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1 Introduction

This paper seeks to determine the shape of a thin viscoelastic fluid filament as it sags under
its own weight. The problem is an extension of the viscous catenary [1] and we refer to
this problem as “viscoelastic catenary”. Viscoelastic filaments appear in applications such
as fiber processing from melts and solutions, extensional rheometry etc. An understanding
of the dynamics of the viscoelastic catenary will therefore aid in better design of such
applications.

2 Experimental Observations

We investigated a Boger fluid composed of 0.025% w/w Polystyrene of molecular weight
1.877 x 106 dissolved in styrene oil. The relaxation time for this fluid is around 4 seconds
and its zero-shear viscosity, η0, is 50 Pa.s. There is no shear thinning in the fluid over
several decades of strain rate, and expecially in the regime of our experiments. We took
some fluid between two plates and stretched out in the horizontal direction to shape it into
a thin filament, h << L, where h is the thickness of the filament and L is the length to
which it is stretched. Figure (1) shows a snapshot of one such experiment with h = 0.002
m, L = 0.025 m.

Two problems emerged out of this experiment that need to be understood. First is the
problem of the viscoelastic catenary, wherein the fluid filament sags under its own weight
and its shape evolves with time. Second, is what we refer to as the chewing-gum problem.
In this problem, fluid between two plates is stretched out into a thin filament and then
instantaneously, the two plates are brought closer together. This makes the filament buckle
in the direction of gravity, thereby making a viscoelastic catenary to begin with. What
happens then is, to our knowledge, a phenomenon unique to viscoelastic fluids only - the
catenary starts moving upwards against gravity, like a recoil. However, if the plates are
brought together at a rate equivalent to the inverse of the relaxation time of the fluid, we
do not see this recoil effect. We refer to this effect as the chewing-gum problem because we
observed the effect for the first time in a chewing-gum.
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Figure 1: Snapshot of a viscelastic catenary.In this case, the fluid used is a mixture of
Polystyrene (MW 1.877 x 106) in styrene oil - a Boger fluid. The zero shear viscosity is
approximately 50 Pa.s and there is no shear thinning for the shear rates under considera-
tion.Squares in the background are 1 mm in dimension.

3 Governing Equations

All the dynamics of a viscoelastic filament can be understood by considering the simpler
problem of a 2D sheet. The analysis that we will present is applicable to many viscoelastic
systems that do not shear-thin. However, for now consider a solution of polymer molecules
in a viscous solvent. The governing equations for the fluid are conservation of mass, con-
servation of momentum and the closure model to describe the polymer stress within the
fluid:

∇.u = 0 (1)

ρ (ut + u.∇u) = −∇p + µ∇2u + ∇.τ − ρg (2)

τt + u.∇τ − (∇u)T .τ − τ. (∇u) = −
1

λ
(τ − G) (3)

where, the subscripts represent differentiation with respect to the subscripted variables. τ
is the polymer stress tensor, G is the equilibrium polymer stress and λ is the relaxation
time of the polymer molecules. Note that eqs. (1) and (2) not closed without eq. (3)
which describes the evolution of polymer stress in the flow, referred to as the Oldroyd-B
constitutive model.

In order to make the above equations dimensionless, we choose a velocity scale U and
a length scale L. Then, the scaling for time is L/U , where L is the length of the sheet
between the clamps. We scale the pressure and polymer stress with µU

L . We perform the
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following expansion:

u = u0 + ε2u2 + O(ε4)

εv = v0 + ε2v2 + O(ε4)

H = εH0 + ε3H2 + O(ε4)

h = εh0 + ε3h2 + O(ε4)

p = p0 + ε2p2 + O(ε4)

τ = τ0 + ε2τ2 + O(ε4)

(4)

Then the governing equations for a 2D sheet become,

ε2ux + vy = 0 (5)

ε4Re
(

ut + ε2uux + vuy

)

= −ε2px + ε2uxx + uyy + ε2τx (6)

ε4Re
(

vt + ε2uvx + vvy

)

= −ε2py + ε2vxx + vyy − ε4$ (7)

where, Re = ρUL/µ is the Reynolds number and $ = ρg
µU/L is the dimensionless weight

variable. In the limit of Ca = µU/γ >> 1, the effects due to surface tension can be ignored.
So, we consider traction-free boundaries. At y = H±h/2, the kinematic boundary condition
is:

v =

(

H ±
h

2

)

t

+ ε2u

(

H ±
h

2

)

x

(8)

.
The stress boundary condition results in the following two equations:

−ε2 (−p + 2ux + τ)

(

Hx ±
hx

2

)

+ (uy + vx) = 0 (9)

−ε2 (uy + vx)

(

Hx ±
hx

2

)

− ε2p + 2vy = 0 (10)

At leading order, O(1), the incompressibility equation reduces to:

v0y = 0 (11)

The x-momentum and y-momentum balances are respectively:

u0yy = 0 (12)

v0yy = 0 (13)

We assume that the polymer stress tensor has only one non-zero component, τ xx, where
the superscript refers to the component of the stress tensor. Here onwards, we drop the
superscript and refer to τxx as τ . The Oldroyd-B equation for τ at this order is:

τ0t + v0τ0y = −
1

Wi
(τ0 − G) (14)
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We assume that τ0y = 0. Stretching the filament embeds a stress within the fluid,
τ0(0, t) = τ0(0). Boundary conditions at y = H ± h/2 are:

v0 =

(

H0 ±
h0

2

)

t

(15)

u0y + v0x = 0 (16)

v0y = 0 (17)

Then we conclude that h0t = 0. Also

v0 = H0t (18)

u0 = H0xt(H − y) + u0(x) (19)

where, u0(x) is the velocity of the centerline of the filament, i.e. y = H0. Integrating Eq.
(14) gives the equation for the leading order polymer stress that decays with time.

τ0 = G + (τ0(0) − G) e−t/Wi (20)

At second order, O(ε2), the incompressibility equation and momentum balances yield,

v2y = −u0x (21)

p0x − u2yy = u0xx + τ0x (22)

p0y = v0xx − u0xy (23)

The Oldroyd-B equation becomes

τ2t + v0τ2y +
τ2

Wi
= 2τ0u0x − u0τ0x (24)

The kinematic and stress boundary conditions at this order are:

v2 =

(

H2 ±
h2

2

)

t

+ u0

(

H0x ±
h0x

2

)

(25)

u2y + v2x + p0

(

H0x ±
h0x

2

)

= (2u0x + τ0)

(

H0x ±
h0x

2

)

(26)

p0 = 2v2y (27)

Integrating the y-momemtum balance, Eq. (23) and applying the appropriate boundary
condition, Eq. (27), we can evaluate the leading order pressure.

p0 = −2u0x (28)

To calculate v2, we integrate the second order incompressibility equation, Eq. (21),

v2 =
H0xxt

2
(y − H)2 − T (y − H) + ṽ2 (29)
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where, ṽ2 = H2t + u0H0x and T = u0x + H0xH0xt. Note that T is the viscous contribution
to the dimensionless tension in the viscoelastic sheet. The second order horizontal velocity
then is

u2 =
H0xxxt

2
(y−H)3−

3

2
(H0xH0xxt + Tx) (y−H)2−

τ0x

2
(y−H)2+k(x)(y−H)+ũ2(x) (30)

where k(x) = −H0xxxth
2
0
/2 + (3T + τ0)H0x − ṽ2x and ũ2(x) is the constant of integration.

At this order, the boundary conditions and the equations impose the following solvability
conditions:

h2t = − (ū0h0)x (31)

[(4T + τ0) h0]x = 0 (32)

Eq. (32) is a statement of tension balance. Inertia is too small to appear at this order. So
the catenary is in a quasi-static balance. At the next order, O(ε4) the incompressibility,
momentum balances and the Oldroyd-B equation are as follows.

v4y = −u2x (33)

−p2x + u4yy = Re (u0t + v0u0y) − u2xx − τ2x (34)

p2y = −Re (v0t) + v2xx + v4yy − $0 (35)

The boundary conditions are,

v4 + v2y

(

H2 ±
h2

2

)

=

(

H4 ±
h4

2

)

t

+ u2

(

H0x ±
h0x

2

)

+ u0

(

H2x ±
h2x

2

)

(36)

− (−p0 + 2u0x + τ0)

(

H2x ±
h2x

2

)

− (−p2 + 2u2x + τ2)

(

H0x ±
h0x

2

)

+u4y + v4x = 0 (37)

− (u2y + v2x)

(

H0x ±
h0x

2

)

−

[

p2 + p0y

(

H2 ±
h2

2

)]

+2

[

v4y + v2yy

(

H2 ±
h2

2

)]

= 0 (38)

Integrating the y-momentum balance, we get another solvability condition. For the sake
of simplicity, we assume that h0x = 0 and that τ0x = 0. Then,

h0ReH0tt +
h3

0

3
H0xxxxt = (4T + τ0)h0H0xx − $h0 (39)

We can now rescale Eq. (39) to gain more insight into the problem. All lengths are
scaled with L and time with 6µ/ρgh. The centerline velocity at x = 0 and the ends of the
catenary, x = ± 1/2 is zero. So integrating the first solvability condition, we have that

4T + τ0 =
8

L

(

∫ L/2

0

(Hx)2t dx + τ0

)

(40)
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which is a statement of tension balance. The second solvability condition becomes,

RegHtt +
ε3

32
Hxxxxt =

(

∫

1/2

0

(Hx)2t dx + Λτ0

)

εHxx − 1 (41)

where we have dropped the subscript ”0” from the equation. Reg =
(

ρgh
6µ

)2
L
g is the

appropriate Reynolds number, often referred to as the Galileo number in engineering circles.
Λ = G

ρgh , where G is the equilibrium polymer stress. Eq. (41), along with the boundary
conditions H(±1/2, t) = 0 and Hx(±1/2, t) = 0, describes the shape of the viscoelastic
catenary as it sags under its own weight. The second term on the left hand side, Hxxxxt is
the contribution from torque balance and is referred to as the beding term.

4 Results and discussion

The final equation to be solved, Eq (41) is not, apparently amenable to analytical solu-
tions.However, some simplifcations are in order. For the fluid filaments that we constructed,
Reg ∼ 10−5. So we can entirely neglect the inertial term. Also, at early times, the straight
filament must first bend to begin the formation of a catenary. Neglecting the non-linear
viscous stretching term, we have

ε3

32
Hxxxxt = (Λτ0) εHxx − 1 (42)

where, the parameter Λ ∼ 5 and τ0 can be evaluated from Eq.(20). As the catenary evolves,
stretching will result in tension due to viscous stresses and the non-linear stretching term
can no longer be ignored. At present, we present only these hypotheses. We hope to examine
them in the process of solving Eq.(41) numerically.

We intend to attack chewing-gum problem using the framework that we have developed
for the viscoelastic catenary. It appears to be a special case of the catenary - one in which
the initial state of the filament is a catenary to begin with.
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