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1 Introduction

The earth’s ocean is a complicated fluid system. It is affected by the rotation of the earth,
the density stratification due to temperature and salinity, and many other factors. These
processes combine to act on an extremely wide range of length-scales, from centimeters to
thousands of kilometers. One notable simplification is that the ocean is tremendously more
shallow than it is wide. But the assumption that the ocean is two-dimensional is overly
restrictive and does not capture important dynamical processes.

We concern ourselves here with the observation of a correlation in the energy-containing
scales of the ocean with the first Rossby deformation radius. This correlation appears in
observations of the sea surface using the TOPEX/POSEIDON satellite [1, 2] and also in
models [3]. The processes which cause eddy energies in the ocean come to equilibrate at
this horizontal scale are not well understood. It is the fully nonlinear development of ocean
eddies (presumably created through wind stress forcing at the surface) that determines
this scale. In addition, the effect of vertically non-uniform stratification on the downward
propagation (barotropization) of energy are not clear. Typical models of ocean turbulence
assume vertically homogeneous stratification, with correspondingly more uniform dynamics
throughout the layer.

Smith and Vallis [4, 5] investigate these questions in the context of a non-uniformly
stratified, three-dimensional ocean using quasigeostrophic (QG) dynamics. The surface-
intensified stratification that they use leads to surface-localized potential vorticities. In an
effort to create a simpler model for these processes, we consider a two-layer QG system in
which the lower layer has no potential vorticity. In section 2 we review layered QG models
in general. Then in sections 3 and 4 we examine the simplified two-layer model and its
consequences for eddy evolution using numerical simulations. We present our conclusions
in section 5.

2 Layered Quasigeostrophic Models

Consider a nearly incompressible, rotating, stratified fluid. All of the models that we
consider here will neglect the meridional variation in the Coriolis parameter that is present

253



y

LH

Ω

z

x

Ω

Ω3

Ω2

Figure 1: The f -plane geometry.

on a rotating sphere (see figure 1). On this f -plane, the Boussinesq equations are

Dtu + 2Ω(Ω̂ × u) = −
∇p

ρ0

+ bẑ +
µ

ρ0

∆u (1a)

Dtb+N2(z)w = κ∆b (1b)

∇ · u = 0 (1c)

where the dependent variables are the fluid velocity u, the pressure p and the buoyancy
anomaly b = −gρ/ρ0. The parameters are the rotation rate 2Ω, the typical background
density ρ0, the buoyancy frequency N 2 = −(g/ρ0)(dρ/dz) for a background density ρ̄ and
the momentum and mass diffusivities, ν and κ respectively. Non-dimensionalizing these
equations by u ∼ U , x ∼ L, , b ∼ B, p ∼ P and N 2(z) = N2

0
S(z) we have

Dtu +
1

Ro
Ω̂ × u = −P̄∇p+ Γbẑ +

1

Re
∆u, (2a)

Dtb+
S(z)

ΓFr2
w =

1

Pe
∆b, (2b)

∇ · u = 0, (2c)

where the Reynolds number Re = (UL)/ν measures the strength of inertia relative to
viscosity, the Peclet number Pe = (UL)/κ compares inertia to buoyancy diffusion, the
Froude number Fr = U/(N0L) measures buoyancy relative to inertia and the Rossby number
Ro = U/(2ΩL) compares the rotational timescale to the dynamical timescale. There are
two additional non-dimensional parameters P̄ = P/(U2ρ0) and Γ = (BL)/U2 that measure
the strength of their respective terms of the equations.

Since the ocean is vastly shallower than it is wide, even at the horizontal scales considered
here, we consider an asymptotic expansion in the aspect ratio ε = H/L. In the ocean, the
Rossby number is also small so we set Ro = ε. We neglect the effects of diffusion, by setting
Re = Pe = ∞. Froude numbers in the ocean are smaller than the Rossby numbers, so we
choose Fr = ε2 and for the other two parameters we take Γ = ε−2 and P̄ = ε−1 to give the
hydrostatic and geostrophic balances at leading order. Expanding the dependent variables
in asymptotic series (u = u0 + εu1 + εu2 + . . . , etc.) and collecting terms of the same order

254



we have the following balances from the momentum equations,

O(ε−2) : − ∂zp0 + b0 = 0 (3a)

O(ε−1) : Ω̂ × u0 = −∇⊥p0 + ẑ(b1 − ∂zp1) (3b)

O(1) : D0

t u0 + Ω̂ × u1 = −∇⊥p1 + ẑ(b2 − ∂zp2) (3c)

the buoyancy equation,

O(ε−2) : S(z)w0 = 0 (3d)

O(ε−1) : w0∂zb0 + S(z)w1 = 0 (3e)

O(1) : D0

t b0 + w1∂zb0 + S(z)w2 = 0 (3f)

(3g)

and the continuity equation

O(1) : ∇⊥ · u0 = 0 (3h)

O(ε) : ∇⊥ · u1 + ∂zw2 = 0. (3i)

From (3d) and (3e) we see that the fluid velocities are all horizontal. The hydrostatic
balance is present at leading order in (3a) and the geostrophic balance in the x- and y-
components of (3b). The incompressibility condition (3h) leads us to a streamfunction
u0 = ẑ ×∇ψ0. The geostrophic and hydrostatic balances relate that streamfunction to the
pressure and buoyancy fields at leading order: p0 = Ω3ψ0 and b0 = Ω3∂zψ0. Taking the
curl of (3c) and using (3i) to relate w2 and u1 we have two closed equations for ψ and w2

D0

t∇
2

⊥ψ0 − Ω3∂zw2 = 0 (4a)

D0

t Ω3∂zψ0 + S(z)w2 = 0. (4b)

Finally, eliminating w2 and dropping the 0 subscripts we have the quasigeostrophic (QG)
equations

Dtq = ∂tq + J(ψ, q) = F (5a)

q = ∇2ψ + Ω3∂z

(

1

S(z)
Ω3∂zψ

)

, (5b)

where F represents any forcing or dissipation in the system.
We will use these equations as the starting point of our investigations. It is important

to note that even in the three-dimensional case there is no vertical velocity; all fluid motion
is in horizontal planes. If there is no dissipation, F = 0, then the QG equations express
the conservation of the potential vorticity q on fluid elements. Additionally, there are two
global conserved quantities: the energy

E = −
1

2

∫

R3

qψ dx (6)

and the enstrophy

Z =

∫

R3

q2 dx. (7)
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Related to the energy and enstrophy are the energy and enstrophy spectra defined by E =
∫

E(κ) dk and Z =
∫

Z(κ) dk. We can define a mean wave number by the centroid of the
energy spectrum

κm =
1

E

∫

κE(κ) dk. (8)

In the absence of vertical variation, these are just the equations for two-dimensional
fluid dynamics where q is the ordinary vorticity and ψ is the streamfunction of the flow.
The dynamics of this type of flow are well known (see, for example [6, 7, 8, 9, 10, 11]).
For the case of small F , energy is approximately conserved and moves to larger scales
in an inverse cascade, enstrophy is not conserved and participates in a direct cascade to
smaller scales and for unforced flow the evolution is dominated by the interaction of coherent
vortices (which may be studied independently [12, 13, 14]). A quantitative scaling theory
for the regime dominated by coherent vortices predicts algebraic evolution for many of the
flow characteristics, including enstrophy, vortex number, vortex size and vortex amplitude
[15, 9]. We will use these self-similarity properties later for our novel model.

The smallest amount of additional vertical variation that we can admit is a two-layer
quasigeostrophic model. Considering two layers of fluid with different densities (see figure
2) the QG equations reduce to

∂tqi + J(ψi, qi) = 0, (9a)

q1 = ∇2ψ1 + F1(ψ2 − ψ1), (9b)

q2 = ∇2ψ2 + F2(ψ1 − ψ2) (9c)

Fi =
f2

g′Hi
, f = 2Ω3, g′ = g

ρ2 − ρ1

ρ2

.

(See [16] or [17] for a derivation of these equations.) In the interest of further simplicity,
assume H2 → ∞ ⇔ F2 = 0. Then the motion in the lower layer is decoupled from that in
the upper layer (although not vice-versa). If we assume that this infinitely deep lower layer
was initially at rest, then it will always be at rest with ψ2 = 0. This quiescent lower layer
then has no effect on the upper layer and we get the one-and-a-half layer QG equations
(also called the equivalent barotropic QG equations)

Dtq1 = 0 (10a)

q1 = (∇2 − F1)ψ1. (10b)

The parameter F1 is related to an intrinsic length scale of this flow, the Rossby deformation

radius, k−1

1
= F

−1/2

1
. The dynamics of this system in the case of unforced, decaying

turbulence are similar to that of the one-layer equations for short times with the formation
and interaction of coherent vortices. As the vortices grow to the size of the deformation
radius, their motion begins to slow down [18, 19, 20]. This stops the inverse cascade of
energy at that scale, in contrast to the one layer case where the inverse cascade continues
to the largest scales in the problem.

Neither the one layer QG model nor the equivalent barotropic model can adequately
explain the energetic distribution in the world’s oceans. The inverse cascade in 2D tur-
bulence moves to the largest available scales. In fact, there is no intrinsic length scale in
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Figure 2: Two fluid layers.

the system. The one-and-a-half layer model does have a distinguished length scale, the
deformation radius, but the energy cascade stops completely at that scale. The one layer
model is overly simplistic, containing no contributions from rotation or stratification, nor
any variation with depth. The addition of an infinitely deep lower layer contributes some of
the dynamical features of the ocean, namely the rotational and stratification effects of the
deformation radius, but at the cost of the long-time evolution of the flow. This limitation
arises from the blatantly unrealistic assumption of infinite depth in the lower layer. For
these reasons, we seek a slightly more complicated model that will retain essential features
of the oceanic evolution, in particular the distinguished role of the first Rossby deformation
radius.

3 The Finite-depth One-and-a-half Layer Model

In our derivation of the equivalent barotropic model, we assumed that the lower layer was
infinitely deep. If we relax that assumption, then we cannot continue to insist that ψ2 = 0
for all time. For any finite depth, any motion in the upper layer will induce a flow in
the initially quiescent lower layer. Fundamentally, this is because the fluid velocity in the
lower layer is not a materially conserved quantity: it may evolve with time. On the other
hand, the potential vorticity in the lower layer q2 is conserved, so if the flow initially has
q2 = 0 then it will for all time, irregardless of the motion of the upper or lower layers. This
assumption is also consistent with observations [21] which show no potential vorticity signal
below eddies in the North Atlantic. Finally, in the three dimensional calculations of Smith
and Vallis [4, 5] they compute the eigenfunctions φi for the vertical structure of the 3D QG
equations,

∂z

(

1

S(z)
∂z

)

φi = −λ2

iφi, (11)

for a surface-intensified stratification profile and they are quite small at large depths. One
limitation of the assumption that q2 = 0 for all time is that it there cannot be any bot-
tom friction present in our model, because that would break the conservation of potential
vorticity in the lower layer.

Proceeding with the assumption that q2 = 0, (9c) just expresses a relation between the
two streamfunctions

∇2ψ2 + F2(ψ1 − ψ2) = 0. (12)
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Thus, given ψ1 we can solve this equation for ψ2 in terms of ψ̂1 the Fourier transform of ψ1

ψ2(x, t) =

∫

F2

F2 + κ2
ψ̂1e

−ik·x dk (13)

where k is the horizontal wavenumber and κ = |k|. We will represent this solution schemat-
ically by

ψ2 =
F2

F2 −∇2
ψ1 (14)

where (13) is meant by this symbol in all cases. Having solved for ψ2 (9b) and (9a) are now
a closed set of equations for the motion of the upper layer

Dtq1 = 0, (15a)

q1 =

(

∇2 − F1 +
F1F2

F2 −∇2

)

ψ1. (15b)

We refer to these as the finite-depth one-and-a-half layer QG equations. Note that in
contrast to the model with an infinitely-deep lower layer, the lower layer is not at rest
in this model, but instead moves with exactly the relative vorticity ∇2ψ2 necessary to
cancel the vorticity added to the layer by stretching of the background planetary vorticity,
F2(ψ1 − ψ2). These equations also contain both of the models talked about previously: if
F1 = 0 then we recover the one layer model and if F2 = 0 we have the same equations as
the one-and-a-half layer model. As far as we know, this model has not been studied for its
turbulent cascade properties as we do here. Since it is a special case of the two-layer QG
equations, solutions of this type have certainly appeared, most notably in studies of the
merging of baroclinic vortices [22, 18, 23, 24].

4 Spin-down Simulations

The main component of this study is a series of numerical simulations of layered QG equa-
tions with a single active layer. The numerical code is pseudospectral in space and leapfrog
in time. An isotropic truncation is applied with wavenumbers with κ ≤ κmax = 176. When
computing the nonlinear term, dealiasing is used, keeping wavenumbers up to (3/2)κmax.
Dissipation is present in the form of hyperdiffusion F = −ν∇8q (as in [4]). All of the simu-
lations presented here use ν = 1.43×10−17 which was chosen to absorb the direct cascade of
enstrophy while dissipating as little energy as possible. The initial vorticity field is a random-
phase realization with an initially narrow-band energy spectrum E(κ) ∝ κ6/(κ+2κ0)

18 with
κ0 = 30 and the normalization that E(t = 0) = 0.5. The simulations continue up to t = 80.

Figure 3 shows representative evolutions of energy, enstrophy and κm for the one layer
model. Over the length of the simulation, the energy falls to approximately 86% of its initial
value while the enstrophy declines by a factor of over 60. The decrease in κm is evidence
of the inverse cascade of energy to larger scales (lower wavenumbers). Figure 4 shows the
vorticity field for the one layer model. As time progresses, there are fewer, larger coherent
vortices. The same quantities are shown in figures 5 and 6 for the equivalent barotropic
model with k1 = 15. Here by comparison, the coherent vortices fill much more of the domain
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Figure 3: Time series of (a) E , (b) Z and (c) κm for the one layer equations.

than in figure 4. The stopping of the inverse cascade of energy at a scale near the Rossby
radius of deformation can be seen in the evolution of κm in figure 5.

For the finite-depth model, corresponding data are shown in figures 7 and 8 for k1 =
24 and k2 = 12. A number of notable features are present in these latter simulations.
The inverse cascade of energy continues for the finite-depth case where it did not for the
equivalent barotropic model (κm(t = 80) = 7.5 and κm(t = 80) = 10.1 respectively). Also,
the coherent vortices for the finite-depth model fill more of the space than in the one layer
model (figure 4) but less space than in the equivalent barotropic model (figure 6). For
increasing values of λ = 1 +F1/F2 the vortices fill more of the domain and are less circular
(see figure 9). This is consistent with the position of the finite-depth model as intermediate
between the other two models (in the sense that the one layer model corresponds to λ = 1
and the equivalent barotropic model to λ = ∞). Finally, for the time evolution of this
model: vortex dipoles are more active than in either of the other two models and vortex
motions are slower than in the one-layer model but faster than in the equivalent barotropic
model.

4.1 Vigorous Vortex Dipoles

To analyze the apparent vigor of close associations of two opposite signed vortices, we
consider the induced velocity field for a point charge of potential vorticity. This profile is
closely related to those of hetons [25]. Hogg and Stommel give the following solution in the
special case F1 = F2. The azimuthal velocity field is

vθ(r) =
1

λ

(

1

r
+
F1

F2

kRK1 (kRr)

)

(16)

where kR = (F1 + F2)
−1/2, λ = 1 + F1/F2 and K1(z) is the modified Bessel function of

the second kind. While the vortices in our simulations are not point vortices, this solution
should still hold outside of the cortex core, as in the case of the Rankine vortex for the
one-layer model. For r � 1/kR the limiting behavior of this velocity is vθ ∼ (1/r) while
for r � 1/kR, vθ ∼ (1/λ)(1/r). Since λ ≥ 1 the far-field velocity of a point vortex in
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(a) (b)

(c) (d)

Figure 4: Vorticity field q1(x, y) at (a) t = 1, (b) t = 5, (c) t = 20 and (d) t = 80 for the
one layer equations. Lighter colors represent higher vorticities.
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Figure 5: As in figure 3, but for the equivalent barotropic model with k1 = 15.

the finite-depth one-and-a-half layer model is smaller than the near-field velocity. This
explains the heightened activity of vortex dipoles in the simulations of these equations.
When two opposite signed vortices come close together under the influence of the other
vortices in the system, their mutual interaction is strengthened by a factor of λ, resulting
in a (possibly dramatic) increase in their activity for the time of their close approach.
The increased activity of vortex dipoles also leads to an increased number of dipole/dipole
exchange interactions, where two dipoles collide and rebound having exchanged partners.

4.2 Vortex slowdown and self-similarity

A complementary view to the fundamentally physical space approach in section 4.1 is pro-
vided by examining the properties of the equations in Fourier space. We will see that there
is an intimate connection between these two approaches in the form of the potential vorticity
inversion operator. Acting between the Fourier transforms q̂1(k) and ψ̂1(k) this operator
takes the form

q̂1 =

(

−κ2 − F1 +
F1F2

F2 + κ2

)

ψ̂1. (17)

For short scales, when κ� F
1/2

1
, q̂1 ≈ −κ2ψ̂1 which is the same form of the operator as we

would see in the one layer model where q = ∇2ψ. At much larger scales, where κ � F
1/2

2
,

q̂1 ≈ −κ2λψ̂1. The appearance of λ in the operator for the large scale interactions in spectral
space is parallel to that of the factor of 1/λ in the velocity profile of a point vortex at large
distances. To see this effect, note that if we rescale q = lψ → q′ = γq = γLψ, then the
original equation for the material conservation of potential vorticity

∂tq + J(ψ, q) = 0

is invariant if we rescale time by t′ = t/γ

∂t′q
′ + J(ψ, q′) = 0.
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Figure 6: As in figure 4, but for the equivalent barotropic model with k1 = 15.
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Figure 7: As in figure 3, but for the finite-depth model with k1 = 24, k2 = 12.

From this we can see that any factor that intrudes in the relationship between ψ and q acts
analogously to slowing down time by that same factor. Time also slows down by that factor
when we consider the reduction of velocity vθ at large distances from a point vortex.

We can go further with the idea of rescaling time in our evolution equation by re-writing

q̂1 = −κ2

(

1 +
F1

κ2
−

F1F2

κ2 (F2 + κ2)

)

ψ̂1

= −κ2γ(κ)ψ̂1, (18)

where γ(κ) is the factor by which the finite-depth PV inversion operator differs from that
of the operator for the one layer model. This function γ then determines a scale-dependent

factor by which the evolution of the system should slow down. Note that limκ→∞ γ(κ) = 1,
γ(0) = λ, consistent with what we saw earlier for small and large scales. This slowing down
of time should be apparent in our modified system in the self-similar evolution of the flow.
In this regime, κm ∼ (t/γ̄)α for some factor γ̄. While it is not certain that such a self-similar
regime exists, the apparent power-law behavior of κm for a range of values of λ (figure 10)
suggest that it does. From a fit to this data we can determine a value for γ̄ as a function
of λ as shown in figure 11. If all of the energy of the flow were at the largest scales then
we would expect γ̄ = λ in accordance with the limit of γ(κ) for small κ. Clearly this is not
a good prediction for γ̄, except for cases of small λ where most of the energy is at larger
scales. A better prediction is given by considering the value of γ for the wavenumber that
contains the most energy, as measured by κm at the end of the simulation. (κm changes by
very little over the final half of the simulation.) In fact, the good agreement between these
two measures of the slowing down of time is support for the interpretation of γ(κ) that we
gave earlier.

4.3 Reduced axisymmetrization

Another feature of the finite-depth one-and-a-half layer model that is seen in the simulations
is a declining tendency for coherent vortices to become axisymmetric with increasing values
of λ (figure 9). The process of axisymmetrization is important because it is thought to
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Figure 8: As in figure 4, but for the finite-depth model with k1 = 24, k2 = 12.
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(a) (b)

Figure 9: The final vorticity field for (a) λ = 2 and (b) λ = 17.
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Figure 10: (a) κm vs time for λ = 2 (solid line), λ = 4 (dashed line), λ = 9 (dash-dotted
line) and λ = 17 (dotted line). (b) Decay exponent α as a function of λ.
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Figure 11: γ̄ vs. λ (�). The dotted line is the prediction γ̄ = λ and the stars are the
prediction γ̄ = γ (κm(t = 80))
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(a) (b) (c)

Figure 12: Vorticity field at t = 20 for an initially elliptical vortex with aspect ratio 8 for
(a) one layer model, (b) k1 = 15, k2 = 15 and (c) k1 = 18, k2 = 6

be prototypical of the process of vortex merger [12]. Vortex merger is the major process
controlling the evolution of a flow that is dominated by coherent vortices. We performed
a series of simulations on the evolution of a single initially elliptical vortex in the model
proposed here. While we have no quantitative results on the influence of finite-depth lower
layers on vortex axisymmetrization, the qualitative differences are similar to those seen in
the spin-down simulations. As λ increases, a given vortex undergoes less axisymmetrization,
until for a critical value of λ there seems to be no trend at all to axisymmetrize, with wildly
asymmetric vortex shapes persisting for long times (figure 12). Further characterization of
the influence of kR on the axisymmetrization process is also important.

5 Conclusion

The observation that initially motivated this investigation was of a correlation between the
first Rossby deformation radius and the energy containing scales of the ocean circulation.
Smith and Vallis showed that with surface-intensified stratification, such a correlation would
be possible [4, 5]. Our model is much simpler, but can incorporate surface-intensified
stratification by using deeper quiescent lower layers (i.e. λ > 2). We have shown that there
is a scale-dependent slowing down of the evolution of this system. This slowing-down is a
possible explanation for the build-up of energy at these scales in the ocean. In an equilibrium
situation such as the ocean where input of energy at small scales is balanced by dissipation
at large scales, retarded motion at a certain scale slows the inverse cascade of energy leading
to an increased amount of energy at the retardation scale. To see quantitatively the effect of
this in our model requires further simulations in the forced-dissipative equilibrium regime.

Further investigations of the evolution of the population of coherent vortices would give
confirmation and additional understanding of the self-similar evolution and its slowdown at
larger scales. To unify the spectral and physical space views of these equations, it would
also be helpful to investigate the (physical space) interactions of individual vortices at a
variety of length-scales. The study of the axisymmetrization of a single vortex and the
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merger of two vortices would both be useful. Of particular interest is the effect of the finite
lower layer depth on the critical merger separation for two vortices.
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