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1 Introduction

Oceanographic observations from CTD (conductivity, temperature and depth) casts have
shown that rapid reversals in the gradient of temperature and salinity with depth is a
common feature in many areas, especially in polar regions [14, 12]. These oscillations in
temperature and salinity which are typically on the order of tens of meters are thought to be
a signature of horizontal intrusions. These intrusions are often referred to as thermohaline
intrusions because they are driven by processes related to the different diffusing properties
of heat and salt, or what is commonly known as double diffusion.

Double diffusion can occur when two components contribute to the density of a fluid
(such as heat and salt in the ocean), but they diffuse at different rates. Double diffusive
convection refers to the case when one of the components is stably stratified, the second
component is stratified in a destabilizing sense, but the fluid is overall stably stratified.
Double diffusive convection is the process by which potential energy stored in the desta-
bilizing component is released. There are two possible configurations for double diffusion
at an interface between two fluids. If the slower diffusing component is destabilizing, this
is known as a fingering interface and if the faster diffusing component is destabilizing this
is known as a diffusive interface. A complete review of double diffusion can be found in
the seminal work on buoyancy effects in fluids by Turner [13] and a discussion of double
diffusive processes important in the ocean can be found in the review by Schmitt [9].

To understand how double diffusion can generate thermohaline intrusions first consider
lateral, density-compensating gradients of temperature and salinity and a vertical strati-
fication that supports salt fingering for example. If this basic state is then perturbed by
alternating shear zones, the lateral gradients will create alternating regions where the salt
fingers are strengthened (when greater concentrations of salt run over colder water) and
weakened (when colder water is over salty water). Since fingering leads to a downward
density flux, the regions above increased fingering (the warm salty water) become lighter.
If there is some initial slope to the sheared perturbations the warm salty water will con-
tinue to rise and propagate, while the cold fresh regions will sink while propagating in the
opposite direction. A schematic of this model, which was first explained by Stern [11] and
reviewed recently by Ruddick and Kerr [6], appears in figure 1.

While the model described above assumes that the vertical density gradient is initially
stratified in a fingering sense, there have been observations of intrusion formation in regions
where the ocean is stably stratified in both temperature and salinity [12]. This raises the
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Figure 1: Schematic diagram of a thermohaline intrusion [6]. In the fingering region between
the two diffusive interfaces, the downward density flux causes the warm, salty fluid to rise
as it propagates to the right, while the cold, fresh fluid becomes denser and sinks.

question of how thermohaline intrusions can form in the lack of a vertical stratification that
supports double diffusion.

The aim of this project is to present a model for intrusion formation driven by vertical
diffusion in a layer of constant density, but lateral gradients of two diffusing components.
The layer sits above a reservoir that has higher concentrations in both components so
that the system is stably stratified in both components. In section 2 we briefly discuss
previous laboratory experiments that have considered similar problems. In section 3 and 4
we describe the experiments carried out over the summer and our observations. In section
5 we present a simple model of how density and the intrusion lengths evolve. Section 6
contains results from our experiments and a discussion of how they compare to the theory,
and we finish with some conclusions and suggestions for future work in section 7.

2 Previous Experiments

There has been a number of previous studies considering laboratory models of intrusion
formation in double diffusive systems. All of the models discussed here use a sugar–salt
system as opposed to a heat–salt system. This is a common practice in laboratory work
because of the complications that arise due to heat losses through the walls of the exper-
imental tank. For this same reason we also use a sugar–salt system in the experiments to
be described below. It should be noted that while heat diffuses 100 times faster than salt,
in the sugar–salt system, salt diffuses only three times as fast as sugar. Traditionally T
(here, salt) refers to the faster diffusing component and S (here, sugar) refers to the slower
diffusing component.

Ruddick and Turner [8] in a study familiarly known as the “Christmas tree experiment,”
first looked at horizontal intrusions from a stable density gradient. They filled the left and
right hand sides of a divided tank with a stably stratified sugar and salt solution respectively.
The stratifications were set up so that there were no horizontal density gradients anywhere.
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At the start of the experiment the barrier was removed which created perturbations that
allowed both fingering and diffusive interfaces to form. The study found that fingering
dominated the vertical fluxes; sugary intrusions, which lost density through sugar fingers,
rose as they propagated to the right, while salty intrusions fell as they propagated to the
left. A series of intrusions formed in the tank, the height of which was determined by the
initial density stratification. Ruddick, Phillips and Turner [1] returned to these experiments
and completed a more thorough study that included theories for the propagation speed of
the noses and overturning circulations that occur within each intrusion.

Noting similarities between thermohaline intrusions and gravity currents, Maxworthy [5]
completed an experimental study on double diffusive gravity currents. He considered both
the release of a fixed volume of fluid and a constant inflow for both diffusive and fingering
interfaces. Maxworthy found that horizontal momentum could be transferred across the
interface of the current and in many cases this transfer dominated the viscous forces more
commonly associated with gravity currents. This process was modeled as a double diffusive
retarding force that depended on both the horizontal velocity of the current and a vertical
velocity defined by the ratio of the vertical flux to the vertical density gradient of the more
rapidly transferred component (S for a fingering interface and T for a diffusive interface).

Yoshida, Nagashima and Ma [4] later used this double diffusive retarding force to help
explain their observations of double diffusive lock exchange experiments. The experiments
considered homogeneous solutions of sugar and salt separated by a barrier. A slight density
difference between the two sides of the tank determined whether the sugar solution ran under
the salt solution and generated a diffusive interface or alternatively the sugar solution ran
over the salt solution and formed a fingering interface. Yoshida et al. found that the length
of the intrusions grew linearly with time, and they developed a simple theory to explain
this linear relationship.

3 Experimental Procedure

Before each experiment four solutions, corresponding to the four regions marked in figure
2, were prepared using distilled water, pure cane sugar (obtained from a grocery store) and
kosher salt. Solutions 1 and 2 had a density of approximately 1.02 g/cm3, but contained
different concentrations of sugar and salt. In one configuration the contribution of sugar to
the density of solution 1 was twice that of salt, while in solution 2, the contribution of salt
to the density was twice that of sugar. In the second configuration, solution 1 contained
only sugar and solution 2 contained only salt. In all experiments solution 1 was dyed blue.
By diluting with distilled water, the densities of these two upper layers were set equal to
±5×10−6 g/cm3 using an Anton Paar precision densitometer. Solution 3, composed of both
salt and sugar, had a density of 1.05 g/cm3 with the same concentration of salt as solution
2. Finally solution 4 had a density of 1.065 g/cm3 with again the same salt concentration
as solutions 2 and 3. The appropriate quantities of salt and sugar necessary to create these
solutions were determined from Ruddick and Shirtcliffe [7]. The solutions were allowed
to sit overnight to achieve room temperature. This minimized the effects of temperature
fluctuations and heat diffusion in the experiments.

The experiments were conducted in a Perspex tank 60 cm long, 20 cm deep and 10 cm
wide. The tank was fitted with a lock gate that could be raised to any height and fixed in
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Figure 2: Diagram of laboratory equipment. Solutions 1 and 2 have the same density, but
are composed of different concentrations of sugar and salt. The density due to sugar is
larger in solution 1 than solution 2. Solution 3 is denser than 1 and 2, but contains the
same amount of salt as solution 2. Solution 4 is denser than solution 3, but again contains
the same amount of salt as 2 and 3. A barrier separates solutions 1 and 2 before the start
of the experiment and fluid from region 4 is removed with a siphon to lower the surface and
initiate the experiment.

place with a small clamp. This gate was used to separate solutions 1 and 2 until the start of
the experiment. The different solutions were layed down in the tank as depicted in figure 2.
The fluid was poured through siphons at a flow rate of approximately 3 mL/s onto sponges
floating on the surface in order to minimize mixing. The thickness of the upper layer was
varied in each experiment; layers 3 and 4 were generally 1.5 to 2 cm thicker than the upper
layer.

The experiments were initiated using a new method for lock release. In similar experi-
ments the barrier is removed by manually or mechanically pulling it out of the tank. Here
we removed water from layer 4 by use of a siphon. This lowered the surface of the entire
system at a slow rate until the surface was entirely below the barrier.

After initiation, measurements were made using a number of visualization techniques
including shadowgraphs, still photography and time-lapse video. Measurements were made
of the propagation of the intrusions as they formed. Flow visualization was also aided
by dropping potassium permanganate crystals in the flow at different times during the
experiment. Samples were removed at various locations and times using a syringe and
density measurements were made using the precision densitometer.

Parameters varied in the system were the initial thickness of the upper layer, and the
variation in properties across the barrier in the upper layer. These parameters are listed in
table 1, where configuration 1 refers to mixed solutions in the upper layer and configuration
2 refers to pure sugar/pure salt solutions in the upper layer.
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Experiment Configuration Initial upper
Number layer depth

h0 (cm)

14 1 1.5
12 1 1.8
15 1 2.0
17 1 2.2
9 1 2.5
16 1 4.8
8 1 8.0
19 2 1.2
21 2 1.3
18 2 1.8
26 2 2.0
22 2 2.5
25 2 3.0
24 2 5.0

27 2 2.5

Table 1: Parameters varied in the experiments. Configuration 1 refers to mixed solutions
where sugar contributes twice as much as salt to the density on the left hand side of the
barrier, and salt contributes twice as much as sugar to the density on the right hand side.
Configuration 2 refers to a pure sugar solution on the left hand side and pure salt solution
on the right hand side. Experiment 27 was carried out to measure density as a function of
time.
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4 Observations

4.1 Initiation

As soon as the sugary upper layer solution was added to the top layer, salt began to diffuse
upward from the reservoir below. Since the salty layer had the same salt concentration as
the reservoir no salt diffused upward. Therefore, the bottom of the sugary layer became
more denser than the salty layer. As fluid was siphoned out of the lowermost layer, the
right and left sides of the upper layer came into contact at time t = 0. Observations showed
that the densities could be calibrated such that in most experiments there was a period of
five to ten seconds where neither fluid showed a net propagation into the opposite region.
This was then followed by a slight intrusion of sugary fluid (dyed blue) toward the right.
The shape of this intrusion was a very thin wedge with no turbulent motions apparent near
the nose. This intrusion of sugary fluid in turn induced a return flow into the left hand side
simply by mass conservation. Figure 3a shows a photograph of an experiment after these
initial intrusions.

Since salty fluid pushed into a region with sugary fluid above, sugar fingers formed that
vigorously mixed the region to the left of the barrier (figure 3b). This caused fluid depleted
of sugar to become buoyant, rise and pool at the surface to the left of the rising barrier.
Once reaching the surface the lighter fluid began to propagate to the left into the sugary
region while remaining at the surface.

While vigorous convection characterized the initiation of this experiment, the turbulent
nature of the flow quickly resolved itself into a sharp diagonal interface that linked the left-
ward moving upper intrusion and the rightward moving lower intrusion (figure 3c). Despite
the vigorous convection, there still seemed to be minimal mixing of salty and sugary fluid
as evidenced by the lack of mixing of the blue dye. Once this interface formed, strong con-
vective plumes were observed both above and below the interface. In general, the greater
the depth of the upper layer and the larger the salt and sugar contrast across the barrier
the stronger the convective plumes appeared to be.

4.2 Intrusion shape

As the lower, sugary intrusion received salt from both the lower reservoir and the fluid above,
it continued to become denser and propagated to the right along the interface between the
upper layer and the reservoir (figure 4). The current intruded as a wedge and did not exhibit
the turbulent head common to gravity currents in a homogeneous ambient. The flow of the
current was on the order of 1 cm/min, but seemed to depend strongly on the depth of the
upper layer. The interface between the dyed lower intrusion and the clear upper intrusion
appeared to be a straight line connecting the fronts, with some small curvature at the noses.

The current propagating to the left at the surface seemed to move at a nearly constant
velocity that was also dependent on the height of the upper layer. In all experiments the
leftward moving intrusion hit the end wall first and generally did not seem to slow upon
nearing the end wall. The rightward moving lower intrusion did slow upon nearing the end
wall.

In all the experiments with a small aspect ratio, only two layers were observed to form in
the upper region with the clear, salty layer running over the dyed, sugary layer. The interface
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Figure 3: Photographs of initiation of experiment 25 at (a) t = 58 s, (b) t = 122 s, (c) t =
184 s.
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Figure 4: Photograph of right-moving lower intrusion from experiment 25 at t = 10:50.

between these two regions remained sharp throughout the experiment until convection ran
down and diffusion started to thicken the interface slowly. Convection lasted for most of the
experiment although it weakened steadily throughout. The convective motions appeared
to have a vertical length-scale, which was most likely determined by the shear in the two
layers discussed below. Convection was not observed in a region extending a centimeter or
two behind the head of the current (figure 4). It is possible that this length-scale is related
to the diffusivity of the salt and the velocity of the nose.

4.3 Velocity structure

Besides the leftward and rightward propagation of the upper and lower intrusions respec-
tively, there was also an overturning circulation within each layer. The sense of this cir-
culation was clockwise in both layers and in general the velocities were greater than those
of the intrusions. This feature was observed and commented upon by Ruddick et al. [1].
Visualization with the use of dye crystals showed strong shear occurred along the interface
between the two regions of fluid as the horizontal velocity is to the left (up slope) in the
upper layer and to the right (down slope) in the lower layer. Return flows were to the right
near the surface in the upper layer and to the left near the interface with the reservoir in the
lower layer. Observations also seemed to indicate regions of high shear both near the surface
and at the interface between the upper layer and reservoir. Dye crystals that fell through
the upper layer showed that velocities in the lower reservoir were very small compared to
the velocities in the upper layer. While we expect no net transport over the entire height
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of the upper layer, there was a net transport of fluid to the left in the clear layer and a net
transport to the right in the blue-dyed layer since the sloped interface continued to flatten
until it appeared horizontal.

5 Some Simple Theory

5.1 Initiation

We begin this section by writing down the governing equations for our experiment. We
assume a two-dimensional, incompressible, Boussinesq salt and sugar system (T and S
respectively). The equations of motion are given by

ξt + J(ψ, ξ) = −g (αTx + βSx) + ν∇2ξ, (1)

Tt + J(ψ, T ) = κT∇2T, (2)

St + J(ψ, S) = κS∇2S, (3)

w = ψx, u = −ψz, ξ = ∇2ψ, (4)

ρ = ρ0 (1 + αT + βS) (5)

where

α =
1

ρ0

∂ρ

∂T
, β =

1

ρ0

∂ρ

∂S
(6)

are the coefficients of expansion of salt and sugar respectively and J represents the Jacobian.
These equations represent the curl of the horizontal and vertical momentum equations,
conservation of salt, conservation of sugar and conservation of mass. It is quickly apparent
from these equations that it would be difficult to solve these equations analytically, and
even numerically it would be a non-trivial task. Therefore, in the scope of this project we
have attempted to understand parts of the problem rather than a complete solution.

We first considered the initiation of the experiment by assuming that the barrier is
removed instantaneously without any disturbances at time t = 0. Because of the differences
in diffusion rates, we expect that at early times we can neglect the effects of sugar diffusion.

A simple problem is to consider the horizontal diffusion of salt across the vertical inter-
face separating the two regions in the upper layer. At early times we assume the non-linear
terms in the governing equations above are small and that across the front ∂x � ∂z. We
simply solve the diffusion equation,

Tt = κTTxx (7)

with the boundary conditions T → 0 as x → −∞ and T → ∆T0 as x → +∞. Solving
these equations gives us a solution in terms of the error function, but we will choose to
solve the diffusion equation using Laplace transforms so we can use the solution in the
momentum equation as well. After taking the Laplace transform of equation 7 and the
boundary conditions we find the solution in Laplace space is given by

T̃ =
∆T0

2s

(

2 − exp

[

−
√

s

κT
x

])

x > 0 (8)

T̃ =
∆T0

2s
exp

[√

s

κT
x

]

x < 0. (9)
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Figure 5: Plot of vertical velocity as a function of position from the vertical interface at
various times caused by horizontal diffusion of salt.

Neglecting the nonlinear terms in the curl of the momentum equation and dropping
derivatives with respect to z we seek to solve,

ψxxt = −gαTx + νψxxxx. (10)

Again we proceed by taking the Laplace transform of this equation, and apply the expres-
sions for T̃ that we found above. We can solve this equation for ψ̃xx and integrate once with
respect to x. We then transform back to the time domain using the convolution theorem
to find ψx or

w =
gα∆T0

2ν

(

1

ν
− 1

κT

)

−1 (
∫ t

0

[erfc(ηκ) − erfc(ην)] du

)

, x > 0, (11)

where ηκ = x/2
√
κTu and ην = x/2

√
νu. Using the same procedure we can find the vertical

velocity for x < 0, and find that it is just the opposite of the expression given above. A plot
of the vertical velocity as a function of distance from the interface at various times using
parameters typical from our experiments is shown in figure 5. As we expect, salt diffuses
horizontally from positive to negative x generating a larger density that drives a downward
flow for x < 0 and reducing the density and driving an upward flow for x > 0. This seems
to indicate that an instability could occur even without the lower reservoir. We expect the
reservoir has a much larger effect, though, and we are planning further experiments to test
this more thoroughly.

We next consider diffusion of salt across the horizontal interface between the dense lower
reservoir and the sugar solution in the upper layer. Once again we will neglect the effects
of sugar diffusion and only consider vertical derivatives since they are much larger than the
horizontal derivatives at early times. We consider the diffusion equation

Tt = κTTzz, (12)

which we can solve in terms of an error function and then use to express the density in the
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upper layer as a function of vertical position and time. Using equation 5,

ρ = ρ0

(

1 + α∆T0 +
α∆T0

2
erfc(ηz)

)

, (13)

where ηz = z/2
√
κT t, and ∆T0 is the initial salinity difference across the interface.

As a simple analysis at this point, we can argue that the region that gained density
due to diffusion will intrude into the salty fluid as a gravity current. We can estimate the
increase in density due to diffusion by taking the mean density increase across the diffusive
boundary layer

√
κT t. Rather than integrating (13), we can take the density gradient as

linear to leading order to find that the mean density change is given by

∆ρ =
ρ0α∆T

4
. (14)

A gravity current is characterized by the Froude number, Fr = u/
√
g′h. Here g′ = g∆ρ/ρ0

is the reduced gravity and we take the length scale h to be the diffusive length scale
√
κT t.

Typically Fr = 1 at the nose of a gravity current. Considering times less than one minute,
t ∼ O(10), we find that u ≈ 0.5 cm/s. Although this represents an extremely thin layer
of fluid, the velocity determined by this simple method is much larger than the velocities
observed in the experiments.

One likely reason for the disagreement is that the horizontal interface is not actually
sharply defined. In the process of filling the tank, some mixing occurs that leads to a
thin region of stratification on both sides of the barrier. This then makes it much more
difficult to quantify the rate at which salt diffuses from the reservoir into the upper layer.
Ruddick et al. [1] found that the velocity of intrusions propagating into a stratified ambient
scaled like Nh, where N is the buoyancy frequency. The quantity u/Nh is equivalent to
a Froude number, and they also found the velocity was much smaller than expected for
gravity current dynamics. Their results showed,

u ∼ 0.005Nh. (15)

Ruddick et al. did not provide an explanation for the small size of the Froude number, and
it is a problem that begs further study.

An important quantity in double diffusive convection is the flux ratio γ defined as

γ =
βFS

αFT
(16)

for a diffusive interface, and the reciprocal of (16) for a fingering interface (so that γ is
always less than 1). Measurements of γ have shown that its value depends on the density
ratio, which is given by

Rρ =
β∆S

α∆T
(17)

for a diffusive interface. For Rρ > 2, Turner [13] has found that

γ =

√

κS

κT
. (18)
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As Rρ approaches 1, though, the value of γ also approaches 1. Turner interpreted this result
by arguing that as Rρ approaches 1, convection becomes more turbulent and therefore the
same processes are transporting both diffusing components and the ratio of the fluxes are
approximately equal. At the initiation of our experiments, the value of Rρ has carefully been
set to 1 so that density is compensated across the front. This may indicate that although
we observe strong turbulent motions, there may be very little change in density associated
with these motions.

5.2 Intrusion propagation

A second approach we have taken to modeling the rightward and leftward moving intrusions
is based on the work on Yoshida et al. [4]. We assume that after some period of time the
vertical interface between the salt solution and sugar solution has tilted so that salty water
is riding over fresh. As an initial condition we assume that the density jump across the
interface is still zero which may be accurate for early times if the flux ratio γ is close to 1
as discussed above.

We can write that the change in density in the salty solution is due to a flux of salt out
of this layer and a flux of sugar into this layer. This can be written as

dρT

dt
= −αFT

1 − γ

h0/2
, (19)

where ρT is the density in the salty layer and h0 is the initial depth of the upper layer. This
model assumes that the layers are well mixed and that the density is a function of time
only. The factor of 2 is a geometrical factor included because the current is approximately
triangular. We note that this is a simplified model as our measurements have indicated that
there are spatial gradients in the density field.

The flux of salt across the interface can be related to the change in the salinity difference
across the interface,

αFT =
ρ0h0

2

d

dt
(α∆T ) . (20)

Finally a third equation is needed as a parameterization of the salt flux as a function of
the salt gradient. A review of flux laws for double diffusive convection across a diffusive
interface is given in Kelley et al. [3]. For simplicity we use the flux relationship determined
by Turner [13] where he argued that for turbulent convection

αFT = C(α∆T )4/3, (21)

where C is a dimensional constant that depends on the solution properties and the density
ratio Rρ [10]. It is more difficult to judge the validity of assuming that C is a constant
because in the scope of this project we were unable to measure concentrations of salt and
sugar separately, and therefore it is difficult to estimate how Rρ changes over the course of
the experiment.

At this point we can use equations (20) and (21) to find an expression for the salt jump
across the interface as a function of time,

α∆T = (α∆T0)(1 + t/τ)−3, (22)
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where τ is a time scale given by

τ =
3ρ0h0

2C(α∆T0)1/3
. (23)

Assuming Rρ ≈ 2 in determining C, and using parameters from our experiments we find
that τ = O(103s). We note here that we expect Rρ to be small based on the propagation
speed of our current (density differences must be small), but there are also large fluctuations
in the value of C for 1 < Rρ < 2.

Finally we can use equations (21) and (22) to integrate equation (19) with time. From
this we obtain

ρT = ρ0

[

1 + α∆T0(1 − γ)(1 + t/τ)−3 + α∆T0γ
]

. (24)

The density in the lower, sugary layer can be determined in a similar manner and using the
fact that α∆T0 = β∆S0 we find,

ρS = ρ0

[

1 − α∆T0(1 − γ)(1 + t/τ)−3 + α∆T0(2 − γ)
]

. (25)

Combining these two equations then gives us an expression for the density difference across
the interface as a function of time,

∆ρ = 2ρ0(α∆T0)(1 − γ)
(

1 − (1 + t/τ)−3
)

. (26)

We have also analyzed this model for a flux condition that is controlled purely by
diffusion. This modification only affects our parameterization of the flux law given in (21),
where now the flux of salt across the interface depends on the salinity gradient across the
interface. To model this we assumed that there is some length scale hm associated with the
thickness of the interface and that this was maintained at a constant value. We believe that
this assumption may be valid while the shear at the interface is high. Then we can write

αFT = ρ0κT
α∆T

hm
. (27)

Following the same steps as before we can integrate up equations 20 and 27 to obtain

∆ρ = 2ρ0(α∆T0)(1 − γ) (1 − exp [−κt/h0hm]) . (28)

Following the work of both Maxworthy [5] and Yoshida et al. [4], we now argue that
for most of the experiment, the buoyancy force generated by density differences across the
interface is balanced by a double diffusive retarding force. This double diffusive force is
given in Maxworthy [5] as

FDD = ρUV L, (29)

where U and V are defined as

U =
L

t
, and V =

αFT

ρα∆T
. (30)

The buoyancy force is given by FB = ∆ρgh2
0
, so we can write

FB = 2ρ0(α∆T0)(1 − γ)gh2

0

[

1 − (1 + t/τ)−3

]

, (31)

FDD = C(α∆T0)
1/3(1 + t/τ)−1L2t−1, (32)
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where we have used the four-thirds flux parameterization as opposed to the diffusive flux
parameterization. Equating these two forces we obtain a scaling for L,

L ∝ (ρ0g)
1/2(α∆T0)

1/3h0

√

(1 + t/τ)
(

1 − (1 + t/τ)−3

)

t. (33)

We can show that for both t � τ and t � τ , L ∝ t from the expression above, and even
when t ∼ τ the t dependence is well approximated by a linear curve [4].

6 Results

Figures 6 and 7 show measurements of density as a function of position in the tank after
the experiment has neared run-down. All measurements were taken between one hour and
one and a half hours after the start of the experiment. On the x-axis, 0 cm corresponds
to the lefthand wall of the tank and 60 cm corresponds to the right-hand wall. The clear
symbols represent measurements taken in the upper layer above the interface between the
two fluids and the closed symbols represent measurements taken below this interface. Note
that density decreases upward on the y-axis in figures 6, 7, and 8 for easier interpretation
of the graph.

Figure 6 shows the density measurements from the experiments that had mixed initial
conditions. In these experiments, the density in the upper layer was 1.02 g/cm3. Sugar
contriubted twice as much to the density in the left side and salt twice as much in the right
side leading to a property contrast across the barrier, α∆T0 = β∆S0 = 0.0067. The data
show that there is still a small positive horizontal density gradient. This most likely means
that the experiment has not fully run down to completion. The jump in density across
the interface is roughly 0.002 g/cm3. Fewer measurements of density were made in the
experiments with pure sugar and pure salt initial conditions, figure 7. It is clear, though,
that the density jump is considerably larger than in the other experiments. The density
difference here is roughly 0.006 g/cm3 which is three times as large as ∆ρ in figure 6. This
agrees well with our theory that the run-down density jump across the interface should
scale linearly with α∆T0, since α∆T0 is 0.02 in the pure salt/pure sugar configuration, or
roughly three times as large as the mixed configuration experiments.

In experiment 27 we took density measurements at various heights and times in the
center of the tank. These values appear in figure 8 with the different symbols representing
the location at which the sample was taken as described in the key. As expected, density de-
creased steadily in the upper layer and increased steadily in the lower layer. Measurements
made just above and below the interface (regions 2 and 3) seem to reach a quasi-equilibrium
state after approximately 20–30 minutes, while measurements taken near the surface and
near the reservoir interface reach nearly steady values after an hour or more. These mea-
surements seem to show that despite the convection observed in the experiments, there
may be either a staircase or a stratified density profile. The vertical density structure could
depend strongly on the overturning circulation that is observed. We further note that the
density change at region 4 is the largest because of the continuous diffusion of salt into this
region from the lower reservoir.

From equations (26) and (28) we can see that the run-down time for the density jump
across the interface is τ or h0hm/κT for the four-thirds flux law or the diffusive flux law
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Figure 6: Density in the upper layer as a function of position in the tank after run-down
(between 60 and 80 minutes after initiation) for mixed solution initial conditions. The
open symbols correspond to measurements taken above the interface and closed symbols to
measurements taken below the interface. Density decreases along the y-axis.

0 10 20 30 40 50 60

1.015

1.016

1.017

1.018

1.019

1.02

1.021

1.022

1.023

1.024

1.025

D
en

si
ty

 (
g/

cm
3 )

Expt. 18 (h=1.8 cm)
Expt. 22 (h=2.5 cm)

Position (cm) 

Figure 7: Density in the upper layer as a function of position in the tank after run-down
(between 60 and 80 minutes after initiation) for pure salt/pure sugar initial conditions. The
open symbols correspond to measurements taken above the interface and closed symbols to
measurements taken below the interface. Density decreases along the y-axis.
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Figure 8: Density measurements as a function of time from experiment 27. The symbols
refer to different heights where samples were removed as indicated in the key above. All
samples were removed from the center of the tank.

respectively. As given earlier, τ ∼ 103 s and

h0hm

κT
∼ 1cm(.05cm)

1 × 10−5cm/s2
∼ 5 × 103s. (34)

Figure 8 may then indicate that the four-thirds law is a decent approximation close to the
interface, but the assumption that both layers are well-mixed is certainly not valid. Also,
after run-down, we expect ∆ρ ≈ 2ρ0(α∆T )(1 − γ). For a diffusive interface and Rρ > 2,
Turner [13] gives γ = 0.577 for a one-dimensional salt–sugar system. Therefore we expect
∆ρ ≈ 0.87ρ0(α∆T ) or 0.0174 g/cm3 for the pure salt/pure sugar intitial conditions. Our
measurements show that the density difference is smaller than this estimate by a factor of
2 or 3. This may be explained by the fact that at least at the initiation of our experiment,
Rρ = 1 and as Rρ approaches 1, γ also approaches 1. Furthermore, our system is two-
dimensional, while Turner’s value for γ was derived from a one-dimensional system.

Figures 9 and 10 show measurements of the front position of the upper and lower in-
trusions respectively as a function of time from the experiments with pure salt/pure sugar
initial conditions. The various symbols represent different initial thicknesses h0. From
both figures it is clear that the intrusion velocity depends strongly on the layer depth. Both
figures have log-log axes and various power law relations are shown with dashed lines for
reference. The length of the upper intrusion seems to depend linearly on time, so that
the velocity is constant. There are no pronounced end wall effects, although there may be
some late-time behaviour and a change in regime for the slowest experiment where h0 = 1.2
cm. Most of the measurements of the lower intrusions seem to indicate that the velocity
is approximately constant, although there does seem to be a monotonic increase in slope
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Figure 9: Position of upper intrusion fronts as a function of time for pure salt/pure sugar
initial conditions. Power law relations are shown with dashed lines for reference.
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Figure 10: Position of lower intrusion fronts as a function of time for pure salt/pure sugar
initial conditions. Power law relations are shown with dashed lines for reference.
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Figure 12: Position of lower intrusion fronts non-dimensionalized with respect to upper layer
thickness. Open symbols refer to pure salt/pure sugar initial conditions, closed symbols refer
to mixed solutions initial conditions.
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in figure 10 with increasing layer depth. For a very deep upper layer, h0 = 5.0 cm, the
velocity increases with time with L ∼ t5/2 or U ∼ t3/2. There is a much more pronounced
end wall effect in the lower layer intrusion due to stratification that arises at the upper
layer–reservoir interface when filling the tank. This leads to a blocking flow, which feels the
presence of the end wall much earlier than the upper intrusion [2].

Finally, in figures 11 and 12 we have non-dimensionalized the length of the intrusions
with the initial height h0, and included both the mixed solution initial condition (closed
symbols) and the pure salt/pure sugar initial conditions (open symbols). Figure 11 shows
the upper intrusion data, which seem to collapse so that L scales linearly with h0. This
agrees with the force balance argument given in (33). We have also included the average
slope, or penetration velocity, of the experiments for both initial conditions. The velocity
of the pure solutions is approximately three times larger than the mixed solutions. It is
true that α∆T0 is three times larger for the pure solutions than for the mixed solutions, but
from (33) we expect the velocity to vary like (α∆T0)

1/3. The data also collapses fairly well
when we non-dimensionalize the length of the lower intrusion. The difference in velocities
is more difficult to determine in this case due to the strong end wall effects.

7 Conclusions

We have attempted to show how horizontal thermohaline intrusions may develop because
of vertical diffusion in a system stably stratified in both S and T . The problem was studied
experimentally using sugar and salt solutions. We found that horizontal intrusions that
lead to overturning in a layer initially of uniform density, but with horizontally varying
concentrations of sugar and salt, can be driven purely by diffusion of the faster diffusing
component from below. We also believe that the composition of this lower reservoir plays
a large role in determining whether a diffusive or a fingering interface forms. This then
in turn governs how sugar and salt are exchanged between the two upper layers. Further
experiments will be carried out varying the reservoir concentrations to verify the importance
of diffusion at this interface. Hopefully in future experiments we will be able to measure
salt and sugar concentrations, which will provide information about the diffusive transfers
across the interface and the evolution of the flux ratio. These experiments should offer
helpful insights into the formation and mixing properties of thermohaline intrusions in
regions such as the Southern Ocean.
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