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Heinrich events—surges of icebergs into the North Atlantic Ocean—punctuated the last glacial period. The events are
associated with millennial-scale cooling in the Northern Hemisphere. Fresh water from the melting icebergs is thought to have
interrupted the Atlantic meridional overturning circulation, thus minimizing heat transport into the northern North Atlantic.
The northward flow of warm water passes through the Florida Straits and is reflected in the distribution of seawater properties
in this region. Here we investigate the northward flow through this region over the past 40,000 years using oxygen isotope
measurements of benthic foraminifera from two cores on either side of the Florida Straits. These measurements allow us to
estimate water density, which is related to flow through the thermal wind balance. We infer a substantial reduction of flow
during Heinrich Event 1 and the Younger Dryas cooling, but little change during Heinrich Events 2 and 3, which occurred during
an especially cold phase of the last glacial period. We speculate that because glacial circulation was already weakened before
the onset of Heinrich Events 2 and 3, freshwater forcing had little additional effect. However, low-latitude climate perturbations
were observed during all events. We therefore suggest that these perturbations may not have been directly caused by changes
in heat transport associated with Atlantic overturning circulation as commonly assumed.

Layers of ice-rafted debris, Heinrich layers, appear periodically
in the sediments of the North Atlantic that were laid down
during the last glacial period. These layers are thought to

represent surges of the large continental ice sheet that coveredNorth
America, discharging fresh water in the form of debris-laden ice
into the North Atlantic. The input of fresh water into the North
Atlantic is postulated to have disrupted deep and bottom water
formation, leading to a weaker Atlantic meridional overturning
circulation (AMOC).

The times surrounding the Heinrich events (Heinrich stadials)
are clearly marked by extreme conditions in many records of
oceanic and climatic change far from the North Atlantic. These
stadials are associated with drier than normal conditions in China1
and the Sahel2, and reduced ventilation of intermediate waters in
the Arabian Sea3. Some Heinrich stadials are marked by warming
of both the ocean and climate in the Southern Hemisphere4. It is
thought that many of these far-field effects of the ice discharges are
transmitted by changes in the AMOC-driven heat transport from
the Southern to the Northern Hemisphere, and the associated
changes in atmospheric and oceanic circulation. If this were the
case, we would expect to see evidence for changes in AMOC for each
of the Heinrich stadials.

Deep ocean changes over Heinrich stadials
Reconstructions of the water mass properties in the Atlantic
during glacial times have yielded a picture of a nutrient-poor
water mass (glacial North Atlantic intermediate water), overlying
a nutrient-rich water mass, presumably sourced from the south5.
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Reconstructions of the density gradient in the upper ocean
and model–data comparisons with deep water carbon isotope
data suggest that if this configuration was associated with a
shallower AMOC, this circulation was quite a bit weaker than the
present day6–8. However, a recent model–data comparison suggests
that sedimentary Pa and Th data are consistent with a strong,
shallow AMOC (ref. 9).

It has been suggested that duringHeinrich stadials, this shallower
AMOC was disrupted by freshwater input to the North Atlantic,
leading to a virtual shutdown in the AMOC (ref. 10). This idea
was based on both ocean general circulation models that showed
such a response to a large freshwater input, and data that suggested
high nutrient values11 in deep waters around the time the most
recent Heinrich layer (H1) was deposited. The idea of a weakened
or non-existent overturning associated with H1 was bolstered by
the discovery that the ratio of the particle reactive decay products
of U, 231Pa and 230Th, are buried in the same ratio at which
they are produced in the overlying water column in the open
North Atlantic12.

Evidence for circulation changes associated with the Heinrich
events other than H1 has remained equivocal. The Pa and Th in
deep Atlantic sediments do show a higher ratio during the stadials
associated withH2 andH3, but these higher ratios are accompanied
by evidence for an increase in opal flux to the sea floor, so may
not necessarily indicate a circulation change13. Despite extensive
efforts to reconstruct changes in water mass properties in the North
Atlantic using carbon isotopic and trace metal measurements in the
calcite tests of foraminifera, these records also do not show a clear
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Figure 1 | Core locations and context. a, Location of sediment cores for the data shown in Fig. 2. The location of the temperature section shown in b is
indicated with the pink line, and the approximate path of the Florida Current with the large black arrow. b, A north–south section of climatological
temperature (◦C) across the Florida Straits at 82◦W, with the depth of the two sediment cores used to monitor the cross-strait density gradient indicated
with circles38.

picture of watermass changes for earlier Heinrich events. This work
is often hampered by poor time resolution and noisy data, perhaps
due to productivity overprints14. Some records suggest the presence
of nutrient-rich waters at intermediate (<2 km) depths during
some of the Heinrich stadials but not others15–20. However, the
response is inconsistent among different locations in these upper
water masses, suggesting that regional changes in productivity or
circulation may have been responsible for these excursions towards
more nutrient-rich values. Deep water (>2 km) records show clear
excursions towards a more nutrient-rich water mass during the
stadials associated with H4 and H5 but not all records show
changes around the time of H2 or H3 when deep water nutrient
concentrations are already high (Supplementary Figs 1 and 2).
However, the link between the extent of the high- and low-nutrient
water masses and circulation is indirect. It is possible that despite
changes in circulation, a core site is bathed by the same water mass
and this circulation change is not reflected in the nutrient status at
this core site. Similarly, if the change in circulation persists for only
a short period of time, the chemical properties of the deep water
might not fully reflect the changes for several hundred years.

Here we present time series of the oxygen isotopic composition
of benthic foraminifera from the Florida Straits that we believe to
be sensitive to changes in the upper branch of the AMOC, and the
carbon isotopic composition of benthic foraminifera from the same
region, which can be used to reconstruct the nutrient concentration
of intermediate waters. We use these records, together with existing
reconstructions from other sites, to argue that if any reductions
in the AMOC accompanied the two Heinrich events that occurred
during full glacial conditions (H2 and H3), they were of a much
smaller magnitude and/or shorter duration than the reductions
occurring during H1 and the Younger Dryas.

Heinrich Stadials in the Florida Straits
As it flows through the Florida Straits, the strength of the
Florida Current reflects both the western limb of the wind-driven
subtropical gyre and the warm surface waters that cross the Equator
and travel to the North Atlantic as part of the upper branch
of the large-scale overturning circulation associated with deep
water formation. Any change in either this large-scale overturning
or wind-driven gyre circulation can change the strength of this
current. To first order, this current is in geostrophic balance so
the vertical shear in the flow is proportional to the horizontal
density gradient across the strait (the thermal wind balance). The
density gradient at times in the past can be inferred from the oxygen

isotopic composition of the calcite tests of benthic foraminifera
from sediment cores on both sides of the current. The oxygen
isotope ratio reflects both the temperature and oxygen isotopic
composition (related to salinity) of the sea water in which it forms,
and is therefore related to seawater density. Using this approach
we have shown that the cross-strait gradient was reduced during
both the Last Glacial Maximum7 (LGM) and the Younger Dryas21.
The reduced gradient can be explained by a reduction in the
strength of the AMOC during the LGM and Younger Dryas relative
to the modern state, consistent with inferences based on other
palaeoceanographic studies using differentmethods.

Although it is not possible to exclude the possibility that a
reduced cross-strait gradient reflected a reduced wind-driven flow
or a more barotropic Florida Current, we do show that the link
among AMOC strength, Florida Current strength and cross-strait
density gradient holds in a previously published model experiment
(Supplementary Fig. 5). In this model experiment, an AMOC
reduction of ∼11 Sv was induced in the Community Climate
System Model (CCSM) by freshwater input into the subpolar
North Atlantic under LGM conditions22. This AMOC reduction
was accompanied by a reduction in Florida Straits transport of
∼10 Sv, and a reduction in the cross-strait density gradient at
all depths below 300m. Details on the model experiment can be
found in the Methods.

Here, we show isotopic data from two cores on either side of
the Florida Straits (KNR166-2-26JPC, 24◦ 19.61′N,83◦ 15.14′W,
546m, KNR166-2-73GGC, 23◦ 44.73′N, 79◦ 25.78′ S, 542m,
Fig. 1). Details on the methods including age model development
and isotopic measurements can be found in the Methods. The
core on the Florida margin extends through 36 ka (thousand years
ago), has high sedimentation rates (15–35 cmkyr−1) duringMarine
Isotope Stages 2 and 3, and should be able to resolve changes
associated with Heinrich events during this interval. This core
shows prominent excursions towards lower δ18O values (warmer or
less saline, less dense waters) during the Younger Dryas and around
the time of the most recent Heinrich event (Heinrich Stadial 1,
HS1; Fig. 2a). The Younger Dryas excursion is associated with a
reduction in the cross-strait δ18O gradient as inferred from three
sediment cores on each side of the strait21. Owing to the low
sedimentation rates between 13 and 20 ka on the Bahamas side
of the strait, we have no direct evidence that the HS1 excursion
was similarly associated with a reduction in the cross-strait density
gradient. However, by analogy to the Younger Dryas excursion,
such a reduction certainly seems plausible.
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More generally, many general circulation models show
mid-depth warming in the subtropical North Atlantic when the
AMOC is weakened in water hosing experiments in which extra
freshwater forcing is distributed over the northernNorth Atlantic23.
The warming is often particularly apparent along the western
margin of the subtropical North Atlantic22,24. As an example,
we show the mid-depth temperature anomaly from the model
experiment with the 11 Sv freshwater-induced AMOC reduction
described above (Fig. 3). There is a positive mid-depth temperature
anomaly associated with the AMOC weakening along the entire
western margin of the basin. The mechanisms for this western
margin warming are probably multiple and linked, involving
the dynamic adjustment of the density structure in association
with the circulation change, decreased heat transport out of the
subtropics into the mid-latitude North Atlantic, and a decreased

contribution of the relatively cooler and fresher intermediate
waters from the South Atlantic22,25. In light of the results from
these models, the negative excursion in benthic foraminiferal δ18O
along the Florida margin, even in the absence of information
about the cross-strait density gradient, supports the scenario of
an AMOC reduction during HS1. In the model study shown
in Fig. 3, an AMOC reduction of 11 Sv was associated with an
increase in temperature at 550m water depth along the South
Florida margin of 1.8 ◦C, which all else being equal would
correspond to a δ18O change in benthic foraminifera at this
site of about −0.5h, the same magnitude that is observed for
HS1. There was only a small (<0.1 psu) salinity anomaly at this
location associated with the weakened AMOC. Regardless of the
dominant process, an interpretation of the excursion towards
lower δ18O at the Florida margin as reflecting a reduced AMOC is
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(location E in Fig. 5). Low values reflect the presence of glacial melt water. b, Oxygen isotope ratio in cave deposits in China, reflecting changes in monsoon
precipitation1. Green vertical bars extending through all of the plots indicate the timing of the Younger Dryas and Heinrich stadials from this record. c, The
Fe/K ratio, an indicator of aridity in the West African Sahel2 (location D in Fig. 5). d, Carbon isotope ratios in benthic foraminifera from intermediate waters
(red, 546 m location A in Fig. 5; orange, 542 m location B in Fig. 5; this study) and (brown, 965 m location C in Fig. 5)20. Average (800-year window) and
±2 standard error (purple) of seven high-resolution C. wuellerstorfi δ13C records from the deep Atlantic17,39–45 (locations in Fig. 5; individual records in
Supplementary Fig. 2).

consistent with the multiple lines of evidence for such a reduction
during HS1 (refs 11,12).

In contrast, there is no indication of a significant change in
cross-strait δ18O for the stadials associated with Heinrich Events
2 and 3 (HS2 and HS3). However, the resolution of the Bahamas
core may be insufficient to capture a short-lived reduction in
the cross-strait gradient. Nevertheless, we do not see excursions
towards lower benthic δ18O values similar in magnitude to those
observed for the Younger Dryas and HS1 in the much higher
resolution Florida core forHS2 orHS3. It is possible that competing
processes (for example, watermass property changes of the opposite
sign that exactly matched in magnitude the changes associated
with the flattening of isopycnals across the Florida Current, or a
strengthening of the wind-driven flow compensating a weakening
of the AMOC) led to a very muted or non-existent change in δ18O

at this site, despite significant changes in the AMOC. However,
it seems more reasonable to conclude, especially in light of the
lack of compelling evidence for changes in the properties or extent
of the deep Atlantic water masses during these Heinrich stadials,
that any changes in the AMOC in response to these two Heinrich
events were not comparable in size to the changes observed for the
Younger Dryas or HS1. Whereas the Younger Dryas and HS1 are
almost always associated with excursions in deep Atlantic δ13C (a
proxy for nutrient content and water mass ventilation), similarly
coherent excursions are not observed for HS2 and HS3 (Fig. 2b
and Supplementary Fig. 2). Although it is possible that the nutrient
tracers would not fully respond to a very short duration change
in ocean circulation, the upper ocean density structure, and thus
the δ18O of foraminifera on the Florida margin, would adjust very
quickly to reflect a different flow state.
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It is perhaps unsurprising that H3 may not be associated with
pronounced circulation changes. The sediments in this Heinrich
layer are geochemically distinct from the others, it often shows up as
a smaller peak in the concentration of ice-rafted debris in sediment
cores, and it is limited to a smaller area in the North Atlantic than
the other events26. It is certainly plausible that a smaller volume of
melt water, or the discharge of melt water into a different region
within the North Atlantic, could explain the lack of interruption of
the AMOC. However, H2 seems robust and geochemically similar
to the events that do seem to be associated with circulation changes
(H1, H4 and H5). The lack of a large circulation change associated
withH2would therefore require a different explanation.

Ocean circulation and climate response to Heinrich events
The earlier Heinrich Events (H4 and H5) appear at a time
(∼33–60 ka, early Marine Isotope Stage 3) when the contrast
between deep and intermediate δ13C values was not as extreme
as during the full glacial state (Fig. 4d). The excursions in deep
water δ13C at the time of these earlier Heinrich events seem to
reflect transitions frommore weak stratification in the geochemical
water mass properties (modern type, associated with strong
AMOC today), to the more strongly stratified LGM water mass
configuration that is associated with a weaker AMOC (Fig. 5). The

Younger Dryas AMOC weakening is also thought to be meltwater
induced, and like HS4 and HS5 seems to reflect a transition
from a modern water mass configuration to one more similar
to the glacial state27.

We postulate that as the circulation was already in this more
geochemically stratified, weakened glacial state for the interval
encompassing H2 and H3, the freshwater discharge associated with
these events was not able to weaken the AMOC further. This result
apparently contradicts ocean general circulation model studies
suggesting that a given freshwater input has a stronger impact
on AMOC strength in the glacial climate state than the modern
state28–30. Heinrich Event 1 also occurs during full glacial time, but
the circulation event that is associated with it seems particularly
long and intense, lasting several thousand years, starting around the
time of the ice-rafting event (16.8 ka, ref. 26) and persistingwell into
the deglaciation until about 14.7 ka (Fig. 2)12. It is possible that the
additional melt water entering the North Atlantic as the Northern
Hemisphere ice sheets began to decay helped to develop and sustain
the circulation change beyond the time of theHeinrich event.

If the ice sheet surges significantly impact the AMOC for
only some of the Heinrich events, this has implications for the
mechanisms responsible for the global expression of the Heinrich
events. There are some well-resolved palaeoclimate records in the
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Northern Hemisphere that suggest strong changes in atmospheric
circulation for all of the Heinrich stadials, including HS2 and
HS3 (Fig. 4). These include records of the Asian Monsoon from
China1 and the intertropical convergence zone (ITCZ)/monsoon
areas of the tropical Atlantic2,31 and ventilation in the Arabian
Sea3. Although changes in the heat transport associated with the
AMOC can change the position of the Atlantic ITCZ (ref. 24), if
there were no, or only very subtle, changes in the AMOC over
HS2 and HS3, a mechanism involving atmospheric transmission is
needed to explain the large signals for both the ‘circulationHeinrich
events’ (H1, H4, H5 and H6) and the Heinrich events that occur
during peak glacial times (H2 and H3). More generally, cooling
and increased land or sea ice cover in North Atlantic has also
been shown to cause shifts in the ITCZ (refs 32,33), providing a
potential mechanism for ITCZ changes not directly linked to the
AMOC. Shifts in the NorthernHemisphere planetary wave patterns
in response to either North Atlantic sea ice extent or changes in
ice sheet height34 might also provide a link between the Heinrich
events in the North Atlantic and these lower-latitude indicators
of atmospheric change.

Methods
Core KNR166-2-26JPC was taken from a water depth of 546m on the Florida
margin and KNR166-2-73GGC was from a water depth of 542 m in the Santaren
Channel (Bahamas). The age models for both cores were developed by linear
interpolation between radiocarbon dates converted to calendar years using Calib
6.0 and the MARINE09 calibration data set35. In addition to the radiocarbon dates,
the ages of Marine Isotope Stage 3–4 and 4–5 boundaries were used to refine the
age model for KNR166-2-73GGC (Supplementary Table 1). For KNR162-2-26JPC,
the out-of-sequence dates between 344 and 408 cm were not used in the age model
as was discussed in a previous publication on the deglacial portion of this core21. In
addition we do not use the date at 1032.25 cm depth owing to the large error in the
radiocarbonmeasurement or the out-of-sequence date at 1,088.25 cm.

For core KNR166-2-26JPC, both small single-species groups (up to four
individuals) and individuals of Planulina ariminensis, Cibicidoides pachyderma and
Cibicidoides mollis from the size fraction >250 µm were analysed for oxygen and
carbon isotopes. Isotope measurements were made on a GV Instruments Optima
with Multiprep at the Lamont-Doherty Earth Observatory and a FinniganMAT253
with a Kiel carbonate preparation device at the Georgia Institute of Technology.
Values were calibrated using NBS-19 and NBS-18, and in all laboratories internal
precision met or exceeded 0.08h (1 σ s.d. of replicate analyses of NBS-19 or
in-house standards). We then averaged the δ18O values for all species at each depth
interval, with an average of five individuals contributing to the average value at
each depth. A small number of measurements show very low δ18O values, and
presumably represent individuals that were transported down slope from shallower
water depths. The values that were greater than 2 s.d. away from a robust loess
smoothed version of the record were flagged (4% of the data) and not included in
the average δ18O calculated for each depth (Supplementary Fig. 4). The average
value for each depth (outliers removed as described above) and the robust loess
smooth are shown in Fig. 2a. For the carbon isotope data shown in Figs 2b and 4d,
only the data from P. ariminensis are averaged at each depth, as the δ13C values
of the other species are consistently lower suggesting a phytodetritus effect at this
location (Supplementary Fig. 4). Most data from the portion of the core younger
than 15,000 ka were previously published21.

For core KNR166-2-73JPC, individuals of P. ariminensis and C. pachyderma
from the size fraction >250 µm were analysed for oxygen and carbon isotopes.
Isotope measurements were made on a Finnigan MAT253 with a Kiel carbonate
preparation device at Georgia Institute of Technology. We averaged the δ18O values
for all species at each depth interval, with between 1 and 3 individuals contributing
to the average value at each depth. For the δ13C record shown in Fig. 3d, only
values from C. pachyderma are averaged, because analyses for this species were
available for the entire length of the record. Where both species are analysed in the
Holocene portion of the record, the δ13C of C. pachyderma is about 0.2h lower
than that for P. ariminensis.

The age model for the N. pachyderma δ18O record for MD95-2024P (ref. 36;
Fig. 4a) was constructed by correlating the detrital layers in this core to the dates
of the Heinrich stadials in the Hulu Cave oxygen isotope record1. The original age
model for this core was determined in a similar manner by correlating the detrital
layers to the cold stadials in the Greenland ice core record37. All other data sets
plotted in Fig. 4 are shown on their original published agemodels.

The water hosing experiment shown in Fig. 3b was performed using the CCSM,
version 3.0, a fully coupled ocean–atmosphere global circulation model developed
at the National Center for Atmospheric Research. The model experiment was
initialized at year 400 of a control run under LGM climate boundary conditions.
Extra freshwater forcing of 0.25 Sv was uniformly distributed over the subpolar

North Atlantic (50◦–70◦ N) for the 100 yr duration of the experiment. The
maximum overturning weakens from 17 Sv in the LGM control run to 6 Sv in the
last 30 years of the experiment. The Florida Straits transport is well simulated in this
model and weakens from 33 Sv in the control run to 23 Sv in the experiment. This
weakening is accompanied by a decrease in the density gradient across the Florida
Straits as all depths below 300m (Supplementary Fig. 5). Further details on the
model and experiment can be found in the original publication22.

Data. All radiocarbon dates and isotope data reported in this study are archived
at World Data Center-A for Paleoclimatology located at the US National Oceanic
and Atmospheric Administration National Climatic Data Center Paleoclimatology
Program, Boulder, Colorado.
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