
Lecture 9: Strong Flows

E. J. Hinch

1 Birefringent Strand

1.1 Flow of a FENE fluid past a sphere

In the lecture on stress relaxation, we talked about how an Oldroyd-B fluid deforms as it
flows past a rigid sphere. We also discussed the two main shortcomings of the Oldroyd-B
model as the Deborah number increases, namely the failure to predict the sudden increase
in pressure drop after an initial decrease and long wakes. The infinite extensibility of the
Oldroyd-B model renders it useless at high Deborah numbers. However, if the Oldroyd-B
model is modified into its finitely extensible counterpart also called the FENE (Finitely
Extensible Nonlinear Elastic) model, then strong flow phenomena can be successfully pre-
dicted.

Figure 1 has been taken from a finite difference calculation [1] for a sphere falling down a
cylinder of FENE fluid. Notice the increase in drag force after an initial decrease. The initial
decrease in drag until De = 1.3 is captured well by the Oldroyd-B model. Such a decrease
occurs due to the elasticity of the microstructure lending itself to the flow and deforming
along with it. However, at higher Deborah numbers, the Olroyd-B continues to deform to
infinite lengths. The finite extensibility in the FENE model limits the deformation of the
microstructure, leading to an extensional viscosity that adds to the drag experienced by the
flow. Figure 2 is a plot of the drag force felt by the falling sphere with increasing Wi [2].

Figure 1: Drag on a sphere with FENE fluid flowing past it plotted against De
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Figure 2: Drag on a sphere in a viscoelastic fluid plotted against Wi, measured experimen-
tally.

It is evident that the Oldroyd-B model does well at small Wi, but fails beyond Wi greater
than 1.

FENE calculations also successfully predict the long wake seen in flow past a rigid
sphere. The longer-than-Newtonian wake arises because the fluid takes a finite amount of
time to relax (relaxation time). The material in the wake is highly stretched due to the
strong extensional flow there. Consequently, a large extensional viscosity results that causes
increased drag on the sphere above the Newtonian value. It is possible to see these effects by
passing polarized light through the medium. As could be predicted from figure 3, very high
birefringence is observed in the downstream wake formed by the sphere, especially in the
regions close to the center streamline that emanates from the stagnation point. Henceforth,
we will refer to this region as the ‘birefringent strand’, and infer that large stresses occur
there.

1.2 Cross-slot flow of a viscoelastic fluid

Figure 4 shows the flow of fluid from two channels that are sucked out by two other channels
perpendicular to the inlet channels. The velocity profiles at different sections of the exit
channel are shown in figures 5 and 7. The flow is simple extensional by design, and will
therefore stretch out the microstructure, leading to a birefringent strand. A careful look at
the development of the flow profile gives us some confidence about the effect of the birefrin-
gent strand on the flow. It is clear that only after a time of the order of the microstructure
relaxation time has elapsed, will the parabolic profile develop.
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Figure 3: Long wake seen in flow of a FENE fluid past a rigid sphere. The contours are of
constant tr(A) [1].
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a

Figure 4: A schematic figure showing the cross-slot flow. The profiles at different positions
in the exit channel (a, b, c, d and e) are plotted in the following figure
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Figure 5: Development of the velocity profile in the exit channel.

This suggests that it is possible to view the birefringent strand in terms of an elastic
boundary layer if one views the fluid within this strand as Newtonian but with a very large
viscosity equal to the extensional viscosity. In this formulation, the fluid surrounding the
strand is imagined to have a constant Newtonian viscosity and the strand is a thin layer of
fluid with much higher viscosity.

1.2.1 Analysis of a birefringent strand in an exit channel

The velocity profile in the exit channel is given by

u(x, y) = U(x)
a− y

a
+ (Q− U(x)a)

3y(a− y)

a2
. (1)

Force balance on the birefringent strand results in:

[
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where, µext is the extensional viscosity in the birefringent strand. From the velocity profile,
we have:
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]
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Solving, we obtain
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Figure 6: Flow in the exit channel with a birefringent strand
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x
) (4)

Thus, the velocity along the center streamline starting at the stagnation point increases
very rapidly to the steady Newtonian value. It is also possible to calculate the thickness of
the thin birefringent strand (a good exercise for the keen reader). Interesting predictions
about the thickness of the birefringent strand for a given flow rate can be made using a
FENE dumbbell model for the microstructure. Harlen, Hinch and Rallison [3] performed
such calculations and realized that, as the flow rate increased, there must be a transition
from thin strands to much thicker ones that would look like pipes. This is shown in figure
7.

1.3 Flow of a FENE fluid past a bubble

Another interesting effect of a stagnation point flow is that of a Non-Newtonian fluid past a
bubble. Since the bubble is deformable, unlike a rigid sphere, a cusp forms at the stagnation
point. Rallison and Malaga (2003). have worked out the calculations for such a flow. They
concluded that the curvature at the cusp becomes sharper with increasing extensibility
of the microstructure, as shown by the cartoon in figure 8. By definition, extensibility
is ratio of the fully stretched length of the microstructure to its equilibrium size. Note
that the curvature increases with stretching of the microstructure, which ultimately leads
to elimination of the stagnation point—a nonlinear feedback of the microstructure on the
flow.
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Figure 7: A plot of Deborah number vs concentration of polymer molecules showing the
different states of the birefringent strand seen in the numerical calculation.

Curvature increases with 
extensibility of fluid

Figure 8: A cartoon of the bubble in a viscoelastic fluid.
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Figure 9: Numerical simulation of a contraction flow of a FENE fluid [4]. Non-Newtonian
fluids generate corner vortices that are much larger those apparent in Newtonian fluids.

2 Wine glass model of contraction flow

In lecture 3 we considered anisotropic converging channel flow of a suspension of rigid rods.
Here we turn our attention to a strong contraction flow of a general anisotropic material.
Experiments and numerical simulations have shown that these flows develop large upstream
vortices that have a lengthscale greater than a corner vortex observed in a Newtonian fluid.
Figure 9 shows a simulation of flow into a contraction [4] where the large corner vortex is
apparent. Figure 10 is an image of a similar contraction flow from experiments [5]. The
darker regions outside of the inner flow (white region) are the corner vortices.

We consider the wine glass model of contraction flow, which is a toy model [4]. The
geometry is shown in figure 11. Initially there is no deformation of the microstructure in
the region upstream of the “wine glass.” In this upstream region the relaxation rate of
the microstructure is greater than the strain rate. As we near the contraction, though, the
strain rate increases and will become comparable to the relaxation rate. At this transition,
material located in the region r < rD begins to stretch, where r is the distance from the
centerline of the pipe (figure 11). Once the fluid passes into the “bowl” of the wine glass,
the polymers continue to stretch as both the flow and strain rate increase. Eventually the
polymers become fully stretched at a distance rL from the centerline. At this point the fluid
enters the “stem” of the wine glass and travels towards the contraction which has a radius
rC .

We can now make some progress on this problem using scaling arguments. Within the
bowl we can approximate the flow as a point sink flow given by

u =
Q

2πr2
. (5)

The point sink flow approximation is valid within the bowl and stem regions. Stretching
of the microstructure begins to become important when the relaxation rate is of the same
order of magnitude as the strain rate, or in other words, the Weissenberg number is O(1).
At this point

1

τ
∼ E ∼

∂u

∂r
(6)
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Figure 10: Image of contraction flow from experiments [5]. The white region indicates
strong extension flow (the “stem” in the wine glass model), and the corner vortices are the
darker regions outside it.
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Figure 11: Geometry of the wine glass model of contraction flow [4]. This figure shows half
of a pipe with a 4:1 contraction. Flow is into the contraction. The microstructure begins to
be stretched once it enters the bowl, and becomes fully stretched when it enters the stem.
The maximum radius of the bowl is RD, the maximum radius of the stem is RL and the
radius of the contraction is RC .
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and, from differentiating (5), we determine that stretching begins to be important at

rD ∼ (Qτ)1/3. (7)

Within the bowl, the strain rate becomes large and dominates the relaxation term.
In this region then, the microstructure stretches like fluid line elements. Line element
stretching is proportional to the velocity of the flow and since A is the tensor describing
the microstructure, we find

A ∝ u2 ∝ r−4, (8)

where we have used the relationship between u and r for a point sink flow.
Upon entering the stem of the wine glass, the microstructure has become fully stretched.

In this finite extension regime A ' L2. Now assuming an individual polymer begins stretch-
ing at a distance rE from the centerline, A at this point is simply equal to 1. Then using (8)
we can consider the two limits of undeformed microstructure (A = 1) and fully stretched
microstructure (A = L2) to show

1 ∼
1

r4E
, L2 ∼

1

r4L
, (9)

which gives the result that the microstructure becomes fully stretched at

rL =
rE
L1/2

. (10)

The large vortices that we are interested in viewing occur only if rE falls within the
region where the strain rate is larger than the relaxation rate. Or in other words, the
polymers can only become fully stretched if rE = L1/2rL < rD. Note also that this model
makes sense only if rD lies within the upstream pipe. Now applying this constraint and
noting that the Deborah number for this flow is given by

De =
Qτ

rC
, (11)

we find that the microstructure can become fully stretched only if we exceed a critical
Deborah number,

De > Decrit. = L3/2. (12)

In determining Decrit. we have assumed that rL ' rC , which is true if we assume the cone
angle α is small.

Once the material is fully stretched we have an extensional viscosity µext that is much
larger than the shear viscosity, µshear, and the momentum balance is between the high
extensional viscosity in the stem and the high shear in the recirculating vortices. This
balance can be written as

µext

∂2u

∂r2
' µshear

1

r2
∂2u

∂θ2
. (13)

As in the problem we discussed in section 6 from Lecture 3, for converging channel flow,
the dependence in the θ direction has a sinusoidal character, where the θ direction is in the
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Figure 12: Numerical simulation of pressure drop as a function of Deborah number for an
Oldroyd B fluid (Szabo et al. 1997). As the Deborah number increases, the microstructure
is stretched and the pressure drop decreases. There is some evidence for increasing pressure
drop at high De.

direction of the cone angle α. Assuming a separable solution for equation (13), we find that

the r-independent solution has a sinusoidal dependence with an argument of
(
√

µext

µshear
θ
)

.

Therefore the angle of the stem is given by

α ∼

√

µshear

µext

, (14)

from which we can see that as long as µext � µshear, our assumption of small cone angle is
valid. The length of the cone l can be found using trigonometry, tanα = (rL − rC)/l, which
with the small angle approximation gives

l =
rL − rC

α
= rC

(

De
1

3L−
1

2 − 1
)

√

GτL2

µ
. (15)

Here we have used the fact that µext ∼ GτL2and our previous relationships for rL and De. It
is easy to see from our scaling arguments for the angle α that these vortices are much larger
than the corner vortices we would expect to see in a Newtonian fluid. Numerical calculations
[4] have shown that these scaling arguments are within 20% of the full numerical calculations.
The authors also include numerical models of how the pressure drop varies with increasing
Deborah number (figure 12) for an Oldroyd B fluid. As the fluid enters the wine glass and
the microstructure is stretched, the pressure drop decreases (cf. turbulent drag reduction).
There is also some evidence that at very large Deborah number the pressure drop begins to
increase again.

3 Corner singularity

The geometry for flow around a corner singularity is shown in figure 13. For very fast flows
around a sharp corner (we will consider a 270o corner), ∇u � 1/τ or De � 1. In this
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Figure 13: Geometry of flow around a corner singularity. Near the corner, the microstruc-
ture is strongly stretched. This region is known as the elastic core. Both upstream and
downstream of the corner there will be boundary layers where viscous effects become im-
portant (the Deborah number becomes small). Far from the corner the shear is small (the
Weissenberg number is small).

case the relaxation of the microstructure is negligible and only the stretching is important.
There will be both upstream and downstream boundary layers where the Deborah number
is small and viscous effects are imporant. Also, far from the corner, the shear is small so
the Weissenberg number becomes small. The transition between these regions are marked
with a dashed line in figure 13. The equation for the evolution of the microstructure in the
elastic core then becomes

DA

Dt
= A · ∇u + (∇u)T ·A (16)

where A deforms with the flow. As we discussed briefly in the previous section and in
earlier lectures, the microstructure deforms like fluid line elements. This can be written
more formally as

d

dt
δl = δl · ∇u. (17)

If we then consider a steady flow, the fact that A will deform like fluid line elements
suggests that we look for a solution of the form

A = f(ψ)uu. (18)

Here f is an unknown function which accounts for the fact that the deformation depends
on the choice of streamline.

Now when we analyze the momentum equation for these flows, even though the Deborah
number is large, the inertial terms are still negligible. Therefore the flow is still Stokes flow
except that the stretching of the microstructure GA balances the pressure gradient rather
than the viscous forces balancing pressure. Then applying our guess for A and noting that
f(ψ) is a scalar function, we can write

0 = −∇p+Gf
1

2 u · ∇f
1

2 u (19)
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where we have used incompressibility, ∇ · u = 0. The reason for splitting f in this fashion
is that now equation (19) is suggestive of a steady Euler’s equation in f 1/2u. Indeed, we
can write

−∇p+
1

2
G∇

(

f |u|2
)

= 0 (20)

and by integrating we get an anti-Bernoulli equation where

p−
1

2
Gf |u|2 = const. (21)

along streamlines. This is termed an anti-Bernoulli equation because rather than pressure
decreasing with increasing velocity, pressure will increase with increasing velocity. (Theoret-
ically you would need to flip the wings of an airplane upside down to fly in a non-Newtonian
fluid!) We can now seek a potential flow solution to (21), assuming the flow is irrotational,
and has the form

f1/2u = ∇φ. (22)

The solution to potential flow around an angle α [6] is

φ = Crπ/α cos

(

πθ

α

)

. (23)

For our 270o corner with a properly normalized velocity, this gives

φ =
3

2
r

2

3 cos

(

2

3
θ

)

. (24)

Note that this solution can be obtained by finding the complex potential solution for flow in
a half plane and using conformal mapping to transform the flat plate to the desired angle.
This now represents the solution for our flow around a corner neglecting the boundary layer
effects (i.e. potential flow only satisfies conditions of no normal flow at the boundaries, not
the no-slip condition). This also shows that u ∝ φ/r ∝ r−1/3 and, since σ ∝ A ∝ u2, we
find that

σ ∝ r−
2

3 . (25)

At this point, using the definition of the stream function we can write

f
1

2 u = f
1

2 (ψ)∇× (0, 0, ψ) = f
1

2∇×

(

0, 0,
3

2
r

2

3 sin
2

3
θ

)

. (26)

Finally, using the fact that f is also a function of ψ, we can write

ψ = g

(

r
2

3 sin
3

2
θ

)

, (27)

where g is an unknown function. Rather than solving for g, though, we will apply matching
between the inner solution and the boundary layer solution.

Before considering the flow in the boundary layer, we first analyze how the microstruc-
ture deforms with the fluid. Then as before, we can say that the fluid deforms like a line
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element, but also in order to conserve mass, the fluid is squeezed in the direction perpen-
dicular to the stretching,

δl ∝ u δl⊥ ∝
1

u
. (28)

Following the work by Renardy (1994) we can then seek a solution of A in terms of the
streamwise coordinates,

A = λuu + µ(uv + vu) + νvv, (29)

where

u = (u, v) v =

(

−
v

u2 + v2
,

u

u2 + v2

)

. (30)

Note that u · v = 0 and |v| = 1/|u|. We then substitute this construction into the upper
convective derivative of A assuming that the flow is steady. We now include the effects
of relaxation because they will be important in the boundary layer. After an excursion
through the land of linear algebra, we find three equations for the unknowns λ, µ and ν,

u · ∇λ = 2
γ̇

u2
µ−

1

τ

(

λ−
1

u2

)

, (31)

u · ∇µ =
γ̇

u2
ν −

1

τ
µ, (32)

u · ∇ν = −
1

τ

(

ν − u2
)

, (33)

where the last equation is decoupled from the first two. It is helpful to note that

γ̇ = v ·
(

∇u + ∇uT
)

· u = −u2∇ · v (34)

from which one can see that the terms that contain γ̇ in (31) and (32) come from the
(A · ∇u + (∇u)T ·A) terms in the upper convective derivative. For slow flows, the inertia-
like terms on the LHS are small, so the balance of the remaining terms gives,

ν ∼ u2 µ ∼ γτ λ ∼
1

u2
+

2γ2τ2

u2
. (35)

For fast flows, the RHS of (31–33) are approximately zero and therefore λ, µ and ν are
constants.

In the boundary layer we can seek a similarity solution in streamline coordinates for
the four unknown functions ψ, λ, µ and ν. Setting up this similarity solution is discussed
in depth in Rallison and Hinch, 2004. At the conclusion of the analysis, the similarity
function for ψ as we approach the outer limit of the boundary layer tends to ξ7/3 where ξ
is the non-dimensional parameter in the boundary layer. By matching the boundary layer
solution to the inner elastic core, we find

ψ = Cr
14

9 sin
7

3

(

2

3
θ

)

, (36)

where C is an arbitrary constant. Finite element simulations [7] have shown excellent
agreement with these results verifying that u ∼ r5/9 and σ ∼ r−2/3 as shown in figure 14.
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Figure 14: Finite element simulations of stress singularity at a sharp (270o) corner [7]. The
upper plot shows velocity as a function of distance from the corner in the elastic core while
the lower plot shows stress as a function of distance from the corner in the elastic core. The
lines are drawn for reference to the power law relationships.
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Figure 15: A filament being stretched.

4 Elastic stress saturation in a stretching filament

We will now look at the problem of rapid stretching of a filament of an elastic liquid, with
a large surface tension. The problem is motivated from the fiber spinning process, in which
fibers are drawn rapidly from droplets of viscoelastic liquids.

Let a(t) be the radius of the filament at time t (see figure 15). Also, let the strain rate
applied to the filament be E(t). Conservation of mass gives us

ȧ = −
1

2
E a (37)

Hoop stress due to surface tension (χ) has the effect of squeezing the filament. Thus,
with neglect of the viscous stresses and the elastic stress component, σrr, conservation of
momentum leads to

χ

a
= GAzz (38)

where A is the tensor describing the configuration of the microstructure and G is the elastic
modulus.

Due to the straining of the filament, the microstructure will get deformed with time.
Here we model the microstructure with an Oldroyd-B model, assuming large deformations
of the microstructure, and get

Ȧzz = 2EAzz −
1

τ
Azz

= (2E −
1

τ
)Azz, (39)

where τ is the relaxation time of the microstructure. Since the surface tension is resisting the
stretching of the filament, we need to find out the strain E required to stretch the filament.
The strain rate cannot be very large because that would break the filament. Equation of

momentum, Eq. 38, gives Azz ∝ 1

a . Using this and Eq. 37, we have Ȧzz

Azz
= − ȧ

a = 1

2
E. We

then look at Eq. 39 and solve to get E = 2

3

1

τ . Conservation of mass (Eq. 37) then gives
the variation of filament radius with time as:

a(t) = a(0) e−
t
3τ . (40)

The result we have obtained does not compare well with experiments, in the as is shown
in figure 16. The experiments were done using S1 fluid by Liang and Mackley [8] and the
solid theoretical curves are from the analysis carried out by Entov and Hinch [9] in which
they used a spectrum of relaxation times instead of the single relaxation time that we used in
our earlier derivation. When a spectrum of relaxation times is used for the microstructure,
the solution for the stretching and relaxation of stress is:
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Figure 16: Variation of the diameter of an S1 liquid filament (on y-axis) being stretched
with time (on x-axis). The dotted line is the theoretical result derived in Eq. 40.

Ai
zz =

1

a4(t)
e−t/τi , (41)

where the subscript i represents the relaxation mode.
Hence, the momentum equation becomes

χ

a
=

1

a4

∑

i

gi e
−t/τi . (42)

Then, the radius of the filament as a function of time is

a(t) =

(

G(t)

χ
)1/3

)

(43)

where G(t) =
∑

gi e
−t/τi is the material stress-relaxation function.

5 Oldroyd-B: Successes and Failures

The Oldroyd-B is one of the simplest and the most frequently used models for the mi-
crostructure. Its simplicity lies in the fact that it adds an elasticity G to the fluid and a
single relaxation time τ , over and above the Newtonian fluid viscosity, µ0. Although this
model has been successful in explaining some of the viscoelastic phenomena, it has been
found to perform poorly when the rate of deformation of the fluid is much larger than the
relaxation time of the microstructure.
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Figure 17: Extensional viscosity of an M-1 fluid depends on what device you use to measure
it.

Figure 17 demonstrates this problem quite vividly. This is a plot of measurements of
extensional viscosity of the same fluid (M1) but in different devices which are represented
by different curves labeled 1 through 8. Curve 1 is from an open siphon device, 2 is from
a spinline, 3, 7 & 8 are from a contraction flow device, 4 is from an opposing jet, 5 is from
a falling drop and 6 is from a falling blob. The other plots in figure 17 are details of some
of the measurements made. Notice the large scatter and disagreement in the curves. This
raises two questions. First, is extensional viscosity an appropriate quantity to be measured
for non-Newtonian fluids or should we be using some other measure for the influence of a
largely deformed microstructure on the flow, e.g. elastic constant? Second, will Oldroyd-B
be able to capture the effect of largely extended microstructures on the flow?

The answer to the first question is not clear at this time. Using the strain on the
microstructure to define the stress with the help of an elastic constant could be one way
of going about it. The answer to the second question is that Oldroyd-B fails to describes
these effects. For a contraction flow, while Oldroyd-B does predict a small initial decrease in
pressure drop, it fails to predict the large increase in pressure drop or the size of upstream
vortices seen at higher flow rates. In the case of a fluid flowing past sphere, it rightly
predicts the initial decrease in drag but again fails to predict the increase in force and large
wake lengths observed at higher flow rates. As a final example, Oldroyd-B gives us the
correct time scale for the deformation of capillary filament being stretched, but does not
predict any breakage of the filament at very high applied strain rates. From a numerical
perspective, the Oldroyd-B model runs into problems for high De, because it suggests that
the microstructure can keep stretching to infinite lengths as long as there exists a force to
deform it. Consequently, the extensional stresses become negative beyond a critical De.
This is obviously unrealistic and we are forced to conclude that more physics is required in
the constitutive equation than contained in Oldroyd-B.

The modification to the constitutive equation that has been successfully used and rather
swiftly accepted is FENE — Finitely Extensible Non-Linear Elastic microstructure. This
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Figure 18: The negative viscosity as predicted by Oldroyd-B and the FENE cure to that.

model limits the deformation to a certain length L and retains a large positive value for
extensional stresses at high De. It predicts a large pressure drop for strong contraction
flows, a large increase in drag for strong flows past a sphere and finally, breakage of the
capillary filament when drawn at a large strain rate. Also, for strongly extensional flows
in general, the FENE modification predicts µext � µshear. This dramatic anisotropy in
viscosity can be of direct consequence to polymer turbulent drag reduction.

In conclusion, we can say that we have begun to get some understanding of both the
strong and weak flows of elastic liquids. While the Oldroyd-B model is a good choice for
small De � 1 flows, the FENE model is a clear winner for high De � 1 flows. Thus
Non-Newtonian fluids have unique dynamical signatures that cannot be explained by the
superposition of viscous and elastic effects. A general theory for such fluids is still lacking
due to the diversity of materials and their characteristic flow behaviors.

Notes by Anshuman Roy and Andrew Thompson
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