ) +

f 2
o

bz
ζ2
z ] − [νv +

f 2

N2
Kh][ζ2

z +
1

bz
(b

2

xz + b
2

yz)] . (7)

3. The LDE Enstrophy Budget
We are now in a position to ask how the generation of internal wave pseudomomentum by

eddy–wave coupling can be cast as a nonconservative term in the eddy enstrophy budget (6) and
thereby be linked to potential vorticity dynamics. Brown etal. (1986) use the LDE array data1

to estimate the eddy thickness [η′ = f0(ρ
′/ρz)z] and relative vorticity (ζ ′) fluxes:

u′η′ = (−0.79 ± 0.53,−1.45 ± 0.71) × 10−7 m s−2

u′ζ ′ = (−1.57 ± 1.51, 1.95 ± 1.54) × 10−8 m s−2.

(8)

A map of planetary vorticity on the potential densityσθ = 27.0 surface in Robbins et al. (2000)
implies∇hq ∼= (0, β) = (0, 2×10−11 m−1 s−1) at the level of the current meter data (the density
surface is at approximately 700 m and the current meters are located at approximately 630 m
for these potential vorticity flux estimates), so that

u′q′ · ∇hq ∼= −2.5 × 10−18 s−3 .

In order to maintain the observed planetary vorticity field in steady state, these fluxes are
balanced by nonconservative mechanisms acting on the eddy field. These nonconservative terms
will be evaluated assuming that the mesoscale eddy – internal wave coupling can be cast as a
viscous process:

r.h.s. of (6) = −
1

2
νh[(ζ ′2x + ζ ′2y ) +

f 2
o

bz
ζ ′2z ] − [νv +

f 2
o

N2
Kh][ζ ′2z +

1

bz
(b′2xz + b′2yz)]

(ζ ′2x + ζ ′2y ) = 6.7 × 10−21 m−2s−2

f 2
o

bz
ζ ′2z = 2.5 × 10−20 m−2s−2

1The LDE array is discussed in detail in Bryden (1982) and Brown and Owens (1981). See Section 5 for
commentary regarding the limitations of the array data for this work.
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ζ ′2z = 8.4 × 10−17 m−2s−2

1

bz
(b′2xz + b′2yz) = 1.9 × 10−16 m−2s−2

The relative vorticity’s horizontal gradient variance(ζ ′2x + ζ ′2y ) was estimated as twice the
squared difference of the two possible vorticity estimatesat 825 m, divided by the separation
between the northeast-center-northwest and northwest-center-southwest triangle centers. The
vertical vorticity gradient variance (ζ ′2z ) was estimated from the one possible (northeast-center-
northwest) triangle. The horizontal thickness gradient variance (b′2xz + b′2yz) was estimated as

f 2(u′2zz + v′2zz) using data from the central mooring and current meters located at approximately
400, 600 and 800 m. These gradient variance terms were estimated by Fourier transforming the
respective time series and then integrating to a spectral minimum at about 0.3 cpd. Following
the previous discussion, the interior viscosity coefficients are taken to beνh = 50 m2 s−1 and
νv + f2

N2Kh = 2.5 × 10−3 m2 s−1.
The grand total of potential enstrophy dissipation is:

r.h.s. of (6) = −1.6 × 10−18 s−3

which is of appropriate order of magnitude to balance the estimated enstrophy production. Inter-
nal waves may therefore play a significant role in the momentum/enstrophy/vorticity balances
of the Gulf Stream Recirculation.

There are significant issues about whether the potential enstrophy gradient variance is re-
solved and whether representing mesoscale eddy – internal wave coupling as a length scale
independent viscosity provides an accurate estimate of thepotential enstrophy dissipation rate.
These issues will be entertained after considering theoretical models of the coupling process.

4. Models of Coupling
A complicating factor is that the momentum flux anomaly and associated vorticity pertur-

bation induced by a wave packet in the linear analysis are reversible in the sense that the mean
state is unchanged after it’s passage. Müller (1976) provides the insight that, if the result of
nonlinearity is to relax the wavefield back to an isotropic state, it is possible for the associ-
ated vorticity perturbation to become permanent: nonlinearity enables anet transfer of energy
and vorticity between mesoscale eddies and internal waves.This insight is at the heart of the
calculation presented below.

The evolution of the internal wavefield is governed by a radiation balance equation:

Ln = Tr + So − Si ≡ S (9)

in whichL is the Liouville operatorL = ∂t +(Cg +u) ·∇x + r ·∇k with group velocityCg =
∇kω and refraction rater given by the ray equations:r = dk/dt = −∇xσ (2). The termTr

represents transfer of action by nonlinearity,So represents sources andSi sinks of wave action
(n). This description assumes the wave phase varies much more rapidly than the background
velocity field and stratification profile. In the absence sources, sinks and nonlinearity, (9) states
that the action flux is nondivergent:

∫
d3k Ln = ∇ ·

∫
d3k (Cg + u) n(k,x, t) = 0.
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Given the identification of the refraction rater with the eikonal relation (2), which in turn
has solutions given by the Okubo-Weiss relation (3) for asymmetric flow fields and wavefields
dominated by Doppler shifting, it should be of little surprise that (9) can admit to a linear wave
stress – mean strain relation.

a. Müller (1976)

1) OVERVIEW

The quasigeostrophic potential vorticity (4) and radiation balance equation (9) form a cou-
pled system. Müller closes the system by invoking perturbation expansions associated withL
andn:

(L0 + δL)[n(0) + n(1) + ...] = S[n(0)] +
δS

δn
[n(1) + n(2) + ...] , (10)

in whichL0 = ∂t +Cg ·∇x + r
(0) ·∇k, δL is the perturbation introduced by the mean flow and

δS/δn denotes the functional derivative. The zeroth order equation describes the generation,
propagation, interaction, and dissipation processes thatset up the background internal wave-
field. The first-order equation describes perturbations induced by wave–mean interactions and
the relaxation of those perturbations by nonlinearity. Theformal solution forn(1) is:

n(1) = −D−1[δLn(0)] (11)

in which D−1 is the functional inverse ofD = L0 − δS/δn. The keys to recognizing the
importance of nonlinearity are (a), ifS = 0, the average perturbation isn(1) = 0, and (b)
nonlinear transfers conserve energy (ωn) and pseudomomentum (kn), not their spatial fluxes.
Wave propagation in geostrophic background flows is based upon a nondivergent action flux.
In conserving energy and pseudomomentum, nonlinearity serves as a nonconservative process
relative to the issue of linear wave propagation.

Müller assumes the zeroth order state is independent of horizontal azimuth, and the effect
of the first-order wave fluxes on the mean is estimated by substituting the first-order wavefield
(n(1)) into the mean source terms. These are formally written as:

F (1)ij =
∫
d3k f ij D−1[kα ∂

∂km
n(0) ∂

∂xm
uα] (12)

M(1)β =
∫
d3k mβ D−1[kα ∂

∂km
n(0) ∂

∂xm
uα] . (13)

Expressions forf ij andmβ are algebraic functions of frequency and wavenumber and aregiven
in Müller (1976). The notation attempts to follow that of M¨uller (1976) and summation over
indicesm andα is implied. The usage off, β andm in (12) and (13) should not be confused
with the definitions herein.

Formal inversion ofδS/δn [(10) and (11) ] is intractable if nonlinearity is assumed tobe
represented by resonant wave–wave interactions and a full-blown kinetic equation. Further
progress is possible by interpretingδS/δn as a relaxation time scale:

• D−1[Ψ] = τR(k) Ψ . (14)

By casting the first order balance as a spatially and temporally local process, i.e. assuming that

• τR(k) does not depend upon the past history of a wave packet,
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and further assuming that

• τR(k) ∼= 200 hours, independent of k,

Müller is able to make analytic progress and establish quantitative estimates of the coupling
coefficients in terms of correlations between momentum flux cospectra [C(m,ω) + iQ(m,ω)],
power spectra [P (m,ω)] and the mesoscale gradients (Müller 1976):

Cu′′v′′(m,ω) + iQu′′v′′(m,ω) and vx + uy ≡ Ss;

Pu′′u′′(m,ω) − Pv′′v′′(m,ω) and ux − vy ≡ Sn;

[Cu′′w′′(m,ω), Cv′′w′′(m,ω)] and [uz, vz]; and

[Cu′′b′′(m,ω), Cv′′b′′(m,ω)] and [bx, by] .

(15)

A zero correlation is implied between

Pu′′u′′(m,ω) + Pv′′v′′(m,ω) and vx − uy ≡ ζ .

The physical content of this result is contained within (3).Asymptotically, the rate of strain
filaments a wave and the resulting momentum flux perturbationis uniquely related to the sign
of the rate of strain. Relative vorticity simply rotates thehorizontal wavevector. The resulting
momentum flux perturbations can have either sign and hence the average kinetic energy–relative
vorticity correlation is zero.

Integration over wavenumber and frequency returns a simplecharacterization of the cou-
pling as a viscous process, for which:−2u′′v′′ = νh(vx + uy), −u′′w′′ = νvuz, −u′′u′′ = νhux,
−v′′v′′ = νhvy, −u′′b′′ = Khbx, and−v′′b′′ = Khby .

The disconcerting part of the story is that the quantitativepredictions made by Müller are
inconsistent with current meter observations obtained as part of the PolyMode program. In
one case (Ruddick and Joyce 1979), the observed correlationbetweenu′′w′′ and vertical shear
uz was more than an order of magnitude smaller than the prediction. In another (Brown and
Owens 1981), the observed correlation betweenu′′v′′ and eddy gradientsvx +uy was more than
an order of magnitude larger. See Section 1.d of the companion manuscript (Polzin 2009) for a
summary of this segment of the observational literature.

2) LOCALITY AND TIME SCALES

My opinion is that the primary shortcoming of Müller (1976)is that it was written from the
perspective that the thermocline was characterized by a diapycnal diffusivity ofKρ = 1× 10−4

m2 s−1, which implies a time scale of 5-10 days (200 hours) for nonlinear interactions to
drain energy out of the background internal wavefield. Several decades of research (Polzin
2004a) has since demonstrated that the background wavefieldis associated with a diffusivity
of Kρ = 5 × 10−6 m2 s−1, with corresponding time scale of 50-100 days. This is crucial
for Müller’s calculation. Müller’s scheme invokes the ability of eddies to create anisotropic
conditions out of an isotropic background wavefield. Nonlinearity is then invoked to relax the
perturbed internal wavefield back to an isotropic state, andit is this relaxation that creates a per-
manent exchange of pseudomomentum for potential vorticity. With order of magnitude larger
relaxation times, larger scale internal waves can propagate through an eddy-wave interaction
event and on to another one in which the original wave-mean perturbation is erased, providing
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minimal permanent exchange of pseudomomentum and vorticity. These propagation effects can
be substantial.

Müller proposes that,if nonlocal effects were to be considered important, an order of mag-
nitude estimate of the functionalD−1 is provided by :

D−1 ∼= D−1
eff = τR/[1 + (τR/τp)

2] . (16)

The factorτp represents a propagation time scale:

τ−1
p = Ω +

C(0)x
g

Lx
+
C(0)y

g

Ly
+
C(0)z

g

H
, (17)

in which Lx, Ly, H and Ω−1 represent the spatial and temporal scales of the mesoscale eddy
field. The direct implementation of (17) is not straight forward: it does not include the presence
of vertical boundaries or buoyancy frequency turning points nor does it address possible com-
plexities of the observed mesoscale field (Freeland and Gould 1976), i.e. the possible coupling
of barotropic and baroclinic modes and westward (but not poleward/equatorward or vertical)
phase propagation. Since the path to a realistic accountingis not clear at this juncture, possible
resonance effects will be ignored (I will assumeΩ = 0) and the propagation time scale will be
implemented in the horizontal and vertical coordinates separately.

Owens (1985) estimates a zero crossing of the transverse velocity correlation function of 100
km from the LDE current meter data. The longitudinal velocity correlation function falls off
more slowly and thus the longitudinal length scale is not resolved. For the purpose of producing
theoretical estimates of the coherence functions, the horizontal propagation time scale will be
naively estimated with50 ≤ L ≤ 200 km. Wunsch (1997) finds that gradients of low frequency
velocity are largely confined to the first several vertical modes, and thus a vertical scale (H)
representative of the baroclinic mode-1 (H = 700 m) is assumed for the vertical propagation
time scale.

Here a cascade representation of nonlinearity Polzin (2004a) will be used to define the
relaxation timeτR. This formulation is based upon an energy equation:

∂E±(m,ω, θ)

∂t
±

∂[CgE±(m,ω, θ)]

∂x
+

∂F±(m,ω, θ)

∂m
=

1

2m
[F∓(m,ω, θ) − F±(m,ω, θ)] .

(18)

Energy densities associated with opposing wavevectorsk and−k are represented byE+ and
E−; F± is the transfer of energy density to smaller vertical scalesand superscripts denote the
sign of the vertical wavenumber and azimuthal angleθ. The group velocity (Cg) is assumed to
be sign definite and the direction of propagation is given by acorresponding (±) prefactor. The
right-hand side of (18) serves to conserve pseudomomentum:For internal waves, pseudomo-
mentum is a signed quantity. A choice was made in this cascaderepresentation (18) to conserve
pseudomomentum by backscattering wave energy between two waves of similar, but oppositely
signed wavevectors, at a rate in proportion to the spectral transport of energy to smaller scales.
The backscattering is consistent with observations of increasing vertical isotropy at small verti-
cal wavelengths.

I regard the cascade representation as a heuristic high wavenumber closure scheme rather
than a representation of resonant interactions. As a heuristic description, frequency and az-
imuthal domain cascades are neglected. The frequency cascade is believed to be of secondary
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importance [Polzin (2004a)] and observational records do not contain information from which
an azimuthal cascade could be defined. If the azimuthal cascade sets a shorter timescale, it
would be more appropriate here. However, it is difficult to see how either might exceed the time
scale defined below based upon the vertical wavenumber transports.

The transferF± is given by:

F±(m,ω, θ) = a m4 N−1 φ(ω) E±(m,ω, θ) E(m) , (19)

with a = 0.20 and
φ(ω) = [(ω2 − f 2)/(N2 − ω2)]1/2 .

The factorE(m) =
∫ N
f

∫ π
0 [E+(m,ω, θ)+E−(m,ω, θ)] dωdθ is the energy spectrum integrated

over frequencyω and horizontal azimuthθ. The functional representation denoted byφ implies
increasing transport with increasing wave frequency, as suggested by the observations. The
transport magnitude set bya = 0.20 is taken from the validation studies of Polzin et al. (1995)
and Gregg (1989).2

I address the issue of defining the nonlinear time scale for specific moments of the momen-
tum flux tensor by introducing a spatially homogeneous yet anisotropic perturbation∆(m,ω, θ) =
E+ − E−. The governing radiation balance equation for∆ becomes:

∂∆

∂t
+

∂

∂m
am4N−1φE(m)∆ = −am3N−1φE(m)∆ (20)

Simply backscattering energy fromk to −k does not alter the momentum flux: whilekE/ω
and−kE/ω have opposite signs,Cg(k) = −Cg(−k), and a momentum flux anomaly is not
erased by backscattering. In order to define the time scale, one can either follow McComas
and Müller (1981b)’s example of scaling the flux divergenceas∂mF ≈ F/m, or integrate (20)
and the associated equation forE+ + E− over frequency and horizontal azimuth and solve the
coupled system of equations as in Polzin (2004b). Either procedure returns

τ−1
R =

−1

∆

∂(∆)

∂t
= am3N−1φ(ω)E(m) . (21)

Because of the non-specificity of the momentum flux anomaly associated with∆, this cascade
formulation permits identification ofτR as a generic time scale for any specific moment of the
momentum flux tensor.

3) THE HORIZONTAL DIMENSION

In the hydrostatic approximation, the horizontal viscosity becomes:

νh = −
1

8

∫
d3k

ω2 − f 2

ω2

ω kh τR
1 + (τR/τp)2

∂n
(0)
3

∂kh
, (22)

in which kh represents the magnitude of the horizontal wavevector components,kh = (k2 +
l2)1/2

The zeroth order wavefield is represented using the Garrett and Munk (GM76) distribution,

E
(0)
2 (m,ω) =

B

(m2
o +m2)

2f

π

1

ω(ω2 − f 2)1/2
(23)

2there is a typo in (Polzin et al. 1995) that leads toa being misquoted asa = 0.1 in (Polzin 2004a).
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with a slight modification. The spectral level is set by the dimensional constantB so that the
total energy is30 × 10−4 m2 s−2 atNo = 3 cph. A low-wavenumber roll-offmo equivalent
to mode-4 (not mode-3) is used to obtain both an appropriate total energy and high vertical
wavenumber shear spectral density (7N2/2π s−2 rad m−1). See the Appendix of Gregg and
Kunze (1991) for details. The relation between the 2-D energy spectrum and a 3-D isotropic
action spectrum dictates:

n
(0)
3 (m,ω) = E

(0)
2 (m,ω)/khω , (24)

so that withτp = L/Ch
g (22) becomes:

νh =
fN2

4πa

∫ N

f

∫ ∞

0

[4ω2 − 3f 2] dωdm

ω3m3[ω2 + [N3(m2
o+m2)

Lam4B
]2]

. (25)

Numerical evaluation returns
νh

∼= 50 m2s−1 (26)

for parameters (31o latitude,N=2.6 cph,L=100 km) appropriate to the Polymode LDE data.
The parameter regime is such that numerical evaluation alsosuggests an approximate linear
dependence uponN , spectral amplitudeB and eddy length scaleL. The viscosity coefficient
depends only weakly upon the strength of the cascade process(a) and the Coriolis parameterf .
These dependencies come with a note of caution:they may pertain only to the GM spectrum.
Müller’s estimate wasνh

∼= 7 m2 s−1, lower than that estimated here. That low estimate results
from a relaxation timeτR significantly smaller than implied by (21).

Direct comparison with the observed coherence functions presented in the companion paper
(Polzin 2009) can be had be multiplying the integrand of (25)by the appropriate strain estimate
[| Sn | = 1.41×10−6 s−1 or | Ss | = 1.07×10−6 s−1] and dividing by the GM–P 1/2

uu P
1/2
vv power

spectral density functions. So constructed, the model coherence function estimates mimic the
observed estimates (Fig. 1) reasonably well. Coherence function estimates tend to zero asω
approachesf and attain levels of 0.05–0.1 within the continuum frequency band. The observed
cospectral estimates tend to increase towards higher frequency whereas the theoretical predic-
tion decreases. Coherence function levels usingL = 100 andL = 200 km tend to bracket the
observations.

A second comparison can be made by comparing cumulative integrals of the observed co-
herence functions normalized by the respective rate of strain with their counterparts based upon
(25), Fig. 2. In this instance semidiurnal frequencies makea significant contribution to the
shear stress – rate of strain relation and so a second comparison is made by excluding semi-
diurnal frequencies from the cumulative integrals of the observed coherence functions. In so
doing, the frequency integrated estimates of horizontal viscosity of 30-40 m2 s−1 are bounded
by the theoretical estimates with length scales of 50-100 km. Two details are worth noting. The
first is that near-inertial frequencies make a larger contribution in the observations than in the
theory. The observed background frequency spectrum from this region (Polzin et al. 2007) con-
tains significantly more near-inertial than the GM model upon which the theoretical estimate is
based. Second, the shear component of the rate of strain has its extensive axis oriented along
in the NE-SW and NW-SE directions. This is essentially parallel to the crests and troughs of a
topographic Rossby wave noted at the beginning of the LDE. Itmay be that the longer length
scales in this direction enable a coupling between the topographic Rossby wave and a low-mode
baroclinic tide emanating from the Blake Escarpment (Hendry 1977).

11



The agreement is impressive given the relatively unsophisticated treatment of the relaxation
mechanism, the propagation time scale and unquestioned assumption that the GM spectrum is
an adequate representation of the local background wavefield.

4) THE VERTICAL DIMENSION

In the hydrostatic approximation, the effective vertical viscosity becomes:

νv +
f 2

N2
Kh =

1

2

∫
d3k

ω2 − f 2

ω2

ω k2
h

m

τR
1 + (τR/τp)2

∂n
(0)
3 (kh, m)

∂m
. (27)

For a GM wavefield (23) and withτp = H/Cz
g , this translates into:

νv +
f 2

N2
Kh =

f

πa

∫ N

f

∫ ∞

0

(ω2 − f 2)[2m2
oω

2 − 3(m2
o +m2)f 2]

ω3m3(m2
o +m2)

dωdm

[ω2 + [N2(m2
o+m2)(ω2−f2)1/2

Ham4B
]2]
.

(28)
Direct comparison with the observed coherence function estimate is possible by multiplying
the integrand of (28) by the observed rms shear,[(u2

z + v2
z)/2]1/2 = 1.42 × 10−4 s−1. The

resulting coherence estimates are near zero at high frequencies and negative at near-inertial,
and qualitatively mimic the observations, Fig. (3). The resulting integral is distinctly negative,
νv + f2

N2Kh = −8×10−3 m2 s−1, rather than the observed positive value,νv + f2

N2Kh = 3×10−3

m2 s−1. The difference between observed and predicted exchange coefficients is associated
with small but distinctly positive coherence function estimates at high frequency, Fig. 3, and
dominance of theu′′w′′ andv′′w′′ cospectra by high frequency contributions, Fig. 4.

The near zero values of the coherence function predictions using the GM76 spectrum are
easily appreciated. In the high-frequency, high-verticalwavenumber limits, a power-law char-
acterization of the 2-D energy spectrum and resulting 3-D action spectrum results in:

E2(ω,m) ∝ ω−sm−t → n3(k) ∝ (
m

kh

)s(
1

m
)t 1

k2
h

.

For the GM76 spectrum,(s, t) = (2, 2) andn3(k) ∝ k−4
h m0, and thus flux-gradient represen-

tations in the vertical wavenumber domain will predict minimal spectral transports (McComas
and Bretherton 1977).

The observations and theoretical estimates of the verticalexchange coefficient are both
much smaller than Müller’s prediction ofνv + f2

N2Kh
∼= 0.45 m2 s−1. Müller’s large estimate

is a product of neglecting propagation effects for buoyancyfrequency waves of large vertical
scales. That local treatment of (27) includes regions of thespectral domain (m ∼= mo) having
∂mn 6= 0.

Caveats about the relatively unsophisticated treatment ofthe relaxation mechanism, uncer-
tainties regarding the propagation time scale and the unquestioned assumption that the GM
spectrum is an adequate representation of the local background wavefield again pertain.

b. Variants of the M̈uller (1976) model

1) RUDDICK AND JOYCE (1979)

Ruddick and Joyce (1979) note that Müller (1976)’s zeroth order wavefield is specified
as the isotropic universal (GM) model in an Eulerian frequency coordinate. They argue that
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the relaxation process could very well be toward an equilibrium spectrum with an intrinsic
frequency coordinate. They find just such a solution to the radiation balance equation and note
that it has a nondivergent momentum flux. Their interpretation is that this ’noninteracting state’
provides much smaller deviations from equilibrium which, in turn, implies a much smaller
viscosity.

My issue with Ruddick and Joyce (1979)’s comments is that their work concerns a greatly
simplified vertical balance in which the mean velocity is considered to be a function only of the
vertical coordinate:[u, v] = [u(z), 0]. In this symmetric state, critical layers are approached as
ω → f and wave momentum is conserved (Andrews and McIntyre’s generalized Eliassen-Palm
flux theorem). The vertical wavenumber experiences linear growth with time and is independent
of the evolution of the horizontal. In the three dimensionalproblem under consideration here,
the critical layer is altered to a condition that the aspect ratio of the wave and mean flow be
similar and wave momentum is not conserved. The vertical wavenumber evolves exponentially
in time and is slaved to the horizontal. The behavior of the wave-mean interaction problem in
three dimensions is different from that in one or two, Polzin(2008).

2) WATSON (1985)

The genesis of Watson (1985) is a recognition that there is nomechanism in the resonant
interaction scheme of McComas and Müller (1981a) for transporting energy within the high
vertical wavenumber (100 ≥ λv ≥ 10 m) near-inertial (f < ω ≤ 2f ) frequency band toward
even higher vertical wavenumber. The purpose of Watson (1985) was to formulate a radiation
balance representation of wave–mean interactions in this band to transport action to a sink at
λv < 10 m.

An ingredient of that representation is an estimate of the vertical and horizontal viscosity
representing coupling of internal waves to mesoscale eddies. The coupling coefficient is esti-
mated from kinetic theory as a variant of the induced diffusion mechanism: a near-inertial wave
scatters from a (much) lower frequency and much larger scalemesoscale eddy field to transfer
action to another near-inertial wave of nearly identical wavenumber.

A fundamental objection to this effort is phenomenological: Watson (1985)’s representation
of wave–mean interactions assumes that the high wavenumbernear–inertial waves execute a
random walk associated withmanyindividual scatterings. My perception is that such waves are
subject to nonlinearity and will dissipate in asingleevent. In Polzin (2008) I document aλv =
60 m near–inertial wave interacting with mesoscale eddies. Estimates of a dissipation time scale
through finescale parameterization schemes are 2-3 days forthis wave, which is shorter than
theO(10) day time scale for advection to terminate the interaction event. Nonlinearity makes
a significant contribution in this band even though there is no representation in the resonant
interaction scheme for transferring this variance to smaller scales.

3) THE BOUNCE

As formulated, these models assume a constant buoyancy frequency. Waves are free to
propagate in the vertical and will terminate an interactionevent on a time scaleτp = H/Cz

g .
Waves of sufficiently high frequency, however, will encounter turning points where their in-
trinsic frequency approaches that of the local stratification rateN(z). Curiously, the negative
vertical stress - vertical shear correlation occurs for waves that potentially encounter a buoyancy
frequency turning point (Polzin 2009). The presence of turning points and a boundary can give
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rise to a variant of the wave capture scenario.
In a deformation strain horizontal wavenumber magnitude asymptotically increases. Verti-

cal wavenumber undergoes either an increase or decrease, but at both surface reflection or turn-
ing point there will be a sign change and opposing time evolution of the vertical wavenumber.
Over many reflections and turning points, horizontal wavenumber magnitude increases, the ver-
tical wavenumber remains nearly constant and consequentlythe intrinsic frequency increases.
Such a wave will become progressively trapped in regions of higher and higher buoyancy fre-
quency. A high frequency wave reported in Joyce and Stalcup (1984) may represent such an
event. It is not clear that this phenomenology is appropriately represented in (16).

5. Array Resolution Issues
The LDE array was specifically designed to estimate terms in the quasigeostrophic potential

vorticity equation with mooring spacing to optimally sample the deformation scale horizon-
tal velocity gradients. One measure of the quality of the horizontal gradient estimates for a
quasigeostrophic flow is given by Bryden (1976):

R =
| ux + vy |

| ux | + | vy |
,

in which horizontal non-divergence impliesO(ζ/f) values ofR. Record length estimates ofR
are 0.3-0.5, (Brown and Owens 1981), an order of magnitude larger than the Rossby number.
The largeR values result in part from spatial aliasing as the horizontal divergence has significant
contributions from spatial scales smaller than those that characterize the velocity. The lack
of adequate spatial resolution implies the estimates of relative vorticity gradient variance and
enstrophy dissipation are biased. In contrast, there is a tendency for the potential vorticity flux
estimates to be coherent across the array (not shown here), implying that the flux is dominated
by relatively large horizontal scales.

To assess the bias of the enstrophy dissipation estimate, I pursue the following consistency
check. The estimates of kinetic energy, enstrophy, enstrophy gradient variance and enstrophy
dissipation can be represented as the following moments of the kinetic energy spectrum:

variable estimated “fully resolved′′ (29)

Ek

∫ ∞

0
Ek(kh) dkh

∫ kc
h

0
Ek(kh) dkh

2νζ2 2
∫ ∞

0
νok

2
hsinc

2(
khLfd

2π
)Ek(kh) dkh 2

∫ kc
h

0
ν(kh)k

2
hEk(kh) dkh

ζ2
∫ ∞

0
k2

hsinc
2(
khLfd

2π
)Ek(kh) dkh

∫ kc
h

0
k2

hEk(kh) dkh ∝ ln kc
h

| ∇hζ |
2

∫ ∞

0
k4

hsinc
4(
khLfd

2π
)Ek(kh) dkh

∫ kc
h

0
k4

hEk(kh) dkh ∝ (kc
h)

2

1

2
ν | ∇hζ |

2 1

2

∫ ∞

0
νok

4
hsinc

4(
khLfd

2π
)Ek(kh) dkh

1

2

∫ kc
h

0
ν(kh)k

4
hEk(kh) dkh ∝ kc

h

Enstrophy and relative vorticity gradient variance estimates presented in Section 3 used a first
difference scheme. The transfer function for a first difference operator over a length scaleLfd

differs from the gradient by factor ofsinc(khLfd/2π) in which sinc(x) = sin(πx)/πx. The
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observed enstrophy gradient variance is approximately(ζ/Lfd)
2 rather than(ζ/Ld)

2, which is
consistent with the enstrophy gradient variance being dominated by scales smaller thanLd and
raises concerns that those estimates are not resolved. To estimate the degree of bias, the first
difference estimates can be compared to ’fully resolved’ quantities determined by integrating
the formulae to scales1/kc

h where the spectrum rolls off due to dissipation. The scale1/kc
h

can be identified as the scale at which eddy potential vorticity is transfered to relative vorticity
associated with the dipole structure of a wave packet. The finite difference estimates would be
considered resolved in the two agree.

The estimates of energy and enstrophy dissipation are the product of the gradient variances
and a coupling coefficient. From (25) one can anticipate the horizontal viscosity to be scale
dependent,νh ∝ k−1

h . The observed viscosity represents the coupling between the wave stress
and resolved horizontal gradients, which are characterized by scales of approximatelyLd/2.
Thus as anad hocgeneralization:

ν(kh) =
2νo

khLd
,

with νo = 50 m2 s−1 . Within the nominal enstrophy cascade regime,Ek(kh) ∝ k−3
h , so that

integrals representing enstrophy, relative vorticity gradient variance and enstrophy dissipation
do not converge unless an explicit dissipation scale1/kc

h is invoked.
Particularly problematic is the attempt at estimating the enstrophy dissipation as the product

of a significantly underestimated relative vorticity gradient variance with a horizontal viscosity
(νo) unrepresentative of the scales which dominate that variance. To be quantitative I have
taken the kinetic energy spectrum from AVISO3 averaged over an extended area of the Western
North Atlantic, extended the spectrum at wavenumbers greater than3 × 10−5 m−1 with a k−3

h

power law, normalized the spectrum to the LDE array eddy kinetic energy estimate at 800 m
and then integrated the spectral moments out to2π/kc

h = 10 km. The factor of two agreement
between the array estimates and the nominal finite difference moments, Table 1, lends credence
to the methodology. My first difference estimate of enstrophy dissipation is almost an order of
magnitude smaller than the “resolved” moment for ak−3

h spectrum.
I conclude that the enstrophy dissipation estimate may be biased low. But then we are

precisely where we started: an assertion that mesoscale eddy – internal wave couplingmay
result in enstrophy dissipation making anO(1) contribution to the enstrophy variance equation.

Similar considerations apply to the vertical coordinate ifviable theoretical estimates can be
formulated and length scale variability identified.

6. Summary and Discussion
a. Summary

Current meter array data from the Local Dynamics Experiment(LDE) of the PolyMode field
program were used in investigate the coupling of the mesoscale eddy and internal wave fields
in the Southern Recirculation Gyre of the Gulf Stream. The coupling was characterized as a
viscous process. In terms of momentum budgets, the transferof eddy vorticity to internal wave
pseudomomentummayplay anO(1) role in the eddy potential enstrophy budget. These results
may be specific to the LDE region, which is situated at the exitof the Southern Recirculation
Gyre. Further research is required to extrapolate these results.

3Spectrum supplied by Rob Scott, p.c. 2008.
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A modified version of the mesoscale eddy–internal wave coupling mechanism described
by Müller (1976) is used to predict an effective horizontalviscosity of 50–100 m2 s−1. This
result is in good agreement with observations obtained during the Local Dynamics Experiment
(νh

∼= 50 m2 s−1). Similar modifications to Müller’s theory for the coupling between vertical
eddy gradients and vertical wave fluxes results in a prediction for an effective vertical viscosity
of −8 × 10−3 m2 s−1 which is inconsistent with the observed value of2.5 × 10−3 m2 s−1. A
possible reason for this discrepancy lies in the differences between the GM76 spectrum used to
make the theoretical prediction and the observed spectrum.

Subtle differences between the regional background spectrum and the GM model are docu-
mented in Polzin et al. (2007). Most notably, the observed background spectrum is nonseparable
in the frequency-vertical wavenumber domain with near-inertial waves being much more band-
width limited than the internal wave continuum. High wavenumber/frequency power laws of
the observed spectrum also differ from the GM model. It is difficult to further refine the theo-
retical estimates of eddy-wave coupling without having a 2-D vertical wavenumber–frequency
spectrum on which to base the calculations.

This study comes with many caveats:

• First and foremost is that the LDE array does not spatially resolve the enstrophy gradient
variance. However, the estimate of enstrophy dissipation appears to be biased low, and
thus the claim that enstrophy dissipationmayplay anO(1) role in the enstrophy budget
is reinforced.

• The maximum observational record length for the LDE array data discussed in Section
(3) is 15 months, but the failure of certain instruments reduces the usable record length to
225 days. Stable estimates of time mean quantities typically require averaging periods of
order 500 days (Schmitz 1977). The mean quantities quoted here represent record length
means with associated record length uncertainties. See Bryden (1982) and Brown et al.
(1986) for further discussion of these uncertainties. I note, however, that the available
15 month estimates are consistent with the 225 day record means (to within uncertainty).
Any differences do not change the interpretation presentedhere.

• The estimated viscosity coefficients could vary significantly in response to variability
in the amplitude and spectral characteristics of the internal wavefield. In the scenario
considered by Müller (1976), the net transfers of energy and momentum between eddies
and waves is accomplished by nonlinearity relaxing wavefield perturbations back to an
isotropic state. The strength of the nonlinearity will varying in response to variability in
the background wavefield. Characterization of variabilityin response to spatial/temporal
variations of sources and sinks is an open question.

• The characterization of enstrophy dissipation through a flux-gradient relation (15) neces-
sarily omitted flux divergence terms and thus the flux-gradient characterization need not
completely characterize the eddy-wave coupling process.

• The characterization of the coupling through a flux gradientrelation applies only to quasi-
geostrophic flows in which the flow field is horizontally nondivergent toO(Rossby num-
ber squared). Symmetric flow structures such as rings and jets are not coupled in the same
manner.

The discussion below tries to flesh out some of the broader implications of eddy-wave cou-
pling.
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b. Discussion

1) THE END OF THE ENSTROPHY CASCADE

Potential vorticity is conserved in the absence of diabaticprocesses and friction. The dom-
inant intellectual prejudice in Physical Oceanography is to regard frictional processes as being
turbulent (essentially diabatic) in nature and sufficiently weak within the oceanic interior that
potential vorticity modification following a parcel occursonly at the boundaries.

Diabatic mixing occurs in the ocean when small-scale shearsbecome strong enough to over-
turn the stable stratification. Geostrophically balanced eddies are not efficient at generating
small-scale shear as enstrophy conservation arrests the transfer of energy to small scales. At
small scales the mesoscale eddy kinetic energy spectrum scales with a power law ofEk(kh) ∝
k−3

h . Thus the shear variance is independent of scale and typically so small that small-scale
overturns (e.g., Kelvin-Helmhotz billows) do not develop.The picture is one of potential vor-
ticity anomalies in the enstrophy cascade being filamented,collapsing, and eventually removed
by ambient diabatic processes.

If, on the other hand, mesoscale eddies are coupled to the internal wavefield as described
here, then the enstrophy cascade can be short-circuited. The exchange of eddy relative vorticity
for wave pseudomomentum accomplishes enstrophy dissipation. The removal of energy into
the internal wavefield implies a diabatic dissipation mechanism (ultimately through internal
wavebreaking) even though the direct eddy–wave interaction is adiabatic.

One relevant question is, “at what scale does mesoscale eddy- internal wave coupling com-
pete with nonlinearity on the slow manifold?” This is difficult to address with the data at hand,
but consider an example (Wilson and Williams 2004) of an idealized eddy resolving model
that has been used to explore eddy dynamics and the consequences eddies have for the mean
circulation. A tentative generalization of such model behavior is that eddy fluxes typically are
along, rather than across, mean potential vorticity contours, and that the mean tends to a state
of potential vorticity homogenization, in which the down gradient potential vorticity flux con-
tribution to the enstrophy budget is small. Wilson and Williams (2004) attribute this behavior
to the eddy advection of enstrophy. The dominant balance in their enstrophy equation is be-
tween eddy advection (nonlinearity),u′ · ∇q′2, and enstrophy productionu′q′ · ∇q. The model
used in Wilson and Williams (2004) employs a biharmonic mixing of momentum. This func-
tional representation permits the creation of high enstrophy at the deformation scale and its
dissipation at the smallest scales: large enstrophy gradients are permitted and eddy advection of
these gradients balance the down gradient potential vorticity fluxes. Eddy enstrophy can then
be carried to the boundary where it is efficiently dissipated. The biharmonic frictional coeffi-
cientAh = 2.5 × 109 m4 s−1 used by Wilson and Williams (2004) implies a deformation scale
(Ld = 5 × 104 m) Reynolds number of:

u′L3
D/Ah

∼= 2500

with rms velocityu′ = 0.05 m s−1. Given a viscous representation to the eddy-wave coupling
mechanism, a deformation scale (Ld = 5 × 104 m) Reynolds number is:

u′LD/νh
∼= 50

with νh = 50 m2 s−1. If variation ofνh asνh ∝ L is considered, the Reynolds number decreases
with decreasing length scale,Re ∝ L in the enstrophy cascade regime. Based upon experience
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with 3-dimensional turbulence, I suspect that this parameter regime may not exhibit an extended
inertial subrange.

A second way of stating this is to consider the ratio between an enstrophy dissipation time
scaleτd = k2

hEk/
1
2
νk4

hEk and nonlinear time scaleτnl2/Γ, with Γ = (S2
n + S2

s − ζ2)1/2 an
effective deformation scale strain rate. Unity values of this time scale ratio occur at horizontal
wavelengthsλh = 10 km.

Defining the end of the enstrophy cascade will be complicatedas potential vorticity pertur-
bations associated with the enstrophy cascade coexist withvortical modes (Polzin et al. 2003;
Polzin and Ferrari 2004) and internal wave dipoles (Polzin 2008) on submesoscales.

2) IMPLICATIONS FOR THESLOW MANIFOLD – FAST MANIFOLD DEBATE

The slow manifold – fast manifold moniker is a recognition that the equations of mo-
tion support two distinct linearized modes: fast gravity waves and slow motions in approxi-
mate geostrophic balance. The debate is essentially a question of whether initially balanced
(geostrophically balanced) states can evolve without significant coupling to gravity waves.

With respect to mechanisms, the debate is cast either in terms of an analogy to to the forcing
of linear acoustic waves by turbulence (vortical motions),e.g. Ford et al. (2000), or the linear
instability of a parallel shear flow (notably a symmetric state), Molemaker et al. (2005). There
is a growing body of evidence that such spontaneous forcing of the fast manifold is weak.

The thesis of this work is that internal waves can interact with geostrophically balanced
flows, exchanging pseudomomentum, energy and potential vorticity without the requirement of
diabatic effects or resonance conditions. In this study, asymmetry of the background and non-
linearity in the internal wavefield are the key properties associated with irreversible exchanges.
Small amplitude waves propagating in a larger scale geostrophic flow field obey an action con-
servation principle. Since the horizontal wavevector evolves following a wave-packet in non-
axisymmetric background flows, it follows from (4) and (5) that a momentum flux divergence
will induce a potential vorticity perturbation, and that this can be accomplished adiabatically.
This vorticity perturbation is reversible in the sense thatthe mean state is unchanged after the
passage of a linear packet. Müller (1976) provides the insight that, if the action of nonlinear-
ity is to relax the wavefield back to an isotropic state, it is possible for the associated vorticity
perturbation to become permanent: nonlinearity enables anet transfer of energy and vorticity
between mesoscale eddies and internal waves.

An action conservation principle is essentially conservation of a real valued phase func-
tion [(2), see Andrews and McIntyre (1978)] and needs to be distinguished from an instability
problem, which describes the transfer from slow to fast manifolds with a complex valued phase
function. One can think of mesoscale eddy–internal wave coupling as an amplifier of a pre-
existing or externally forced finite amplitude wavefield rather than the spontaneous imbalance
of a linear field. The issue of nonlinearity needs to be kept inmind when interpreting numer-
ical simulations, such as those presented in Dritschel and Viùdez (2007). A nondimensional
landmark is the ratio of linear to nonlinear timescale (17) in (16).

3) GENERAL CIRCULATION ISSUES

At the LDE site we have an observation of potential vorticityfluxes. As the observed flux
is directed across isopleths of background vorticity, thatpotential vorticity flux also represents
potential enstrophy production. In steady state, either anadvective flux divergence (nonlinear-
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ity) or dissipation is required. I infer an approximate production–dissipation balance associated
with mesoscale eddy – internal wave coupling.

This work started by noting the degree to which the symmetrically constrained Eliassen–
Palm flux theorem (1) has focussed intellectual effort on understanding the effects of nonlinear-
ity. I make the case in this manuscript that “dissipation” needs equal footing.

In a one-dimensional vertical advection - vertical diffusion balance of the buoyancy equa-
tion, diapycnal diffusivities ofO(1×10−4 m2 s−1) are required to balance the upwelling of some
30× 106 m3 s−1 Bottom and Deep Waters produced in polar regions, Munk (1966). There may
be sufficient diapycnal mixing above topographically roughregions driven by internal wave
breaking (Polzin et al. 1997) or associated with topographically constrained passages (Polzin
et al. 1996; St.Laurent and Thurnherr 2007) to upwell Deep and Bottom waters to Intermediate
Water levels (1000-2000 m water depth over much of the World’s Oceans). However, diapycnal
mixing is sufficiently weak,O(1 × 10−5 m2 s−1), over much of the thermocline region [e.g.
Ledwell et al. (1993)], that advocacy of a diapycnal advection-diffusion balance is difficult to
defend.

Something must give, and the conceptual paradigm that supplants the vertical advection –
vertical diffusion balance is that of Luyten et al. (1983), in which mean streamlines coincide
with mean potential vorticity contours, with streamlines consisting of Rossby wave trajectories.
A competing hypothesis is that, if one takes the ideal fluid limit of an adiabatic and inviscid
interior and considers the effect of mesoscale eddies, mesocale variability will tend to produce
interiors with small mean potential vorticity gradients, Rhines and Young (1982).

The relative contributions of eddies and interior diabaticprocesses to the mean potential
vorticity balance of gyre interiors can be gauged by scale estimates of the respective terms:
eddy contributions4 are∇ · q′u′ ∼ O(1 × 10−7m s−2/5 × 106m) and diabatic effects5 are
∂zfN

−2∂zKρN
−2 ∼ O(10−4s−1 × 10−5m2s−1/(700m)2, an order of magnitude smaller.

My preference is to consider the upper limb of the MeridionalOverturning Circulation to
be closed along isopycnals with mesoscale eddy – internal wave coupling playing a significant
role in potential vorticity modification. I emphasize the issue of potential vorticity modification
as I put more weight on McCartney (1982)’s characterizationof potential vorticity increase and
water mass modification of Mode Waters along likely advection paths than the corresponding
analyses of McDowell et al. (1982) and Keffer (1985).

4) ISSUES OFVARIABILITY

Variability of the viscosity coefficients acting on the mesoscale field will depend upon vari-
ability in the background wavefield. Such variability exists [Polzin et al. (2007)]. A possi-
ble implication of this work is that the variability in both the mesoscale eddy field (Zang and
Wunsch 2001) and the internal wavefield (Polzin et al. 2007) are related through mesoscale
eddy–internal wave coupling. In terms of understanding thegeographic variability of viscosity
coefficients, there is a simplicity if the energetics of the internal wave field are dominated by
an interior coupling to the mesoscale eddy field, as appears to be the case in the Southern Re-
circulation Gyre. This represents the dynamic balance advocated by Müller and Olbers (1975),
albeit at somewhat reduced interaction rates. Simplicity is also attained if the mesoscale eddy

4Here I have taken the observed potential vorticity fluxes at the LDE site and divided by a length scale of 5000
km.

5Here I takef to be representative of45◦ degrees latitude, a background diapycnal diffusivity of1 × 10−5 m2

s−1 and thermocline scale of 700 m.
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spectrum rolls-off uniformly at the deformation radius andthe propagation scalesLi in (17) can
be related toLd.

The internal wave–eddy coupling becomes more complicated if the geostrophic flow field
locally forces the zeroth order wavefield though quasi-stationary internal lee wave generation.
An associated issue is posed by non-equilibrium (vertically decaying) internal wave states asso-
ciated with tidal forcing at mid-ocean ridges [Polzin (2004b)]. These factors may help explain
why the mesoscale eddy field above the Mid-Atlantic Ridge tends to be more baroclinic than
topologically smooth regions, Wunsch (1997).

I leave the reader with the following questions:

• How spatially variable are these effective viscosities? Are results from the Gulf Stream
Recirculation applicable to more climatologically sensitive regions such as the South-
ern Ocean [(Naveira-Garaboto et al. 2004), (Polzin and Firing 1998)] or the Greenland–
Iceland–Norwegian Seas, Naveira-Garaboto et al. (2005)?

• The behavior of simplified oceanic general circulation models depends upon how viscous
damping is implemented [(Cessi and Ierley 1995), (Fox-Kemper and Pedlosky 2004)].
What happens to the behavior of the general circulation as the thermocline tightens, the
eddy scale decreases, or the rms eddy velocity increases?

• One perspective of climate change is that temporal trends atincreasingly longer time
scales represent increasingly smaller imbalances in the equations of motion. If true, can
we really claim to understand how the climate system works ifGCMs are simply tuned
to today’s conditions and do not address the proper sub-gridscale physics?
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FIG. 1. Coherence functions created by averaging (a)−sgn(Sn)[Pu′′u′′ − Pv′′v′′ ]/P
1/2
u′′u′′P

1/2
v′′v′′ ,

(b) −sgn(Ss)Cu′′v′′/P
1/2
u′′u′′P

1/2
v′′v′′ with Cu′′v′′ being the real part of theu′′v′′ cross-spectrum and

(c) the average of the preceding panels. Over plotted as thick lines are GM76 based estimates for
the coherence functions using (25). These model coherence functions use eddy decorrelation
scales of 50, 100 and 200 km, with model coherence increasingwith increasing horizontal
length scaleL. Estimates are based upon 512 point transform intervals andaveraging data from
both triangles at 825 m water depth.
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FIG. 2. Cumulative integrals of the spectral functions−sgn(Sn)[Pu′′u′′−Pv′′v′′ ] (thick lines) and

−2sgn(Ss)Cu′′v′′ (dashed lines), divided by rate of strain| Sn | and| Ss |, to provide estimates
of the horizontal viscosityνh. Two estimates of each appear. The lower curves ignore contri-
butions at semi-diurnal frequencies. Over plotted as thin lines are GM76 based estimates for
the corresponding viscosity estimate using (25). These estimates employ an eddy decorrelation
scale ofL = 50, 100 and 200 km.
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The factorCx′′y′′ represents the real part of thex′′y′′ cross-spectrum. The transfer function
T (ω) = (ω2 − f 2)/(ω2 + f 2) accounts for cancelation of the Reynolds stress by the buoyancy
flux and renders the denominator consistent with the numerator. Over plotted as thick a line is
a GM76 based estimate for the coherence functions using (28). The coherence estimates are
based upon 1024 point transform intervals of data at both 600and 825 m levels. Data are from
the Center, Northeast and Northwest moorings.
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TABLE 1. Moments of the kinetic energy spectrum, (29). Column two contains the observed
estimates, column three the moment representation of the first difference estimates and the
fourth “fully resolved” estimates of the moments integrated to “dissipation scale” of2π

kc
h

= 10

km .

variable observed estimated “fully resolved”

Ek 4.0 × 10−3 m2 s−2 4.0 × 10−3 m2 s−2

2νζ2 3.0 × 10−10 W/kg 3.9 × 10−10 W/kg 4.6 × 10−10 W/kg

ζ2 3.5 × 10−12 s−2 3.9 × 10−12 s−2 7.0 × 10−12 s−2

| ∇hζ |
2 6.7 × 10−21 m−2 s−2 1.3 × 10−20 m−2 s−2 3.8 × 10−19 m−2 s−2

1
2
ν | ∇hζ |

2 1.7 × 10−19 s−3 3.3 × 10−19 s−3 1.2 × 10−18 s−3
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