
Lecture 8:

Instabilities

E. J. Hinch

A large class of fluids flows is never observed in practice even though they are exact
solutions to the equations of motion. This is because these flows are unstable to small
perturbations that are always present in the environment. Newtonian fluid flows support
a vast array of instabilities and it is not surprising that many of these instabilities persist
when the Newtonian fluid is replaced by a non-Newtonian fluid. Additionally, there are a
number of instabilities which are found only in non-Newtonian fluids.

In this lecture we survey six non-Newtonian flow instabilities. The first, the spinline
draw resonance, is an instability of a simple viscous fluid that can be modified by non-
Newtonian effects. Sections 2–4 deal with instabilities which depend on non-Newtonian
effects for their existence. In section 5, we examine the little understood phenomenon of
turbulent drag reduction in a dilute suspension of polymers. Finally, section 6 deals the
instabilities of a high speed elastic jet.

1 Spinline Draw Resonance

The manufacture of synthetic fabrics such as nylon and kevlar involves the drawing of
polymer melts into thin fibers on a spinline. The geometry of a simple spinline is shown
in figure 1. As the draw ratio—the ratio of the velocity of the spindle to the exit velocity
of the fluid—is increased, the spun fiber becomes thinner, so the spinning of extremely
thin fibers requires large draw ratios. If the draw ratio is increased beyond a critical value,
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Figure 1: Geometry of a spinline.
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the spinline draw resonance sets it. This instability, first described by Christensen [1] and
Miller [2], is characterized by sustained periodic oscillations in the cross-sectional area and
stress in the spinning polymer strand. While most fibers are spun from non-Newtonian
fluids, the spinline draw resonance occurs even in purely Newtonian fluids. We will consider
the simpler Newtonian instability first.

The geometry of a simple spinline is shown in figure 1. A steady state can be found
by assuming that the cross-sectional area a and velocity v are functions of the streamwise
coordinate y only. The continuity equation becomes a conservation equation for area,

∂

∂y
(av) = 0, (1)

while the momentum equation is a balance between the viscous force and the (constant)
tension T :

T

a
= σyy = 3µ

∂v

∂y
. (2)

The spinline has length L and boundary conditions

v(0) = V0

v(L) = V1.
(3)

The solution to equations (1)–(3) is

v(y) = V0 Dry/L (4)

a(y) =
TL

3µ ln Dr
Dr−y/L, (5)

where the Dr = V1/V0 is the draw ratio.
This simple solution is unstable if

Dr > 20.3.

Including additional processes can have a dramatic effect on this stability criterion. Inertia,
cooling (which increases viscosity), and elastic effects can push the critical draw ratio to
Dr ≈ 103. Surface tension and shear thinning, on the other hand, have a destabilizing
influence and can lower the stability threshold to Dr ≈ 3. The exact stability threshold in
an industrial application is set by a competition between these stabilizing and destabilizing
effects.

To understand the mechanism for this instability, imagine a perturbation which causes
a thinning of the thread near the spool (at y = L). Since the speed of the thread near
the spool is fixed, the mass flux onto the spool must decrease, which decreases the total
tension in the line. This low tension causes the velocity to decrease throughout the interior
of the line. The speed of the thread at the outflow point (at y = 0) is similarly fixed, so
the line must thicken near the outflow point to conserve mass (figure 2a). This thickened
section will eventually propagate down the line to the spool. Once it reaches the spool, the
increased mass flux onto the spool will increase the tension in the line, which causes the
line to thin at the outflow point (figure 2b).
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Figure 2: Mechanism for spinline draw resonance. (a) Thinning at the spool causes thick-
ening at the outflow point. (b) Thickening at the spool causes thinning at the outflow
point.
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Figure 3: Development of the buckling instability, after Spiegelberg and McKinley’s figure
10 [3]. The dash-dot curves represent streamlines.

The amplified feedback combined with the time delay caused by propagation feeds the
instability. Above the critical draw ratio, the perturbation can grow to finite size. The
system settles down into limit cycles, causing periodic oscillations in the thickness of the
spun fiber.

2 Buckling Instability

The ‘filament stretching device’ is a common experimental device for measuring extensional
properties of polymer solutions. In this device— which is described in detail in Lecture 2—a
small cylinder of fluid is held between two rigid circular plates which are suddenly separated
at a known rate. The extensional properties of the fluid are deduced by measuring the force
on the plates as a function of the known strain. In order to obtain a consistent rheological
measurement, the strain rate should be approximately constant throughout the extending
fluid column. The buckling instability, which occurs on the plates of the filament stretching
device, can seriously compromise the utility of the device unless measures are taken to
prevent it. This instability was first observed by Spiegelberg and McKinley [3].

Figure 3 illustrates the evolution of the buckling instability. In the initial stages of the
experiment, fluid is drained from the ’foot’ of the column to feed the extending column.
Eventually, the reservoir next to the column is depleted, at which time the foot begins to
break up into fibrils. These fibrils migrate to the outer edge of the plate and can themselves
develop secondary and tertiary instabilities.

The mechanism for this instability can be simply understood with the paradigm of
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tension in curved streamlines. As the reservoir at the foot of the column is drained, the
streamlines become increasingly more curved. Eventually, the tension in the streamlines
is so great it overwhelms the adhesive force holding the column to the plate. This causes
the center of the foot to detach from the plate, leaving the fibrils attached to the outer
edge. The final configuration has nearly straight streamlines and thus forms a configuration
which globally minimizes stored elastic energy. A mathematical investigation of the buckling
instability can be found in Kumar and Graham [4].

Recent filament stretching devices have incorporated plates that contract as the filament
is stretched. This modification stabilizes the foot of the column and allows consistent
measurements of the extensional properties of the fluid [3].

3 Purely Elastic Instability of Curved Streamlines

A common feature of visco-elastic fluids is that instabilities can occur even in the absence
of inertia. These are discussed at length in the review article [5]. Many of these occur in
situations where the streamlines are curved. Streamlines in shear flow are under tension. If
they are curved, this tension creates a hoop stress, which can lead to instabilities. The hoop
stress acts in a direction opposite to the centrifugal effects, and so the resulting instabilities
are clearly distinct from inertial effects.

The most famous example is the Taylor-Couette instability. In a Taylor-Couette device
(two concentric rotating cylinders with fluid between them), an instability arises at suffi-
ciently high flow rates. In a Newtonian fluid the instability occurs because of centrifugal

effects at sufficiently high Taylor number (the Taylor number 4
Ω1R2

1
−Ω2R2

2

R2

2
−R2

1

Ω1d4

µ2 is the ratio of

centrifugal force to viscous force), but in a non-Newtonian fluid an instability can occur at
negligible Taylor number (e.g., 10−8). The mechanism creating the instability is the hoop
stress generated by the flow which acts oppositely to the expected centrifugal force. This
instability was first observed and analyzed by [6, 7, 8]. Further experimental analysis was
done by [9] and by a number of other people. For a gap ratio of ε ≡ (R2 − R1)/R2, the
instability appears to happen when ε1/2Wi ≈ 8 (note that ε1/2Wi =

√
DeWi).

Numerics suggest that axisymmetric and non-axisymmetric modes can occur, and both
are observed in experiments. The instability occurs as a supercritical Hopf bifurcation.

Other flows with curved streamlines can be found in Taylor-Dean, plate-plate or cone
and plate geometries. This general class of instabilities has led to the concept of elastic

turbulence [10], a complicated time-dependent flow with negligible Reynolds number.

4 Instability of coextrusion

Even in flow with straight streamlines instabilities can occur in inertialess flow with elastic-
ity. In core-annular flow of two fluids down a pipe, differences in elastic properties can lead
to instability at zero Reynolds number. We consider a pipe with flow in the ẑ direction,
with one fluid at r < r0 and another at r0 < r < R. At the interface between the two fluids
σ · n must be continuous. If the elastic properties of the two fluids are different, there will
be a discontinuity of the σzz component because the two fluids have different first normal
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stress differences. However, since n has no component in the ẑ component, σ · n remains
continuous.

U

Fluid 2

Fluid 1

Fluid 1

(a) The unperturbed basic flow.

less elastic

more elastic

(b) Zooming in on a perturbed interface.
Because the fluids have different elastic-
ities, the interface moves to the right.

(c) A small core which is more elastic
than the outer fluid. Since the core
is small, the recirculation occurs in the
outer fluid and enhances the perturba-
tion to the interface

(d) A perturbation with a large core
which is more elastic than the outer fluid.
Here the recirculation occurs in the core
and opposes the perturbation to the in-
terface.

Figure 4: Mechanism of instability: The misalignment of the interface and the base flow cre-
ates a perturbation flow. Incompressibility forces the flow to recirculate. The recirculation
can either enhance or oppose the perturbation to the interface.

When there is a perturbation to the interface, n is no longer purely radial, so a secondary
flow across the interface must develop to keep σ · n continous. Physically the more elastic
fluid is pulling the less elastic fluid across the curved interface. The secondary flow must
have a recirculation by conservation of mass. If the inner fluid takes up a large fraction of
the pipe, the recirculation will take place inside the inner fluid. If it takes up a small fraction
of the pipe, the recirculation will take place inside the outer fluid. Thus the recirculation
will either enhance or stabilize the perturbation, depending on which fluid is more elastic.

This instability was first computed in the longwave limit by [11], and the mechanism
was explained by [12]. It was found that if the more elastic fluid occupied less than 32% of
the volume the flow would be unstable to long waves, regardless of whether the more elastic
fluid was in the core or the annulus.
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This instability has been studied in detail in her PhD thesis by Wilson [13]. It was further
found that when the discontinuity is smoothed out, the instability can be eliminated [14].

5 Turbulent Drag Reduction

It was noted during the second world war that the addition of a small amount of high
molecular weight polymers to gasoline dramatically reduced the effective turbulent viscosity
of the flow. Since then it has been shown that drag reduction of a turbulent flow is a general
feature of dilute solutions of long polymers. Though it is potentially of extreme industrial
value, a detailed explanation of this phenomenon remains elusive. However, a general
framework for understanding this effect has emerged.

The action of the polymers is primarily to modify turbulent behavior near the walls.
There, wall eddies are formed which transport momentum into the fluid interior which exerts
a drag on the flow. The polymer’s high resistance to extension makes these eddies wider
and less frequent and, consequently, less efficient in transporting momentum away from the
walls. Cross-stream fluctuations are suppressed relative to their Newtonian values while
alongstream fluctuations are actually enhanced. The traditional explanation for turbulent
drag reduction—that the addition of polymers reduces the turbulent intensity of the flow—
cannot hold since the turbulent intensity in the bulk of the fluid is unaffected by the presence
of polymers. (This explanation follows that in [15].) Figure 5 shows numerical simulations
of the effect of polymers on the mean flow and near-wall velocity fluctuations.

Figure 5: Numerical simulations of turbulence using Newtonian and two different FENE
rheologies, from [15]. Left: Mean flow velocity in the log-layer near the wall. Right: RMS
velocity fluctuations near the wall. The wall coordinate y+ ≡ νy/ν0 where ν0 is the viscosity
of fluid and ν is the effictive viscosity.
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6 Instability of a High Speed Elastic Jet

We now look at an instability which happens at high Reynolds number and high Weissenberg
number. We consider a high speed submerged elastic jet [16, 17]. It is well known that a high
extensional viscosity helps prevent an elastic jet from breaking up into spray, so elasticity
helps stabilize that instability. However, other instabilities can arise. We follow [17] to
consider the effect of elasticity using an Oldroyd-B model.

6.1 Governing Equations

The equations of motion are

∇ · U = 0

ρ
DU

Dt
= −∇P + µ∇2

U + G∇ · A
5

A = −1

τ
(A − I)

The basic state has flow in only the x direction. It is steady and rectilinear, so DA

Dt = 0. We
get

U = (U(y, z), 0, 0)

A =





1 + 2τ2(U2
y + U2

z ) τUy τUz

τUy 1 0
τUz 0 1



 .

We now make the assumption that the Reynolds number is large, ρUL
µ+Gτ � 1, and that the

Weissenberg number is large as well, Uτ
L � 1.

6.2 Linearization

The problem is linearized with lower case letters denoting the perturbation quantities. We
denote the components of the perturbed velocity by u = (u, v, w). The linearized equations
are

ux + vy + wz = 0

ρ[ut + Uux + vUy + wUz] = −px + G[a11,x + a12,x + a13,z]

ρ[vt + Uvx] = −py + Ga12,x

ρ[wt + Uwx] = −pz + Ga13,x

a11,t + Ua11,x + vA11,y + wA11,t = 2A11ux + 2a12Uy + 2a13Uz

a12,t + Ua12,x = A11vx

a13,t + Ua13,x = A11wx

and we seek a solution proportional to eiα(x−ct) where the wavenumber α is real and the
growth rate is αc.
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We can make progress using different coordinates. We change to streamline displace-
ments. We let η denote the y-displacement of a material particle from its equilibrium
position and ζ denote its z-displacement. Then Dη

Dt = v to first order, but we can express
Dη
Dt to first order as

Dη

Dt
= ηt + (U · ∇)η

= ηt + (U
∂

∂x
)η

= iα(U − c)η

so v = iα(U − c)η. A similar analysis can be done for ζ. By incompressibility

u = −ηUy − ζUz − (U − c)(ηy + ζz)

and

a12 = iαηA11

a13 = iαζA11

a11 = −2A11(ηy + ζz) − (ηA11,y + ζA11,z).

We use these to arrive at

iα[ρ(U − c)2 − GA11](ηy + ζz) = iαp

[ρ(U − c)2 − GA11]α
2η = py

[ρ(U − c)2 − GA11]α
2ζ = pz.

In planar flow we set ζ = 0 and η = −φ/(U − c) to arrive at an elastic Rayleigh equation

d

dy

(

[ρ(U − c)2 − GA11]
d

dy

φ

U − c

)

= α2[ρ(U − c)2 − GA11]
φ

U − c
.

This can be expressed in a self-adjoint form, giving a semi-circle theorem [18] which states
that the complex wave speed c must lie within a circle centered on (Umax + Umin)/2 with
radius (Umax − Umin)/2.

We assume that the time-scale of the instability is much less than vorticity diffusion,
stress relaxation and shear wave propogation.

6.3 Two-dimensional jet

We consider a two dimensional jet where

U(y) =

{

U0

(

1 − y2

b2

)

|y| ≤ b

0 |y| > b

GA11 =

{

8Gτ2U2

0
y2

b4
|y| ≤ b

0 |y| > b
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We define the elasticity number

E =
GA11

ρU2
=

Gτ2

ρb2

which, remarkably, is independent of the flow rate. Outside the jet we have a potential flow

p = e∓αy

η = ∓e∓αy

αc2

We look for sinuous and varicose modes to see the effect of the elasticity parameter E
on the growth rates.
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(a) The growth rate of the
instability as a function of
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with E equaling 0, 0.0025,
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E increases.
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(b) The growth rate of
the instability as a func-
tion of k for varicose dis-
turbances with E equaling
0, 0.0025, 0.01 and 0.05.
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(c) The maximum growth
rate of the 2D jet as
a function of the elsatic-
ity for the sinuous mode
(continuous curve) and
the varicose mode (dashed
curve). The dotted curves
are asymptotic results for
long waves.

Figure 6: Growth rates — Elasticity stabilizes both instabilities. For small (nonzero) E,
there appears to be an elastic wave mode at large wavenumber.

As the elasticity approaches 0, there is an unstable mode with moderate growth rate
at large α. As E decreases further, the value of α increases. This instability is localized
close to the interface, and depends on the discontinuity in shear rates. As the discontinuity
in shear rates leads to a jump in normal stresses, this may be similar to the coextrusion
instability in origin.

6.4 Conclusions

The elasticity has a stabilizing effect. For a two-dimensional jet, the sinuous mode is no
longer unstable when E ≥ 0.2. The varicose mode remains unstable as E increases, but the
maximum growth rate decays to 0.
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For an axisymmetric jet, it was shown by Batchelor and Gill [19] that the Newtonian case
is stable to varicose perturbations. Adding a small amount of elasticity allows the emergence
of an unstable mode for large α. However, as the elasticity increases, this unstable mode is
damped and stabilized at E = 0.228. The sinuous mode is stabilized at E = 0.3756.

Notes by Joel C. Miller and Christopher L. Wolfe
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