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Discussions of the dynamics of the Antarctic Circumpolar Current (ACC) generally focus on eddies. The
linear, analytical models are discussed only infrequently, and none of these models has gained wide-
spread acceptance. These models nevertheless exist and exhibit interesting, and often realistic, features.
We revisit those models, to understand their dynamics and to assess their relevance to the ACC.

We focus specifically on the steady, linear, wind-driven models, and those with either a barotropic or
equivalent barotropic vertical structure. The most important feature distinguishing them is their choice
of geostrophic contours (f=H or the equivalent), whether closed or blocked.

We first examine the flat bottom models. With closed geostrophic contours, the solutions have a flow
which is primarily along the contours and a transport which is inversely proportional to the bottom drag
coefficient. For realistic parameters, this transport is excessively large. Solution with blocked contours
instead exhibit gyres, with cross-contour flow and western boundary currents. But they also have one
or more circumpolar jets, which follow the geostrophic contours over most of the domain. In contrast
to the closed contour models, these jets have a transport which asymptotes to a constant value when
the bottom drag is vanishingly weak.

We then discuss solutions with bottom topography, focusing in particular on the equivalent barotropic
solution. The central parameter here is the vertical scale of the current, which determines the extent of
the interaction with topography and the degree to which the geostrophic contours are blocked. The solu-
tions with a shallow current are less affected by topography and have closed geostrophic contours and
large transports. Solutions with too large vertical extent are overly-controlled by topography and exhibit
only weak circumpolar transport.

Solutions with an intermediate vertical scale have blocked contours and also reasonable circumpolar
transport. Furthermore, these solutions exhibit strikingly realistic surface height fields. As in the flat bot-
tom case, the solutions have an interior in Sverdrup balance and a circumpolar transport which asymp-
totes with vanishing bottom friction. We demonstrate that this transport can be estimated via a contour
integral; the result agrees well with the full equivalent barotropic solution. Both are nevertheless roughly
50% larger than observed in Drake Passage. However, the transport can be reduced to realistic values by
adding lateral dissipation to the model.

Thus the equivalent barotropic model is successful at capturing the steering of the ACC by topography,
given the vertical scale of the current. However, it remains to understand what determines that scale.
Thermohaline forcing and lateral mixing by eddies are likely to be important.

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Conventional wisdom states that the dynamics of the Southern
Ocean are like those of the mid-latitude troposphere, with a zon-
ally-connected jet and its attendant eddies (e.g. Rintoul et al.,
2002, 2004). This is because in the latitude range of Drake Passage,
there are no continuous meridional barriers. So there can be no net
meridional transport in the region, and that transport must be car-
ried by eddies. Eddies thus transport buoyancy across the Antarctic
Circumpolar Current (ACC) as storms transport heat across the Jet
Stream. The dynamics of the ACC are therefore believed to be fully
nonlinear.

In contrast are the subtropical gyres, where meridional barriers
permit a Sverdrup balance in the ocean interior. Observations sug-
gest that such a balance exists, within the errors, in the upper
water column in the North Atlantic (Leetmaa et al., 1977; Wunsch
and Roemmich, 1985) and North Pacific (Hautala et al., 1994). This
favors the use of linear models of the wind-driven circulation, as in
the seminal works of Stommel (1948) and Munk (1950). These
models, with their frictional western boundary currents, yield cir-
culations which broadly resemble those observed (Godfrey, 1989;
Vallis, 2006).

This is not to say that eddies are not important here. They are
likely instrumental in phenomena like the , recirculation gyres
(e.g. Jayne and Hogg, 1999). Indeed, adding nonlinearity to the
Stommel and Munk models produces recirculations (Bryan, 1963;
Veronis, 1966). They may also be important in setting the vertical
structure of the wind-driven circulation, something which is sim-
ply specified in the linear models. Nevertheless these models pro-
vide a plausible zeroth-order description of the large scale flow and
are still used as testbeds for various processes.

No linear model of the Southern Ocean has been similarly ac-
cepted. This is not however for lack of linear models. But the exist-
ing models differ widely in their dynamics and predicted
transports. This may explain in part why there is still widespread
disagreement about the fundamental dynamics. It remains uncer-
tain for instance whether the ACC transport is determined by the
wind stress, its curl or by thermohaline forcing (e.g. Gnanadesikan
and Hallberg, 2000).

These linear models are the subject of the present review. Be-
cause they are generally overlooked, many readers may even be
unfamiliar with them. Thus we will revisit them, and study in par-
ticular how they are dynamically related. In addition, we wish to
see to what extent the models resemble observations, both from
in situ data and from GCMs. Some of the models display a surpris-
ing degree of realistic structure, and are perhaps worthy of further
study.

1.1. The models

Fundamentally, the linear models differ in how they treat the
geostrophic contours in the Southern Ocean. The geostrophic con-
tours represent the stationary portion of the potential vorticity,
e.g. that due to the Coriolis effect. Some of the models have con-
tours blocked by lateral barriers while others have closed contours
cite this article in press as: LaCasce, J.H., Isachsen, P.E. The linear mode
which reconnect globally. With weak friction, wind-driven models
with blocked contours exhibit a Sverdrup interior and western
boundary currents. But the Sverdrup balance fails with closed con-
tours because there can be no net cross-contour flow (there are no
western boundary currents in which the cross-contour flow can re-
turn). Thus another agent, like bottom friction, must balance the
wind stress. With weak friction, the flow is mainly along the geo-
strophic contours and can be very strong (Welander, 1968; Green-
span, 1968; Young, 1981; Isachsen et al., 2003).

Stommel (1957) contended that the geostrophic contours are
blocked in the Southern Ocean. The Scotian Island Arc spans the
latitude range to the east of the Drake Passage and presents an
obstacle to any throughflow. Stommel suggested the arc could
act as a ‘‘porous” western boundary, permitting the ACC to pass
through and feed the Falkland Current. Then the interior would
be in Sverdrup balance and, Stommel conjectured, the ACC’s trans-
port could be determined from integrating the wind stress curl, as
in a subtropical gyre. Subsequent tests of this, derived from a cir-
cumpolar integral of the curl around the globe at the latitude of
the tip of South America, yielded estimates comparable to trans-
ports measured in Drake Passage (Baker, 1982; Godfrey, 1989;
Chelton et al., 1990; Warren et al., 1996).

However, Stommel did not derive an analytical model to sup-
port his idea. But Ishida (1994) considered a model which was
dynamically equivalent (Section 3). The model employs a flat-bot-
tomed channel, where the geostrophic contours (latitude lines) are
blocked at all latitudes by two disconnected meridional barriers.
The solution has a Sverdrup interior, but also exhibits a piecewise
zonal, circumpolar jet. The latter occurs because the meridional
barriers are disconnected, so that pressure differences can exist be-
tween them. In this model, the strength of the circumpolar flow is
not determined by an integral of the wind stress curl but of the
stress itself. Webb (1993), who examined a similar model indepen-
dently, suggested it could also account for the splitting of the ACC
into branches, if additional barriers (representing, for example, the
Kerguelen Plateau) were introduced.

The other possibility is that Drake Passage is not blocked and
that the geostrophic contours are closed. Gill (1968) examined
such a case, using a channel blocked by a barrier in the northern
half-domain and open in the southern half (Section 4). In the north,
the flow is approximately in Sverdrup balance, but in the south the
balance is between the transport in the surface and bottom Ekman
layers. This model produces transports which are much larger than
observed, unless one uses fairly large bottom drag coefficients.

Many believe that Gill’s model fails because it lacks bottom
topography. Munk and Palmen (1951) suggested that the wind
stress could be balanced by pressure gradients across bottom
topography rather than by bottom friction. Support for this form
drag balance has been found in numerous modelling studies (e.g.
Treguier and McWilliams, 1990; Stevens and Ivchenko, 1997; Gille,
1997; Gnanadesikan and Hallberg, 2000; Gent et al., 2001). How-
ever, the form drag does not predict the transport of the ACC. In
fact, it is equivalent to a mass conservation statement, in which
the surface Ekman transport is balanced by geostrophic flow be-
tween topographic features (Warren et al., 1996; Section 7.1). Thus
ls of the ACC. Prog. Oceanogr. (2010), doi:10.1016/j.pocean.2009.11.002

http://dx.doi.org/10.1016/j.pocean.2009.11.002


J.H. LaCasce, P.E. Isachsen / Progress in Oceanography xxx (2010) xxx–xxx 3

ARTICLE IN PRESS
the form drag balance may apply instead to the meridionally over-
turning circulation, which may or may not be related to the ACC.

The first to incorporate topography in an analytical model of the
ACC was Kamenkovich (1962) (see also Johnson and Hill, 1975). His
solution involved a novel integration along the geostrophic con-
tours (which are just the contours of f=H in a barotropic fluid; Sec-
tion 2). With weak bottom drag, the flow is primarily along these
contours. However, f=H is rather convoluted in the Southern
Ocean, with large closed gyres. So the solution does not resemble
the actual ACC, and has only a weak circumpolar component (Kru-
pitsky et al., 1996).

This suggests that topography is too dominant in a barotropic
model. Stratification weakens topographic steering, as the bottom
velocities are usually weaker than the depth-averaged velocities.
Killworth (1992) found that the ACC in the FRAM simulation of
the Southern Ocean (FRAM Group, 1991) exhibited an equivalent
barotropic structure, so that the bottom velocities were parallel
to, but weaker than, the surface velocities. Krupitsky et al. (1996)
exploited this in a model (Section 5) similar to Kamenkovich’s.
But because the model is equivalent barotropic, the geostrophic
contours are given by f=FðHÞ, where FðHÞ is a filtered function of
the topography (see also Marshall, 1995; Killworth and Hughes,
2002). The authors obtained solutions whose structure and trans-
port were similar to those in the FRAM model (Krupitsky et al.,
1996; Ivchenko et al., 1999).

Hereafter we consider how these are dynamically related. We
focus especially on two models, those of Ishida (1994) and Krupit-
sky et al. (1996). The latter exhibits structure very like that of the
actual ACC (Section 6). The former captures the essential dynamics
of the latter in the relevant parameter range, and suggests a way in
which the circumpolar transport can be estimated analytically. We
identify too which aspects of the circulation the models fail to
explain.

2. Equations

The models considered hereafter assume either a barotropic or
equivalent barotropic vertical structure. The barotropic assump-
tion is familiar, that there is no vertical shear. The equivalent baro-
tropic construct is less familiar in the oceanic literature but is well-
known in the atmospheric context, having been developed for
weather forecasting during the 1940s and 1950s (Charney, 1949;
Fjørtoft, 1952; Carlson, 1991). The construct permits stratification,
but the thermal wind is everywhere parallel to the geostrophic
velocities at the surface. So while the magnitude of the velocity
varies with depth, its direction does not. Under this assumption,
the density field is passive and one solves only for the velocities.

We will derive equations for the equivalent barotropic case; the
barotropic case can then be recovered by setting the vertical shear
to zero. The key assumption is that the vertical structure is
separable:

~uðx; y; z; tÞ ¼ ~usðx; y; tÞPðzÞ ð1Þ

and

pðx; y; z; tÞ ¼ psðx; y; tÞPðzÞ ð2Þ

where ~u and p are the horizontal velocities and the dynamic pres-
sure and ~us and ps are corresponding values at the surface. Substi-
tuting these into the horizontal momentum equations yields:

P
@

@t
~us þ P2~us � r~us þ f k̂� P~us ¼ �

1
q0

Prps þ
@

@z
~s
q0
þ mPr2us ð3Þ

where~s is the applied stress (e.g. Gill, 1982). We assume the motion
is steady and linear and neglect the first two terms. Integrating in
the vertical yields:
Please cite this article in press as: LaCasce, J.H., Isachsen, P.E. The linear mode
f k̂� F~us ¼ �
1
q0

Frps þ
~sw

q
� RPð�HÞ~us þ mFr2~us ð4Þ

Here sw is the wind stress, R is a linear bottom friction coefficient
and

Fðx; yÞ �
Z 0

�H
PðzÞdz ð5Þ

is the integral of the vertical structure function, PðzÞ. Note that if the
flow is barotropic,

PðzÞ ¼ 1 ð6Þ

and

Fðx; yÞ ¼ Hðx; yÞ ð7Þ

Then Eq. (4) reduces to the steady, linear shallow water momentum
equation.

The continuity equation, under the Boussinesq approximation,
is:

@

@x
uþ @

@y
v þ @

@z
w ¼ 0 ð8Þ

Substituting in (1), integrating in the vertical and rearranging
yields:

@

@x
ðFusÞ þ

@

@y
ðFv sÞ ¼ 0 ð9Þ

As with the momentum equation, the shallow water continuity
equation is recovered if F ¼ H. The continuity equation allows the
definition of a transport streamfunction:

Fus ¼ �
@

@y
w; Fv s ¼

@

@x
w ð10Þ

Dividing the momentum Eq. (4) by F, taking the curl and invok-
ing the streamfunction yields a potential vorticity equation:

J w;
f
F

� �
¼ r�

~s
qF
� Rr � Pð�HÞ

F2 rw

� �

þ mr2 @

@x
1
F
@w
@x
þ @

@y
1
F
@w
@y

� �
ð11Þ

where Jða; bÞ is the Jacobian function. Eq. (11) states that flow across
contours of f=F, which are the geostrophic contours in the equiva-
lent barotropic system, can only occur in response to wind forcing
or friction. Without such forcing, the flow is everywhere parallel
to f=F. Minus the lateral friction, this is the equation used by Krupit-
sky et al. (1996) and Ivchenko et al. (1999) in their studies with the
equivalent barotropic model (Section 5).

If the flow is barotropic, so that F ¼ H, Eq. (11) reduces to the
steady, linear shallow water vorticity equation:

J w;
f
H

� �
¼ r�

~s
qH
� Rr � 1

H2rw

� �

þ mr2 @

@x
1
H
@w
@x
þ @

@y
1
H
@w
@y

� �
ð12Þ

Then the geostrophic contours are given by f=H. This is the equation
considered by Kamenkovich (1962). If, in addition, the bottom is flat
and we invoke the b-plane approximation, f ¼ f0 þ by, we have:

b
@

@x
w ¼ 1

q
r�~s� rr2wþ mr4w ð13Þ

where r ¼ R=H. Now the geostrophic contours are latitude lines.
Excluding lateral friction, this is the vorticity equation used by Gill
(1968; Section 4) and Ishida (1994; Section 3). It is also the basis of
Stommel’s (1948) model of the Gulf Stream. Thus Eq. (11) encom-
passes all the linear models discussed in the present article.
ls of the ACC. Prog. Oceanogr. (2010), doi:10.1016/j.pocean.2009.11.002
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Fig. 1. The channel geometry of Ishida’s model. The thick dashed curve indicates
the position of the zonal boundary layers, while the dotted lines show the contour
used for the island rule integral.
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Hereafter we examine these models. We begin with the baro-
tropic, flat bottom cases, before proceeding to the equivalent baro-
tropic model with topography.

3. Ishida’s model

Though not the first of the linear models, Ishida’s (1994) model
exhibits many features found in the more complicated models. A
similar model was examined independently by Webb (1993) (see
also Hughes, 2002).1 As noted, this model most closely represents
the one envisioned by Stommel (1957). In this, the Southern Ocean
is a channel with two meridional barriers (Fig. 1). The northern bar-
rier represents South America and the southern one represents the
Antarctic peninsula/Scotian Island Arc. The channel is periodic, so
that wðM; yÞ ¼ wð0; yÞ.

The model employs Eq. (13) without lateral friction. It is useful
to non-dimensionalize the equation, thus:

@

@x
w ¼Tr�~s� dr2w ð14Þ

where

d � r
bL
; T ¼ T

qbHUL

Here T is the amplitude of the wind stress, L the N–S extent of
the channel and U the velocity scale. Thus bottom friction is weak
if d� 1. Then frictional dissipation is confined to boundary layers
and the vorticity equation in the interior is approximated by the
Sverdrup relation:

@

@x
w ¼ r�~s ð15Þ

The parameter T is thus of order unity, implying the velocities scale
as U � T=ðqbHLÞ.

The streamfunction at a given latitude is found by integrating
(15) west from the nearest eastern boundary.2 The integral is par-
ticularly simple if the wind stress is only a function of y:

wðxÞ ¼ wE �
@sx

@y
ðx� xEÞ ð16Þ

where xE is the position of the nearest eastern boundary and wE is
the value of the streamfunction on that boundary. We can set
wE ¼ 0 on the northern barrier, without loss of generality. But we
1 Webb (1993) examined a model with a geometry like that of Ishida (1994), but
forced by sources and sinks of fluid rather than a wind stress. Hughes (2002)
generalized Webb’s model to include stratification and bottom topography, and
discussed it in relation to Stommel’s (1957) conjectured circulation.

2 This follows from the presumption of western boundary layers. Interestingly,
Stommel, 1957 suggested a possible eastern boundary current west of the Antarctic
Peninsula. Hughes, 2002 explored the consequences of such a layer. But eastern
boundary layers are not possible with only bottom friction (Stommel, 1948; Pedlosky,
1987).
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cannot assume wE ¼ 0 on the southern boundary because the two
barriers are disconnected. Rather, we set wE ¼ C, where C is a con-
stant. This is equal to the transport between the barriers, as follows
from integrating the meridional velocity across the gap between the
barriers:Z D

C
Hvdx ¼

Z D

C

@

@x
wdx ¼ wðDÞ � wðCÞ ¼ C ð17Þ

Thus C is the strength of the model’s circumpolar flow.
Friction acts in boundary layers, of which there are two types.

First, there are Stommel layers on the eastern sides of the meridi-
onal boundaries (Fig. 1). These decay to the east as expð�x=dÞ and
act to reset the streamfunction to the value on the barrier. There
are also boundary layers in the interior. These smooth discontinu-
ities in the Sverdrup streamfunction which occur because the
northern and southern barriers are on different meridians. Con-
sider the streamfunction just west of the southern tip of the north-
ern barrier. To the south of the line y ¼ a, the streamfunction, from
(16), is:

wðx; a�Þ ¼ C� @s
x

@y
ðaÞðx� DÞ ð18Þ

But north of y ¼ a, the streamfunction is:

wðx; aþÞ ¼ � @s
x

@y
ðaÞðx� CÞ ð19Þ

So there is a discontinuity in the streamfunction along the line
y ¼ a:

4wðx; aÞ ¼ @s
x

@y
ðaÞðD� CÞ � C ð20Þ

Without friction, this jump would produce a zonal jet with an
infinite velocity. But friction smooths the jump, reducing the veloc-
ities. These interior boundary layers, centered on the dashed lines
in Fig. 1, are regions of strong zonal flow. This is the circumpolar
current in the Ishida model. The boundary layers spread toward
the west, as in a diffusive layer, with a thickness proportional to
d1=2 (Appendix A).

There remains one unknown: the circumpolar transport, C. This
can be found via an integral relation, equivalent to Godfrey’s
(1989) island rule.3 This derives from the non-dimensionalized
momentum equation, which can be written:

f̂ k̂�~u ¼ �Prpþ~s� d~u ð21Þ

where

f̂ ¼ f ðyÞ
bL

; P ¼ P

qbUL2

We assume that f0 � bL, for consistency with the scaling of the vor-
ticity equation. Integrated around a closed circuit, this is:I

f̂~u � n̂dl ¼
I
~s � dl� d

I
~u � dl ð22Þ

The circuit is indicated by the dotted lines in Fig. 1. It is zonal in
the interior and meridional along the eastern boundaries. We
choose this particular path because bottom friction is assumed to
be negligible along the eastern boundaries. As there is no flow into
the boundaries and as the wind is zonal, the meridional segments
do not contribute to the integral. The full integral is given in
Appendix A.

Three representative solutions, with different values of the bot-
tom friction coefficient, d, are shown in Fig. 2. We use a sinusoidal
wind stress, given by:
3 A similar relation is employed by Kamenkovich (1962).

ls of the ACC. Prog. Oceanogr. (2010), doi:10.1016/j.pocean.2009.11.002

http://dx.doi.org/10.1016/j.pocean.2009.11.002


x

y

δ  = 4x10
−4

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x

y

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x

y

δ  = 4x10
−2

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Fig. 2. The Ishida model solution with three values of the non-dimensional bottom friction coefficient, d.

J.H. LaCasce, P.E. Isachsen / Progress in Oceanography xxx (2010) xxx–xxx 5

ARTICLE IN PRESS
~s ¼ sx̂i ¼ 1
2
½1� cosð2pyÞ�̂i ð23Þ

(recall that the scaled N–S extent of the channel is one). The solu-
tion with the weakest damping (d ¼ 4� 10�4, upper panel) exhibits
two gyres, with counter-clockwise flow in the north and clockwise
flow in the south. Between the barriers is a jet, which flows east-
ward. The jet is zonal except where it passes though western
boundary layers on the eastern sides of the barriers. The jet coin-
cides with the interior boundary layers discussed above, and its nar-
rowing from west to east reflects the westward spreading of those
layers.

The solution with d ¼ 4� 10�3 (middle panel) is similar, except
that the jet is wider and weaker. Note there is a mismatch in the
jets north of the southern barrier (the jet suddenly narrows). Ishida
Please cite this article in press as: LaCasce, J.H., Isachsen, P.E. The linear mode
(1994) suggested the bottom friction should be weak enough so
that the meridional spreading to the east of the barrier does not
cross the northern tip, precisely to avoid this. The model can be
modified to smooth the transition, by including a boundary layer
at the barrier tip (e.g. Gill, 1968). But this complicates the solution
and does not affect the transport.

The solution with d ¼ 4� 10�2 (lower panel) has essentially no
circumpolar flow at all. The solution is instead dominated by the
two gyres. Note that these gyres are not stronger than in the pre-
vious two cases (being independent of bottom drag); they only ap-
pear stronger because the jet is absent.

Shown in Fig. 3 is the jet transport as a function of bottom fric-
tion from a suite of such solutions. The transport and friction have
been dimensionalized, for comparison with subsequent numerical
solutions. In particular, we plot Cdim ¼ CTðqbÞ�1 against R ¼ bHLd.
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We see that the transport asymptotes to a constant value for small
drag coefficients and decreases monotonically with stronger
damping. The asymptotic limit (roughly 350 Sv) is substantially
larger than in the ACC, but the model has not been ‘‘tuned” in
any way. Note too that the transport becomes negative at the larg-
est values of R.

This dependence can be understood as follows. The extent to
which friction enters the island integral depends on how much
the jet (centered on the dashed lines in Fig. 1) overlaps the island
contour (the dotted lines). With vanishing friction there is no over-
lap, so that the surface Ekman transport is balanced entirely by the
meridional flow. Then the (non-dimensional) transport is given by:

C ¼ MsðbÞ þ ðC � DÞ½sðbÞ � sðaÞ�
f̂ ðbÞ � f̂ ðaÞ

ð24Þ

The corresponding dimensional value is indicated by the dashed
line in Fig. 3.

With larger values of R, the jet overlaps the Island curve and
friction enters the Island integral. Thus the bottom Ekman layer
partially balances the surface Ekman transport, and the circumpo-
lar transport is reduced. If R is large enough the jet actually re-
verses, so that the surface and bottom Ekman transports are both
to the north.

As discussed by Ishida (1994), the transport, C, depends on the
positions and extent of the barriers. The dependence on the sepa-
ration in x is relatively weak. From (24), the transport is approxi-
mately linearly proportional to the barriers’ meridional
separation, as long as the wind stress at the latitudes of the barrier
tips is different ðsðbÞ – sðaÞÞ. In our example those winds are equal,
so there is no dependence at all on the meridional separation.

On the other hand, the transport is inversely proportional to the
latitudinal overlap between the barriers. As the overlap goes to
zero, the transport becomes infinite. Then the island contour be-
comes zonal and the meridional transport term drops out. If the
overlap is increased, the transport decreases. So a more realistic
asymptotic transport in Fig. 1 can be had by simply increasing
the overlap.
Please cite this article in press as: LaCasce, J.H., Isachsen, P.E. The linear mode
Increasing the overlap has another interesting effect: it in-
creases the distance between the island contour and the jet axis.
So with the same value of R, bottom friction is less important for
the circumpolar transport with a large overlap than with a small
one.
3.1. Numerical solutions

We can test the analytical solutions by computing comparable
numerical solutions employing the same channel geometry. For
these solutions, we used the Regional Oceanic Modeling System
(ROMS; Shchepetkin and McWiliams, 2005). The model was con-
figured for a channel, 9000 km in length and 3000 km wide, and
centered at 60S. We ran the model without advection, in the baro-
tropic mode. We used a linear bottom drag, as in the analytical
model, and used no explicit diffusion of momentum. We used
the same wind stress as in (23), with an amplitude of 0.1 N/m2,
and ran the model to a steady state. Note that the model solves
the horizontal momentum and continuity equations, rather than
the vorticity equation in (13).

The sea surface height (SSH) fields obtained from three such
runs are shown in Fig. 4. The solution in the upper panel had a bot-
tom friction coefficient, R, of 10�4 m=s (yielding the same value of d
used for the upper panel of Fig. 2). As with the analytical solution,
there are gyres in the north and south separated by a piecewise zo-
nal jet, with the latter spreading to the west from the barrier tips.
The oscillations emanating from the eastern sides of the barriers
are reflected Rossby waves, initiated during spin-up and not yet
dissipated away by the bottom drag.

The solution with intermediate friction (R ¼ 10�3 m=s, middle
panel) also resembles its analytical counterpart (Fig. 2). The west-
ward spreading is evident and the jet is wider. Note too that the
flow north of the tip of the southern boundary smoothly joins
the flow to the west.

However, the run with the strongest bottom drag
(R ¼ 10�2 m=s, bottom panel) differs from its analytical counter-
part. In particular, the numerical solution reveals a jet where the
analytical model had little circumpolar flow at all (Fig. 2). The jet
ls of the ACC. Prog. Oceanogr. (2010), doi:10.1016/j.pocean.2009.11.002
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4 Gill (1968) allowed for the possibility that bottom friction modifies the solution
over the whole domain. In his formulation, the Sverdrup balance is the lowest order
balance in the northern interior.
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is much less zonal than in the cases with weaker damping, exhib-
iting smooth north–south deviations around the barriers.

The transport from a number of such runs is plotted in Fig. 3.
These estimates derive from averaging the transport in Drake Pas-
sage over the final third of each run. In the weak friction limit, the
transport asymptotes to a value somewhat greater than 350 Sv, the
asymptotic limit in the analytical solution (the slight difference is
due to small differences in the barrier lengths in the models). As
in the analytical model, the transport decreases with increasing
friction; but here the transport goes to zero with large friction
rather than becoming negative.

This reason for the latter difference can be inferred from Fig. 5.
This shows the three terms in the vorticity balance (13) evaluated
in the model along the latitude line at y = 2000 km (north of the jet
axis, in the northern gyre). With R ¼ 10�4 m=s, the bv term approx-
imately balances the wind stress curl over much of the interior;
only in the western boundary layer is bottom friction important.
With R ¼ 10�3 m=s, all three terms are important in the interior,
implying the Sverdrup balance no longer holds in the interior. With
R ¼ 10�2 m=s; bv is unimportant and the bottom Ekman layer is
the primary agent balancing the wind. Thus the analytical model,
which assumes a Sverdrup interior for all values of the bottom fric-
tion, differs in this limit.

Friction plays an interesting role in these models. It is unimpor-
tant in the gyres in the analytical model, which has a Sverdrup inte-
rior. But it can be important for the circumpolar transport, if the jet
overlaps the island contour. Thus friction can be important for the
ACC, despite that it isn’t for the gyres. The numerical solutions sug-
gest friction acts in the gyres as well, with larger bottom drag coef-
ficients. But in the limit of vanishing bottom friction, both the
analytical and numerical models have gyres and jets whose
strengths are independent of bottom drag.

4. Gill’s model

If we remove the southern barrier, we have Gill’s (1968) model.
Now the latitude lines are blocked only in the northern half of the
Please cite this article in press as: LaCasce, J.H., Isachsen, P.E. The linear mode
domain. The solution in the north derives from the integrated
Sverdrup relation (15),4 as in Ishida’s model. The solution in the
south differs, because the Sverdrup balance no longer holds. Instead,
the solution is determined by the zonally-integrated x-momentum
equation:I

sxdx ¼ d
I

udx ¼ �d
I
@w
@y

dx ð25Þ

Note this is just the island rule (22), integrated along a latitude
line.

With a wind stress which varies only with latitude the solution
is, to first order:

wðyÞ ¼ C� 1
d

Z y

0
sxdy ð26Þ

The full solution is complicated and we will not reproduce it
here. Instead, we use the ROMS model to derive a numerical solu-
tion for the problem, employing the same geometry as with the
Ishida calculation but without the southern barrier. The result,
with a bottom friction coefficient of R ¼ 10�4 m=s, is shown in
Fig. 6. The flow is dominated by an essentially zonal flow, intensi-
fied in the southern half of the domain. This overshadows the solu-
tion in the north, which is dynamically similar to that in the Ishida
model, with a Sverdrup gyre and a western boundary current on
the eastern side of northern barrier. We see only that some of
the streamlines appear to intersect the boundary.

Of central interest here is the total transport, C. Assuming the
channel streamfunction vanishes at y ¼ a and using the wind stress
in (23), this is:

C ¼ 1
d

Z a

0
sðyÞdy ¼ 1

2d
a� 1

2p
sinð2paÞ

� �
ð27Þ
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The corresponding dimensional transport is:
C ¼ Hs0

qR
a� L

2p
sin

2pa
L

� �� �
ð28Þ
So the transport is inversely proportional to the bottom friction. In-
stead of asymptoting to a constant value, as in Ishida’s model
(Fig. 3), the transport in the Gill model increases without bound
as R! 0. Using the channel dimensions and the wind stress ampli-
tude ð0:1 N=m2Þ from the numerical example, the transport is 0.3/
R Sv. With R ¼ 10�4 m=s, this yields 3000 Sv. The same transport
is found integrating across the southern half of the domain in the
numerical solution, after the latter equilibrates.

The large transport is a familiar problem with the Gill model:
reasonable values of the transport require larger values of bottom
friction. To obtain a transport like that in Drake Passage requires a
friction coefficient which is 20 times larger. Next we explore the
extent to which topography alters the picture.
Please cite this article in press as: LaCasce, J.H., Isachsen, P.E. The linear mode
5. Equivalent barotropic model with topography

As noted earlier, the justification for using such a model comes
from Killworth (1992), who found that the ACC in the FRAM model
had an equivalent barotropic structure. Sun and Watts (2001)
found a similar vertical structure in their analysis of hydrography
from the Southern Ocean, as did Killworth and Hughes (2002) with
data from a simulation with the OCCAM model (Saunders et al.,
1999). The equivalent barotropic (EB) model was first applied to
the Southern Ocean by Krupitsky et al. (1996) and was compared
to fields from the FRAM simulation by Ivchenko et al. (1999).

In this model, the geostrophic contours are determined by f=F,
where F is given in (30). These contours are intermediate between
latitude lines and f=H contours, depending on the vertical structure
function, PðzÞ. To see this, consider that PðzÞ is an exponential
function:

PðzÞ ¼ exp
z
z0

� �
ð29Þ
ls of the ACC. Prog. Oceanogr. (2010), doi:10.1016/j.pocean.2009.11.002

http://dx.doi.org/10.1016/j.pocean.2009.11.002


J.H. LaCasce, P.E. Isachsen / Progress in Oceanography xxx (2010) xxx–xxx 9

ARTICLE IN PRESS
Killworth (1992) deduced an exponential profile from the FRAM
data and an exponential was also used by Krupitsky et al. (1996)
and Ivchenko et al. (1999). With this, we have:

F ¼
Z 0

�H
Pdz ¼ z0 1� exp � H

z0

� �� �
ð30Þ

In deep water, where H	 z0:

F � z0

So the geostrophic contours, f=F, are like latitude lines. In shallow
water, where H� z0:

F � H

So the contours revert to f=H. Thus f=F effectively filters out deep
topography from the geostrophic contours.

A second point with the EB model is that the bottom drag de-
pends on Pð�HÞ, from (11). With the exponential profile above,
Pð�HÞ is vanishingly small when H	 z0; so the drag is weak in
deep water. Krupitsky et al. (1996) and Ivchenko et al. (1999) in-
cluded an additive constant to their exponential profiles, presum-
ably to avoid this effect. But we will not do so, to reduce the
number of free parameters.

To calculate solutions, we again use the ROMS model, which we
modified to solve the equivalent barotropic momentum and conti-
nuity Eqs. (4) and (9). As before, we ran the model to a steady state
with a constant wind stress, using various e-folding scales, z0. Note
that Krupitsky et al. (1996) calculated numerical solutions to (11)
directly, but our spin-up calculations produce consistent results.

The model resolution was 1� by 0.5�, on a spherical grid, and we
again used no momentum advection or diffusion. For the wind
stress, we used the Hellerman and Rosenstein (1983) climatology.
We also tested the Trenberth et al. (1989) and Southampton SOC
GASC97 (Josey et al., 1999) climatologies and obtained qualita-
tively similar results. For topography, we used a 1� data set (from
the National Geophysical Data Center), smoothed once with a nine-
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point filter. Thus we do not resolve topographic scales less than
roughly 100 km.

Shown in the upper panel of Fig. 7 is the sea surface height from
a solution with an e-folding scale of z0 ¼ 500 m. We used a small
bottom drag coefficient, R ¼ 10�5 m=s. Because of this, wave-like
oscillations are present throughout the simulation. A gyre is evi-
dent in the northern part of the domain, but the flow is otherwise
dominated by a nearly zonal jet in the Drake Passage latitudes. Sig-
nificantly, this run never equilibrated; the transport increased until
the simulation became numerically unstable. At the time shown,
the circumpolar transport was 1100 Sv and the difference in sea
surface height across the stream was on the order of 20 m!

The large transport can be traced back to the f=F contours,
which are nearly zonal and unblocked in the Drake Passage lati-
tudes (lower panel of Fig. 7). In line with Gill’s model, we expect
that the Sverdrup balance does not apply here and that the primary
balance is between the wind stress and bottom drag. However, the
drag is very weak because the depth greatly exceeds z0. So the
wind forcing is essentially unbalanced. Had we used an additive
constant in PðzÞ, as Krupitsky et al. (1996) did, this would not hap-
pen, but the jet would still be zonal and the transport large.

Increasing z0 to 800 m yields the SSH field in the upper panel of
Fig. 8. Unlike the previous example, this run does equilibrate. Note
again that there are waves which have not yet dissipated, due to
the weak bottom drag. The flow in the Drake Passage latitudes is
still strong, but a portion of the current peels off to the north, mov-
ing along the South American coast and crossing to the Kerguelen
Plateau (at 80E). The current then proceeds southward, east of the
plateau, to rejoin the southern branch. However the transport in
Drake Passage, 755 Sv, is still fairly large and the height difference
on the order of 10 m.

The f=F contours for this case are shown in the lower panel of
Fig. 8. The primary difference is that with z0 ¼ 800 m, the Kergue-
len Plateau exerts a greater influence on f/F. It blocks most of the
Drake Passage latitudes, preventing the zonal jet seen with
z0 ¼ 500 m.
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We can capture the essential elements of this solution with a
modified version of Ishida’s model (Fig. 9). The two barriers at left
no longer overlap, leaving the ‘‘Drake Passage” open. However, the
latitude lines are blocked by a ‘‘Kerguelen” Island to the east. With
this configuration, there are two unknowns: the streamfunction on
Antarctica and that on the island. This requires two island con-
tours, as indicated by the dashed and dash-dotted lines in the fig-
ure. The solution with friction is not trivial, but the inviscid
solution is straightforward, involving a pair of coupled equations:
fk � fg 0
fj � fh fh � fj

� �
K

C

� �
¼
ðC þM � FÞsk þ ðF � CÞsg

ðDþM � FÞsj þ ðF � DÞsh

� �
ð31Þ
where g, h, j and k are the latitudes of the southern tip of the north-
ern barrier, the northern tip of the southern barrier and the south-
ern and northern tips of the Kerguelen Island, respectively, and
where K and C are the Kerguelen and Antarctic streamfunctions.

The solution is shown in Fig. 9. This exhibits two eastward jets:
one which passes north of the Kerguelen Island and one which
y
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Fig. 9. The solution with the broken barrier model using a barrier configuration similar t
indicated by the dashed and dash-dot lines.
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passes to its south. The branches enter a western boundary current
east of the island proceed as two distinct jets into Drake Passage.

The equivalent barotropic solution in Fig. 8 shares a number of
these features. There are western boundary currents off South
America and the Kerguelen plateau, and two branches in the longi-
tude range between those features. Both branches enter the wes-
tern boundary east of Kerguelen, and there are indications of two
branches entering Drake Passage.

Increasing z0 to 1100 m (not shown) further develops the Ker-
guelen barrier. The southern tip of the barrier now extends south
nearly to Antarctica, with the result that the southern branch of
the ACC is much weaker; most of the flow now passes north of
the Kerguelen Plateau. The transport in this solution is still large,
at 345 Sv.

Increasing z0 to 1400 m increases these tendencies, closing the
gap between the northern and southern portions of the Kerguelen
Plateau and that between the southern tip and Antarctica (Fig. 10).
Now nearly all the ACC passes north of the Kerguelen Plateau. In
addition, the current exhibits more ‘‘wiggles”, reflecting the greater
influence of bottom topography. The transport is 230 Sv.
x
.5 2 2.5 3

o that in Fig. 8. The friction coefficient is d ¼ 0:0002 and the two island contours are
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With the Kerguelen joined to Antarctica, this case is similar to
Ishida’s (1994) original configuration (Section 3). A corresponding
solution is shown in Fig. 11. Here again there is only one unknown
(the transport on Antarctica) and a single jet. The jet passes from
South America to the northern tip of the plateau before moving
south again. This is superimposed on gyres which close in western
boundary currents to the east of the barriers.

As the Kerguelen Plateau is now the southern barrier, it is
shifted east from where it would be if the latter represented the
Scotian Island Arc. However, since the transport is only weakly
dependent on the longitudinal separation between the barriers,
this should have little effect. More important is the change in the
meridional overlap, because the northern tip of the Kerguelen Pla-
teau is nearly 10� north of the southern tip of South America. Fol-
lowing the discussion in Section 3, this greater separation favors a
more inviscid jet. Note too that the Scotian Island Arc is largely
passive in this solution; while it alters the gyre structure locally,
it is unimportant for the transport of the ACC. The same is true
for the Cambell plateau, which supports a western boundary cur-
rent but does not affect the net transport.
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Fig. 11. The solution with the broken barrier model using a barrier configuration simil
indicated by the dashed line.
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If this solution is representative of the equivalent barotropic
one in Fig. 10, we would expect the transport in the latter case to
asymptote to a constant value with small drag coefficients. This
is the case. Shown in Fig. 12 is the transport with z0 ¼ 1400 m over
a range of R. With vanishing friction, the transport asymptotes to a
value of around 230 Sv. If the model were in the Gill limit, the
transport would vary inversely with R.

It should also be possible to estimate the transport in the invis-
cid limit using an island integral. For this, we require an island
integral along f=F contours rather than latitude lines. To obtain
this, we divide the momentum Eq. (4) by F and integrate along con-
tours of constant f=F:I

~s
qF
� d̂l ¼ � f

F

I
@w
@l

dl ð32Þ

Recall that for the inviscid limit, we neglect the frictional
contribution.

We evaluate (32) by integrating numerically along the path
indicated in Fig. 10. This consists of two f=F contours, aligned with
the southern tip of South America (near 50S) and the northern tip
x
.5 2 2.5 3

ar to that in Fig. 10. The friction coefficient is d ¼ 0:0002 and the island contour is
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of the Kerguelen Plateau (near 60S). We use approximate f=F con-
tours for this, neglecting the portions near the coasts and islands
(as in the Scotian Arc). For the contour indicated in Fig. 10, we ob-
tain an estimate of 240 Sv (using adjacent f=F contours produces
estimates in the range from 220 to 260 Sv). Thus this estimate is
consistent with the 230 Sv obtained numerically for Fig. 10.

Increasing z0 further yields even more contorted f=F contours in
the Drake latitudes. With z0 � 2000 m (not shown), most of the f=F
contours in Drake Passage turn back toward the South Pacific. The
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Fig. 13. Sea surface height from an equilibrated si
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solution with z0 ¼ 3000 m (Fig. 13) is essentially steered by f=H
contours. This solution corresponds to Kamenkovich’s (1962) baro-
tropic solution. We find that the transport through Drake Passage
is about 50 Sv. A similar value was obtained by Krupitsky et al.
(1996) in a solution using the shallow water vorticity equation.

Thus the EB model exhibits the dynamics of all three of the flat
bottom analytical models. With z0 less than about 600 m, the
Drake Passage latitudes are open and the flow is like that in the Gill
(1968) model. With z0 between roughly 600 and 2000 m, the mod-
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mulation with z0 ¼ 3000 m and R ¼ 10�5 m=s.
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el resembles Ishida’s (1994), with the geostrophic contours
blocked by the Kerguelen Plateau. And with larger z0, the contours
are essentially f=H contours, as in Kamenkovich’s (1962) solution.

Killworth (1992) suggested the e-folding scale for PðzÞ was
around 1200 m for the FRAM model and Killworth and Hughes
(2002) found a somewhat larger value for the OCCAM simulation.
Gille (2003) deduced a smaller value (700 m), by comparing trajec-
tories of subsurface floats in the Southern Ocean with f/F contours.
Nevertheless, all three estimates would put the ACC in the blocked
contour regime.

6. Comparing the EB model to observations

The mean sea surface height in the Southern Ocean, from the
Rio and Hernandez (2004) climatology, is shown in the upper panel
of Fig. 14. Most of the features seen here are also found in the EB
solution with intermediate z0 (e.g. Fig. 10). The flow deviates 10�
to the north along the eastern coast of South America and then pro-
ceeds eastward to 50E, the longitude of the Kerguelen Plateau.
Thereafter it moves southeast, at least partially in a boundary cur-
rent east of the Plateau.5 It then rounds the Cambell Plateau south of
New Zealand in another boundary current, before returning to the
southern tip of South America.

However, there are also differences with the EB solution. The
latter is ‘‘too wiggly”, indicating too strong steering by topography.
The western boundary current on the eastern side of the Kerguelen
is sharper in the model than in the observations, and the gradients
in the solution are generally too strong. Moreover, the transport
(230 Sv) is roughly 50% larger than the 150 Sv observed in Drake
Passage (Whitworth et al., 1982; Whitworth and Petersen, 1985;
Cunningham et al., 2003).
5 The western boundary current east of the Kerguelen Plateau is discussed by Speer
and Forbes (1994) and Donohue et al. (1999).
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If the e-folding scale really is around 1400 m, the actual ACC
must be more viscid than in the weak friction limit. Increasing
the bottom friction will reduce the transport, but we require
R � 5� 10�3 m=s to obtain a reasonable transport (Fig. 12); this
is roughly an order of magnitude larger than expected (e.g. Gill,
1982; Isachsen et al., 2003). Moreover, increasing the bottom drag
will not alter the wiggliness of the solution because linear drag acts
equally on all scales.

6.1. Lateral diffusion

A way to address both issues is to include lateral eddy stirring.
Indeed, it is well-known that the ACC is unstable, with eddies gen-
erated along nearly its entire path. This can be seen in Fig. 15,
which shows the rms variability in the sea surface height. The larg-
est variability occurs off the coast of South America and in the
Agulhas Retroflection, but there is enhanced variability in many
other regions as well. While the model does not permit instability,
we can mimic the eddy stirring by including a lateral diffusion
term (as in Munk’s (1950) model of the North Atlantic). Specifi-
cally, we add a diffusion term to the model momentum equations,
which results in a lateral diffusion of relative vorticity.6

An example is shown in Fig. 16. This has z0 ¼ 1400 m, a bottom
friction coefficient of R ¼ 5� 10�4 m=s and a lateral diffusion coef-
ficient of 3� 103 m2=s. The latter is in line with estimates derived
from surface drifters in the Southern Ocean (Sallee et al., 2008). The
resulting solution compares quite well with the observed field in
Fig. 14, even though the solution still exhibits stronger gradients
than observed and is more strongly influenced by topography.
The transport in this solution is 170 Sv, somewhat larger than,
but comparable to, observations. Of course, the transport would
6 More properly, one could diffuse potential vorticity (e.g. Treguier et al., 1997).
Both approaches however will act to smooth the small scales.
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be reduced further with a larger viscosity. It is also reduced by
about 10% using the SOC winds. But the similarity with Fig. 14 sug-
gests the model is not far from reality. We conclude that eddy mix-
ing is probably important in determining the horizontal structure
of the ACC.
6.2. Wind stress curl

As noted in the beginning, Stommel (1957) suggested the trans-
port of the ACC could be estimated by a circumpolar integral of the
wind stress curl and a number of subsequent studies supported
this (Baker, 1982; Godfrey, 1989; Chelton et al., 1990; Warren
et al., 1996). If the present results are correct, this agreement must
be coincidental, because the transport should be determined in-
stead by the wind stress.

We rechecked the Sverdrup estimate, using three different wind
products: the Trenberth et al. (1989) climatology, the Southamp-
ton SOC GASC97 product (Josey et al., 1999) and Hellerman and
Rosenstein’s (1983) climatology. We integrated the curl at 55S
with each set. The resulting transport was negative (southward)
for both the Hellerman and Rosenstein and Trenberth products
and roughly 100 Sv in both cases. The transport from the SOC prod-
uct on the other hand was not different from zero; this is because
the zero curl line in the SOC product coincides with the South
American tip. Thus the agreement between the integrated curl
and the ACC transport appears to depend on the choice of winds.
7. Comparing the EB model to GCMs

The EB model also shows distinct similarities to solutions ob-
tained with general circulation models. This is well-illustrated in
the article by Ivchenko et al. (1999), who compared an EB solution
with output from the FRAM simulation. In particular, the EB model
produced a similar mean streamfunction (albeit with somewhat
sharper lateral gradients, as in the preceding section) and transport
(of 180 Sv).
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7.1. Form drag

In addition, Ivchenko et al. demonstrated that the EB model
exhibits a form drag balance very much like that in FRAM. This bal-
ance derives from the the steady depth- and zonally-integrated x-
momentum equation. Written in Cartesian coordinates, this is:I Z 0

�H

@

@y
ðvuÞdzdx ¼

I Z 0

�H

1
q
@p
@x

dzdxþ
I sxð0Þ

q
dx�

I
RudxþR

ð33Þ

where R is a residual which includes all neglected terms, such as
lateral dissipation and the vertical advection of momentum. Note
that the Coriolis and zonal advection of momentum terms vanish
in the circumpolar integral. The pressure term can be rewritten
using Leibniz’s rule:I Z 0

�H

1
q
@p
@x

dzdx ¼
I

@
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and the first term on the RHS vanishes. So the zonal integral is:I Z 0

�H

@

@y
ðvuÞdzdx ¼
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dxþ
I sxð0Þ

q
dx�

I
RudxþR

ð35Þ

As noted previously, diverse numerical studies of the Southern
Ocean indicate there is an approximate balance between the wind
stress and bottom pressure terms, the first two terms on the RHS of
(35). This suggests the zonal stress exerted by the wind at the sur-
face is balanced by pressure differences across topography. How-
ever, there is another way of viewing this. The bottom pressure
term can be rewritten following integration by parts:I

1
q

pð�HÞ @H
@x

dx ¼ �
I

H
q
@pð�HÞ
@x

dx ¼ �
I

fHvgð�HÞdx ð36Þ

where vgð�HÞ is the geostrophic meridional velocity at the bottom.
Note the last integral does not vanish because the integration path
proceeds between topographic features (it is below the ‘‘sill depth”).
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Fig. 17. The zonally-averaged, time–mean zonal momentum balance in the FRAM
simulation. Lines (1) and (2) correspond to the wind stress and bottom form drag,
and lines (3) are (4) are the poleward momentum flux divergence and the residual
terms. The units are 10�4 m2=s2. From Stevens and Ivchenko (1997), with
permission.
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So the form drag balance is equivalently a balance between the sur-
face Ekman transport and the geostrophic meridional transport near
the bottom (Warren et al., 1996).

Integral (35), evaluated with the FRAM data, is shown in Fig. 17.
The wind stress and bottom pressure terms are by far the largest,
with the advective and residual terms being much smaller (Stevens
and Ivchenko, 1997). Ivchenko et al. (1999) demonstrated that the
EB model exhibits the same balance. The wind stress and bottom
pressure terms dominate, with the bottom friction playing a sec-
ondary role.
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Fig. 18. The form drag balance calculated for the EB solution shown in Fig. 16 in the Drak
lateral friction (dash-dot), bottom friction (dashed) and residual (thick solid).
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We illustrate the latter with the present EB model in Fig. 18.
Note that our version of the EB model differs in several ways from
that of Ivchenko et al.; we use a different vertical structure func-
tion, PðzÞ, with weaker bottom velocities, and use a smaller bottom
friction coefficient. The terms shown in Fig. 18 derive from the
solution in Fig. 16. As in Fig. 17, the wind stress and bottom pres-
sure terms nearly balance one another. The three other terms (lat-
eral and bottom friction, and the residual) are considerably
smaller. Bottom friction is actually less important here even than
in Ivchenko et al. (1999), probably because of the differences sited
above.

Thus the EB model captures the form drag balance seen in many
numerical models. However, form drag does not reveal the transport
of the ACC. While form drag derives from an integral of a momentum
equation, like the island integral used in Section 5, it is along a lat-
itude line. It is thus, effectively, along the wrong contour. In order to
estimate the transport, the integral must be along f=F contours.

The EB model predicts—in both the closed and blocked contour
regimes—that the strength of the ACC is determined by the wind
stress, not the curl. Gnanadesikan and Hallberg (2000) examined
this question explicitly, with coarse resolution simulations of the
GFDL MOM model. They ran simulations varying the wind stress
while holding the curl constant, and vice versa. The results
(Fig. 19) suggested the ACC transport was linearly dependent on
the wind stress. However it was independent of the curl.

In addition, Gnanadesikan and Hallberg (2000) found that the
Sverdrup balance was approximately satisfied at points in the
Southern Ocean interior. This, and the transport dependence on
the wind stress, are in agreement with the Ishida (1994) model
and the EB model in the blocked geostrophic contour regime.

Gnanadesikan and Hallberg (2000) also showed that thermoha-
line forcing was important for the ACC transport. In their model,
thermohaline forcing, with its associated upwelling of dense water,
alters the cross stream density gradient and hence the thermal
wind balance in the ACC. In the context of the EB model, we would
say that thermohaline forcing alters z0, the vertical scale of the cur-
rent, as the vertical shear is linked to the lateral density gradient by
0 −59 −58 −57 −56
titude

e Passage latitudes. The terms are wind stress (dotted line), bottom pressure (solid),
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Fig. 19. Regression of the ACC transport vs. wind stress (left panel) and curl (right panel) in the Drake Passage latitudes in the GCM calculations of Gnanadesikan and Hallberg
(2000). Reprinted with permission.
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thermal wind. However z0 is set in the EB solution; it is not an
unknown.
8. Summary and discussion

We have examined the linear, wind-driven models of the ACC.
We began with two barotropic, flat bottom channel models. Gill’s
(1968) model has blocked latitude lines in the north and unblocked
lines in the south, and yields a circumpolar current whose trans-
port varies inversely with the bottom drag coefficient. This trans-
port is also too large for reasonable values of that coefficient.
Ishida’s (1994) model, in which the lines are blocked at all latitudes
by two disconnected barriers, also yields a circumpolar jet. But in
this case the transport asymptotes to a constant value with vanish-
ing bottom drag.

We then examined Krupitsky et al.’s (1996) equivalent baro-
tropic model with topography. The model assumes the velocities
have a self-similar vertical structure which is assumed to be expo-
nential. We then examined how the solutions depend on the verti-
cal e-folding scale, z0. The central point is that the choice of z0

affects the geostrophic contours, because it determines to what ex-
tent the current feels the topography. For z0 K 600 m, the solution
resembles that in the Gill model because the geostrophic contours
in the Drake Passage latitudes are nearly zonal and hence closed.
With 600 K z0 K 2000 m, the flow is deep enough so that the geo-
strophic contours are blocked by the Kerguelen Plateau. Then the
solutions are like those in the Ishida model, with a circumpolar
transport which asymptotes to a constant value with vanishing
bottom drag. With z0 J 2000 m, the geostrophic contours are
essentially f=H contours and are dominated by topography. In this
limit, the model is like the barotropic model considered by Kamen-
kovich (1962).

Results from the FRAM model (Killworth, 1992) and the OCCAM
model (Killworth and Hughes, 2002) suggest the actual e-folding
scale is around 1200 m, which would put the ACC in the blocked
barrier regime, as in Ishida’s (1994) model. This would imply that
the transport is insensitive to the choice of bottom friction coeffi-
cient, provided it is small enough. That asymptotic limit can in
principle be estimated analytically using a contour integral. With
an e-folding scale of 1400 m, we obtained an estimate of 240 Sv,
similar to the value obtained by solving the equivalent barotropic
system numerically.

The fact that this value is roughly 50% larger than observed sug-
gests that additional friction is required. This is most likely due to
lateral dissipation, induced by eddies along the path of the ACC.
Including lateral friction with a reasonable viscosity reduces the
transport to a value within range of the observations. The resulting
Please cite this article in press as: LaCasce, J.H., Isachsen, P.E. The linear mode
solution bears a strong resemblance to the mean sea surface height
from satellite observations (Rio and Hernandez, 2004).

The present results thus support Stommel’s (1957) assertion
that the geostrophic contours in the Southern Ocean are blocked
(although the Kerguelen Plateau is the primary barrier, rather than
the Scotian Island Arc). These results also support the idea that the
interior is near Sverdrup balance. But the transport of the ACC is
not determined by the integrated wind stress curl, but by the inte-
grated wind stress. Gnanadesikan and Hallberg (2000) reached the
same conclusion in an analysis of a suite of GCM solutions.

The present results also counter the notion that the ACC is
primarily a zonal current. Because the geostrophic contours are
blocked, western boundary currents and the associated meridional
deviations of the jet are critically important. A Sverdrup interior is
impossible in a pure channel configuration. This throws doubt on
the relevance of channel and zonally-averaged models of the current.

Munk and Palmen (1951) suggested that the primary dynamical
balance in the ACC is between the eastward stress exerted by the
wind at the ocean surface and pressure differences across bottom
topography, the form drag balance. Subsequent numerical studies
have supported this notion. However, the EB model also exhibits
a form drag balance which is fully comparable to that seen in full
GCMs (Ivchenko et al., 1999). We note that the reason for this is
that the form drag integral is like the island integral which deter-
mines the strength of the ACC in the Ishida and EB models. How-
ever, being a zonal integral, the form drag balance effectively
employs the wrong contour of integration. It is for this reason that
it cannot determine the ACC transport.

A central question with regards to the EB model is what deter-
mines the vertical scale, z0. From the results of Gnanadesikan and
Hallberg (2000), it may be that thermohaline forcing is important
as it could alter the density gradients across the ACC. Consistent
with this, they found that thermohaline forcing affected the total
transport in their simulations. But z0 could also be affected by ed-
dies, which act to redistribute density across the stream while
reducing the vertical shear.

In effect, the EB model tells us how the ACC responds to topog-
raphy, once the stratification has been established, but it does not
tell us how the latter comes about. There is a parallel in the atmo-
spheric literature. Models which are linearized about the time–
mean zonal circulation are effective at describing the tropospheric
response to orographic and thermal forcing at the lower boundary
(e.g. Held et al., 2002). But these models cannot say what deter-
mines the zonal mean flow. The latter, which involves the forcing
of the mean by the eddies generated by the instability of the mean,
is a fully nonlinear process.

However, it is worth remembering that the barotropic models
of the subtropical gyres likewise fail to determine the vertical
ls of the ACC. Prog. Oceanogr. (2010), doi:10.1016/j.pocean.2009.11.002
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stratification. That is set by thermohaline forcing, vertical pumping
by the winds and possibly also by lateral eddy transport. So the sit-
uation in the Southern Ocean may well be like that in the subtrop-
ical gyres.

While the EB model is a compelling one for the ACC, there re-
main several questions about its application. These could be ad-
dressed by further comparisons between the model and GCMs,
like that undertaken by Ivchenko et al. (1999). For example, we
employed a crude representation of baroclinic instability in the
model, a downgradient diffusion of relative vorticity with a con-
stant diffusivity. The actual situation is most certainly more com-
plicated and could be elucidated with a high resolution model.

Such a model comparison could also help explain why the smal-
ler topographic scales do not seem to matter for the large scale
structure. It is possible, for example, that the scales below that of
the baroclinic eddies will necessarily be ‘‘washed out”. Because
the geostrophic contours are sensitive to the details of the bottom
topography, topographic smoothing can alter the transport. For
example, by smoothing at the 500 km scale Krupitsky et al.
(1996) obtained closed f=F contours. They therefore required larger
values of bottom friction to obtain a reasonable transport, as with
Gill’s (1968) model. Using a smaller smoothing scale, we obtain
contours which are mostly blocked. Thus topographic smoothing
may also account for the overly large ACC transports seen in coarse
resolution numerical simulations, such as with FRAM and the sim-
ulations studied by Gnanadesikan and Hallberg (2000).

There is also the question of what constitutes a blocked contour.
In the cases with z0 J 800 m, the Kerguelen Plateau effectively
blocks the contours in the Drake Passage latitudes. In fact, these con-
tours wrap around the Plateau (as expected, since F ! H in shallow
water). Why then are these contours blocked at all? In particular,
what differentiates a barrier and a bump, if the latter only causes
the current to deviate and does not support a western boundary cur-
rent? It may be that the answer concerns the relative widths of topo-
graphic slope and those of the Stommel/Munk layers (see for
example the recent work by Pedlosky et al. (2009)). If so, this will
also affect the choice of topographic smoothing scale and of friction.

In any case, the equivalent barotropic model yields promising
solutions. We agree with Ivchenko et al. (1999) that the model de-
serves further attention and could even be used for interpreting
observations.
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Appendix A

The solution to Ishida’s (1994) model can be obtained in four
steps. The first is to integrate the Sverdrup relation (15) west from
the eastern boundary at each latitude. The second is to add Stom-
mel boundary layer corrections at each of the western boundaries.
Then zonal boundary layer corrections are added to smooth dis-
continuities along the dashed lines in Fig. 1. Finally, the island rule
integral (37) is calculated to determine the streamfunction on Ant-
arctica, C.

The streamfunction is calculated in six regions, as indicated in
Fig. 20. The western boundary layers occur in regions II, III, IV
and VI, and the zonal boundary layers are along the dotted lines
in the figure. The latter corrections have the form of a complimen-
tary error function.

The solutions by region are as follows. Using W ¼ � @
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x to indi-
cate the wind stress curl, we have:
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ontinuities occur along the dotted lines, resulting in zonal boundary layers.
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The transport, C, is found from (22). Only the two zonal seg-
ments contribute, and the integrals take the form:
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where A and B and the end points of the segment. As noted in the
text, we retain the frictional term because the zonal boundary lay-
ers can overlap the island contours.7

The term on the LHS of (37), with contributions from all three
zonal segments, can be shown to be:

C½f̂ ðbÞ � f̂ ðaÞ� ð38Þ

while the wind stress term reduces to:

sðbÞM þ ½sðaÞ � sðbÞ�ðD� CÞ ð39Þ

(the various constants are given in Fig. 1). The frictional term on the
other hand requires the full solution for w. The final result is:
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where the numerator is:
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and the denominator is:

D ¼ f̂ ðbÞ � f̂ ðaÞ

� h� g
2
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p
p 1

a
expð�a2Þ � 1

c
expð�c2Þ þ
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p
p
ðerf ðaÞ � erf ðcÞÞ
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We have defined the constants:

c ¼ h� g

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðD� CÞ

p ; a ¼ h� g

2
ffiffiffiffiffi
dE
p ; E ¼ M þ C � D

Note the transport has a nonlinear dependence on the bottom
friction coefficient; this stems from the meridional spreading of
the zonal boundary layers.
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