
Lecture 5: Microstructural studies

E. J. Hinch

1 Introduction

These two lectures will describe attempts to derive constitutive equations from “first princi-
ples.” A large separation of length scales between the flow and the microstructure allows us
to approximate the bulk properties of the fluid by averaging over the small scales. We begin
by considering microstructure in a Newtonian solvent: first spheres, then other shapes, and
finally their deformations and interactions. Moving beyond this approach, we also consider
models for isolated or entangled polymers.

2 Separation of length scales

A typical length scale characterizing microstructure is l ∼ 1 µm, while the macroscopic
length scale, the scale on which the flow varies, is a few orders of magnitude large, e.g.,
L ∼ 1 cm. The micro scale is large enough that the continuum approximation is valid (it
works well down to about 10 nm). However, even though the length scales are separated,
the time scales are comparable. Thus, we will use only space-averages (or maybe ensemble
averages) but not time-averages. Another assumption is that the microscopic Reynolds
number is small:

Rel =
ργ̇l2

µ
� 1.

Without this assumption it is possible to have macroscopic boundary layers smaller than the
microscopic length scale. Note that the macroscopic Reynolds number ReL = (ργ̇L2)/µ can
be large or small. If ReL is very large, then the macroscopic length scale (e.g. in boundary
layers) can be comparable to the microscopic length scale and the desired separation of
scales breaks down.

Our general approach to this two-scale problem has two steps. First we compute the
effect of the flow on the microstructure; this is difficult and requires approximations or
models. We will delay the discussion of this procedure in detail to the following sections.
Once that problem is solved, we can extract the constitutive relation by averaging, which
we discuss presently.

There are several ways to do this averaging. One choice, not employed here, is ensemble
averaging. Another technique that we will not discuss further is homogenization; this uses
asymptotic analysis to achieve the same result. Here we will use volume averaging with a
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representative volume V between the micro and macro scales, l � V 1/3 � L. Averaging
the momentum equation and neglecting micro Reynolds stresses we get

ρ

[

∂u

∂t
+ u · ∇u

]

= ∇ · σ + F , (1)

where · denotes averaging over V . The stress tensor in the presence of particles in a
Newtonian fluid is given by

σ = −pδ + 2µE + σ
+, (2)

where σ+ is the stress inside the particles, µ is the viscosity of the solvent, E is the rate of
strain tensor and p is the pressure. The averages of the latter three quantities are unchanged
by the microstructure up to leading order in the small parameter l/L, i.e., p = p + O(l/L),
etc. Note that for general microstructure we cannot compute σ+ but it varies on the micro
scales. The average of σ+ is

σ+ =
1

V

∫

V
σ

+dV = n

〈
∫

P
σ

+dV

〉

, (3)

where n is the number density of particles,
∫

P ·dV is the integral over a particle and < · >
is the average over types of particles if needed. If the particles are considered to be rigid,
the strain e inside the particle is zero. Neglecting the pressure and micro-gravity, we see
that

σ+
ij = ∂k(σ

+
ikxj) − xj∂kσ

+
ik = ∂k(σ

+
ikxj), (4)

where x = (x1, x2, x3) are the space-coordinates. Then the volume integral over the particle
reduces to a integral over the surface S:

∫

P
σ

+dV =

∮

S
σ

+ · n̂ x dA. (5)

Thus, we need to know only the stress on the surface of the particle.

3 Suspension of Rigid Spheres

The simplest case of a microstructure is that of a dilute suspension of inert, rigid spheres.
This highly idealized case was studied originally by Einstein in 1906, although his method
involved subtracting two divergent integrals to get the right answer! The problem is to
solve the Stokes flow around a sphere of radius a with prescribed linear flow far away. We
also require that there be no net force and couple. The governing equations are

∇ · u = 0 (6)

0 = −∇p + µ∇2u (7)

for r > a with boundary conditions

u = V + ω × x, on r = a, (8)

u = U + x · ∇U, r → ∞, (9)
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where U + x · ∇U is the prescribed flow at infinity, ω is the vorticity and V the velocity
on the surface of the particle, to be determined using the force- and couple-free conditions

F =

∮

r=a
σ · ndA = 0 (10)

G =

∮

r=a
x × σ · ndA = 0. (11)

We split ∇U into symmetric strain rate E and antisymmetric vorticity Ω, i.e.,

x · ∇U = x · E + Ω × x.

The conditions (10)-(11) imply that the particle translates with the mean flow V = U and
rotates with the mean vorticity ω = Ω. The flow field and the pressure field is

u = U + Ω × x + E · x − E · x
a5

r5
−

5

2r2
x · E · x

(

a3

r3
−

a5

r5

)

x (12)

p = −5µa3(x · Ex)/r5. (13)

Evaluating the stress on the surface of the particle

σ · n|r=a =
5

2

µ

a
E · x (14)

and integrating
∮

σ · ndA = 5µE ·
4π

3
a3 (15)

gives an average stress

σ = −pδ + 2µE + 5µEϕ = −pδ + 2µ∗E (16)

where ϕ = 4πna3/3 is the fraction of volume occupied by the spheres and

µ∗ = µ

(

1 +
5

2
ϕ

)

is the Einstein viscosity due to the presence of the spheres in the liquid. This result does
not depend on the type of flow or the size of individual particles, only their volume fraction.

4 Suspension of Rigid Spheroids

Now consider a dilute suspension of rigid particles that are not spherical. The next simplest
class of particles are spheroids which are ellipsoids with semi-axes a, b and b. The aspect
ratio of the spheroid is r = a/b. For r > 1, this is a prolate spheroid with the two equal
axes being shorter than the unique axis, while for r < 1 this is an oblate spheroid with the
two equal axes being longer. As in the previous section, in order to determine the effect
of these particles on the flow, we will determine the stress contribution of one particle and
then average over the number of particles per unit volume to get the macroscopic stress
contribution.
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A B C

r → ∞ r2

2(ln 2r−3/2)
6 ln 2r−11

r2 2

r → 0 10
3πr − 8

3πr
8

3πr

Table 1: Material constants A, B and C for suspensions of rigid spheroids.

Considering Stokes flow around a spheroid we are lead to an evolution equation for a
unit vector p in the direction of the axis of symmetry

ṗ = Ω × p +
r2 − 1

r2 + 1
[E · p − p (p · E · p)]

where (̇) is the material time derivative of () and Ω is the vorticity of the flow at infinity. The
solution of Stokes flow around a spheroid was obtained by Oberbeck in 1876 [1]. For a given
p we can integrate the stress around the boundary of the particle and get an expression for
the macroscopic stress due to a volume fraction ϕ of spheroids

σ = −pδ + 2µE + 2µϕ [A (p · E · p)pp + B (pp · E + E · pp) + CE]

with A, B, and C constants depending only on the shape of the particles. For the limits of
slender rods and flat disks the values of A, B and C are given in table 1.

In a simple extensional flow, rod-like particles will align with the stretching direction
of the flow, the orientation that maximizes dissipation. For disk-like particles the axis of
symmetry will align with the compression direction which is also the orientation of that
shape that maximizes the dissipation of the flow. For rods and disks (the limits r → ∞
and r → 0) we can compute from this flow an effective extensional viscosity for dilute
suspensions. If ϕ � 1 and r � 1 then

µ∗
ext = µ

(

1 + ϕ
r2

3(ln 2r − 3/2)

)

and if we substitute the definition of ϕ = 4πnab2/3 where n is the number of particles per
unit volume then we get

µ∗
ext = µ

(

1 +
4πna3

9(ln 2r − 3/2)

)

which is the same viscosity that we would get from a suspension of rigid spheres of radius a,
apart from a factor that varies only logarithmically in r. Since a is the largest dimension of
the spheroid, this explains why very small concentrations of polymers which are very long
can have large effects on the characteristics of the flow. In the case of disks rather than
rods

µ∗
ext = µ

(

1 + ϕ
10

3πr

)

= µ

(

1 +
10nb3

a

)

.

In a simple shear flow, these spheroidal particles do not approach a steady state, but
instead tumble in the flow, spending some time aligned with the flow and then flipping
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relatively quickly to the opposite orientation again aligned with the flow. The effective
shear viscosities can be computed for rods,

µ∗
shear = µ

(

1 + ϕ
8

25

r

ln r

)

,

and for disks,

µ∗
shear = µ

(

1 + ϕ
31

10

)

,

where the exact effective shear viscosities depend on the distribution of all of the particles
in the flow over all of the possible tumbling orbits. Even this very simple model of rigid,
asymmetric particles can explain a situation where µ∗

shear � µ∗
ext that is typical of many

non-Newtonian fluids (for Newtonian fluids µext = 3µshear ). We also see that there are
three measures of concentration for the rods:

ϕr2 = na3 for µ∗
ext,

ϕr = na2b for µ∗
shear,

ϕ = nab2 for permeability.

One feature of non-Newtonian fluids that cannot be explained by these simple models is
the relaxation of the fluid back to a basic state over a particular time-scale. One way to add
this feature of relaxation to this model is to allow the rods and disks to execute Brownian
motion on a particular time-scale, 1/6Drot given by

Drot = kT
(

8πµa3
)−1

for spheres,

Drot = kT

(

8πµa3

3(ln 2r − 3/2)

)−1

for rods

and Drot = kT
(

8µb3/3
)−1

, for disks.

Then instead of writing down an evolution equation for the orientation vector p, we write
down the Fokker-Planck equation for the probability density P(p, t)

∂P

∂t
+ ∇ · (ṗP) = Drot∇

2P

where ṗ is as before from the deterministic model. Then we can compute an average stress
by averaging not only over all of the particles in a volume, but also over the distribution P.
If we write 〈·〉 =

∫

|p|=1 ·Pdp then the average stress due to rigid spheroids is

σ = −pI + 2µE + 2µϕ [AE : 〈pppp〉 + B (E · 〈pp〉 + 〈pp〉 · E) + CE + FDrot〈pp〉] ,

where there is now a new material constant F for the entropic stress (F = 3r2/(ln 2r−1/2)
for rods, F = 12/(πr) for disks). The equations for 〈pp〉 and 〈pppp〉 involve even higher
order moments leading to an infinity hierarchy of equations. Different closures can be used
to solve this problem. Some commonly used closures assume 〈pppp〉 to be a function of
〈pp〉.

Notes by Neil Burrell and Amit Apte
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