
Lecture1: Introduction

E. J. Hinch

Non-Newtonian uids occur commonly in our world. These uids, such as toothpaste,
saliva, oils, mud and lava, exhibit a number of behaviors that are di�eren t from Newtonian
uids and have a number of additional material properties. In general, these di�erences
arise becausethe uid has a microstructure that inuences the o w. In section 2, we will
present a collection of someof the interesting phenomenaarising from o w nonlinearities,
the inhibition of stretching, elastic e�ects and normal stresses.In section 3 we will discuss
a variety of devicesfor measuringmaterial properties, a processknown as rheometry.

1 Fluid Mec hanical Preliminaries

The equations of motion for an incompressible uid of unit density are (for details and
derivation seeany text on uid mechanics, e.g. [1])

@u
@t

+ (u � r ) u = r � S + F (1)

r � u = 0 (2)

whereu is the velocity, S is the total stresstensor and F are the body forces. It is customary
to divide the total stressinto an isotropic part and a deviatoric part as in

S = � pI + � (3)

where tr � = 0. These equations are closedonly if we can relate the deviatoric stress to
the velocity �eld (the pressure�eld satis�es the incompressibility condition). It is common
to look for local models where the stressdepends only on the local gradients of the o w:
� = � (E) where E is the rate of strain tensor

E =
1
2

�
r u + r uT �

; (4)

the symmetric part of the the velocity gradient tensor.
The trace-free requirement on � and the physical requirement of symmetry � = � T

means that there are only 5 independent components of the deviatoric stress: 3 shear
stresses(the o�-diagonal elements) and 2 normal stressdi�erences (the diagonal elements
constrained to sum to 0). Thesetwo normal stressdi�erences are

N1 = � xx � � yy (5)

N2 = � zz � � yy : (6)
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Throughout this seriesof noteswe will frequently refer to two model o w types: Simple
shear and Uni-axial extension. In simple shearthe velocity pro�le is u = _ (y; 0; 0) where _
is the shear rate. The rate of strain tensor in this caseis

E =

0

@
0 _ 0
_ 0 0
0 0 0

1

A :

For uni-axial extension,u = _� (x; � y=2; � z=2) with rate of strain tensor

E = _�

0

@
1 0 0
0 � 1=2 0
0 0 � 1=2

1

A ;

where _� is the magnitude of the strain. Note that _ and _� are both scalars,whereasE is a
tensor.

2 Phenomena

2.1 Non-linear Flo w

In the simple example of o w down a pipe at low Reynolds numbers, the o w rate in
Newtonian uids increaseslinearly with the applied pressure drop (see �gure 1). Any
uids which deviate from this relation are then non-Newtonian. Theseuids can be further
classi�ed depending on how this relation changes,relative to the Newtonian example. Shear
thinning uids become less viscous with increasing shear rates and so have larger than
linear growth with pressure-dropin the o w rate. The microstructures of such materials
are smashedup at higher shear. This results in lower viscosities,hencethe uid o ws more
easily. Shear thickening uids becomemore viscous with increasing shear rate and hence
have less than linear o w rates. Shear thickening behavior is lesscommon and generally
arises in uids that have a highly regular microstructure at rest. When the uid begins
to move, the microstructural components jam against each other, thickening the uid thus
preventing movement. Finally there are yield uids for which there is no o w below a
certain critical pressuredrop. Somecommon yield uids are ketchup, toothpaste, silicate-
rich lava and mud. The viscousproperties of all of these uids are strongly dependent on
temperature and pressure.

2.2 Inhibition of Stretc hing

Another phenomenonassociated with somenon-Newtonian uids is a dramatic resistance
to stretching of uid elements comparedto Newtonian uids. Typically, the force required
to stretch the uid is � 1000 times greater than that required to shear it. Measurements
of the extensional viscosity, the resistanceof the uid to stretching motions, show large
variations in behavior depending on the type of o w (see�gure 2).

The high extensional viscositiespresent in these uids give rise to a multitude of con-
sequences.Bubbles rising in these uids form cuspsat the downstream end, thus avoiding
the large stretching o w out of a rear stagnation point (see �gure 3). A similar e�ect in
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Figure 1: Flow rate as a function of pressuredrop for o w down a pipe.

jets inhibits the ejection of spray. The formation of droplets is a highly straining event that
occurs at the pinching o� of a parcel of uid. In a uid containing a few parts per million
of high molecular weight polymers, this e�ect is inhibited by the high extensionalviscosity
(see�gure 4). This lack of spray formation could provide a bene�cial e�ect for �re hoses
and in aircraft fuel by preventing potentially explosive mists of droplets from forming.

The inhibition of stretching by high extensionalviscositiesis also thought to be impor-
tant in the processof turbulent drag reduction. Addition of very small amounts of high
molecular weight polymers to turbulent uid o ws can dramatically reduce the amount of
drag in pipe o ws. Drag reductions of 50% are possiblewith polymer concentrations of 10
parts per million (ppm) and as much as an order of magnitude reduction with concentra-
tions of only 500ppm. This reduction is not well understood and is a much-debated issue
in current research. One hypothesis is as follows: drag in turbulent o ws is largely due to
turbulent bursting events which transport low momentum uid from near the walls into the
interior of the pipe. Thesebursts are highly straining o ws and soare lessfrequent with the
addition of polymers and the attendant increasein extensional viscosity. Such reductions
in drag can be critical for oil pipelines (the trans-Alaskan pipeline) and ancient municipal
sewer systems. (In Bristol, so great was the drag reduction after a rainfall that a hydro-
dynamic shock wave was formed in the sewer system and propagated down the network
blowing o� manhole covers as it passed.)

Conversely, non-Newtonian e�ects can be detrimental for some industrial processes,
for example through the formation of upstream vortices (see section 6 from Lecture 3).
Consider o w from a reservoir out a hole: as seenin �gure 5, Newtonian uids o w toward
the hole from the entire reservoir while non-Newtonian uids can form recirculating vortices
upstream. Theseupstream vortices are industrially important in the processingof polymers
becauseuid that stays in the tank for longer can be signi�cantly degraded (e.g. by a
longer exposureto heating), and hencecan lead to the production of inconsistent materials.
Theseupstream vortices are causedby high extensional viscosity in the following way: the
stretching of uid elements is proportional to the width of the conethrough which uid o ws
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Figure 2: Extensional viscosity measurements for the M1 Boger uid from (1) open siphon,
(2) spinline, (3) contraction o w, (4) opposing jets, (5) falling drop, (6) falling bob, (7)
contraction o w, (8) contraction o w [from [2]].

into the hole. For non-Newtonian uids shear is preferential to stretching and a narrower
coneof extensional o w forms at the cost of recirculating vortices ([3]). On the other hand,
for Newtonian uids the coneof uid o wing out through the hole �lls the entire container.

2.3 Elastic E�ects

Many non-Newtonian uids are called visco-elasticbecausethey exhibit a variety of elastic
e�ects in which straining of the uid can store energy. A dramatic example is shown in
�gure 6 which shows the cutting of visco-elasticliquid as it is poured. The lower portion of
the uid falls as expected, however the upper portion rebounds upward into the container
from which it is being poured. Another interesting e�ect is the open (tub eless)siphon,
in which uid is drawn up over the wall of the upper container by elastic forces from the
descendinguid (see�gure 7). Finally in o w out of an ori�ce, non-Newtonian uids show
an expansion of the stream of uid known as die swell (see �gure 8). This expansion is
causedby the releaseof elastic energy stored in the uid as it is stretched in the outlet
tube. This tension causesa vertical rebounds after the uid leavesthe tube and becauseof
incompressibility the stream must expand in the transversedirection.

2.4 Normal Stress E�ects

Our �nal category of non-Newtonian e�ects contains those causedby stressesnormal to
shear o w. These e�ects can be viewed as being due to tension in the streamlines of the
o w. For example, there can be dramatic e�ects on the distribution of particles in shear
o ws. In simple shear there is aggregationof particles. The tension present in the curved
streamlines surrounding two particles produces a net force on the particles that pushes
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Figure 3: Photographs of air bubles in (a) a newtonian uid (b-c) a non-newtonian uid
(front and side view). Notice the asymmetry.

Figure 4: Photograph of high-speed jets for pure water and 200 ppm polyethyleneoxide in
water.

5



Figure 5: Streamlines of o w out a hole for (a) glycerin, De = 0 and (b-e) i for 1.67%
aqueouspolyacrylamide solution, De = 0:2, 1, 3 and 8.

Figure 6: Alumin um soapsolution cut in midstream

Figure 7: Schematic of the open-siphone�ect
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Figure 8: Schematic of the die swell e�ect for Newtonian and non-Newtonian uids

them together (�gure 9) with a cumulativ e e�ect as shown in �gure 10. A similar e�ect
is the migration of particles to the center of a pipe. The parabolic velocity pro�le gives a
non-uniform shear that is higher near the walls of the pipe than in the center. This makes
the tension in the streamlinesgreater near the wall and thus appliesa net forcewhich causes
particles to migrate towards the center as in �gure 11.

tension in streamlines
resultant force

Figure 9: Balance of forcesfor two particles in a simple shear.

A �nal example of the e�ect of normal stressesis that of a spinning rod in a bath of
uid. For low rates of rotation, a Newtonian uid will have a at (or slightly depressed)free
surface. For comparable rates of rotation in the non-Newtonian uid, we seean upwards
deection in the free surface, which is higher in the center (see section 4 from Lecture
3). The shear causedby the rotating rod createstension in the circular streamlines. This
\ho op" stressbalancesthe hydrostatic pressureof a column of uid above it, allowing the
uid to \clim b" the rod as in �gure 12.
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Figure 10: Particle aggregationin shearedpolymer solution [after [4]].
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Figure 11: Migration of particles to centerline in a non-Newtonian pipe o w.

3 Rheometry

Rheometry is the study of material properties of uids including shear viscosities, exten-
sional viscosities and normal stressesas well as the dependenceof those properties on
temperature and pressure. In this section we discussthe de�nitions of theseproperties and
the mechanismsusedto measurethem.

3.1 Simple Shear Devices

There are many ways to generatea shear o w in the laboratory that allow us to measure
uid properties. One of the simplest is shown in �gure 13. The uid lies between two
parallel plates with the top plate free to move under an applied force and the bottom plate
held �xed. This method works for uids, such as heavy tars, which are su�cien tly viscous
so they do not o w out of the sides. The top plate is draggedat constant velocity v across
the uid and feels a force F . The area of the plates is A and their separation is h. The
shearrate acrossthe layer is

_ =
v
h

:
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Figure 12: A photograph of the rod climbing e�ect. The deviceconsistedof a rod immersed
in the lower, darker uid. As the rod is rotated, normal stressescausea uid column to
rise near the rod.

Possiblevalues of this shear rate range from _ � 10� 5 s� 1 for �ne particles sedimenting,
_ � 101 s� 1 for food being chewed and as high as _ � 107 s in lubrication shear o ws. The
tangential shearstressis

� xy =
F
A

;

and the shearviscosity � is given by the ratio of thesetwo quantities,

� =
� xy

_
=

F h
Av

:

Typical valuesof � for non-Newtonian uids arequite large, for examplepolymer melts have
� � 103 Pas and molten glasshas � � 1012 Pas (for water � = 10� 3 Pas). Shear-thinning
materials often have approximate power law dependencewith shearviscosity as a function
of shear rate, that is

� ( _ ) = k _ n� 1; for n < 1: (7)

For molten polymers n � 0:6, toothpaste has n � 0:3 and greasehas n � 0:1.
A variety of other devicesexist for measuringshearviscositiesand theseare summarized

below (�gure 14). The capillary tube rheometer is usedfor measurements on low viscosity
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Figure 13: Device for measuringsimple shear

liquids with high shear rates. The Couette device is used for o ws which have very low
Reynolds numbers and so does not su�er from any inertial instabilit y. However, a defect
of thesetwo devicesis that the shear rate is not uniform throughout the devicehenceit is
not clear what value of _ is being measured. The cone-and-platerheometer is designedso
that the shear rate is independent of position for small angles� � 2� (�gure 14). Sample
rheometric data are shown in �gure 15. The plateau at low shear rates, with power law
behavior above a critical value is characteristic of non-Newtonian uids (seesection 3.7).

3.2 Normal Stresses

The normal stresses(the �rst normal stressdue conceptually to the tension in the stream-
lines) can be measuredusing the cone-and-platedevice described earlier. Tension in the
streamlines producesan axial thrust pushing the cone and plate apart with a force which
can be measured(see�gure 14). With the samedevice, the secondnormal stresscan be
found by measuring the distribution of pressureover the surfaceof the coneor, if the �rst
normal stressis known, it can be computed from the axial thrust on two rotating parallel
plates. A �nal apparatus for measuringthe secondnormal stressis Tanner's tilted trough,
in which non-Newtonian uid o ws down an inclined trough. The free surface is curved
due to the inuence of the secondnormal stressand this bowing can be measuredwith an
optical device.

3.3 Oscillatory Rheometry

Rheometersof the parallel plate and cone-and-platevarieties often have the capability to do
small amplitude oscillatory shear tests. These tests involve the application of a sinusoidal
stress (or strain) to the upper plate or cone of the rheometer. The resulting strain (or
stress)can be resolved into components that are in phasewith the input (elastic response)
and �

2 out of phasewith the input (viscousresponse). From thesedata a complex modulus,
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Figure 14: Illustration of devicesfor measuring shear viscosities. The vertical scalein the
cone-and-plateillustration is exaggerated.
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Figure 15: Dependenceof viscosity on shear rate for two polymer solutions (� and �) and
an aluminum soapsolution (� ). All data were taken at 298K.
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G� , is determined as a function of frequency.

G� = G0+ iG 00; (8)

where G0 (storage modulus) and G00(loss modulus) give information on energystorageand
energydissipation in the o w, respectively. For a perfectly elastic solid, G00= 0 and G0 = G,
the elastic modulus. For a Newtonian uid, G0 = 0 and � = G00

! , where ! is the frequency.

3.4 Extensional Viscosit y

For the uni-axial extensional o w, we can de�ne the extensional viscosity as,

� ext =
� xx � 1

2 � yy � 1
2 � zz

3_�
; (9)

where � xx , � yy and � zz are the diagonal components of the stress tensor. Unfortunately,
in the laboratory this steady straining o w cannot be maintained inde�nitely . An approxi-
mation to this o w is the spinline experiment (�gure 16) where, at every point in the o w,
there is onestraining direction, in this casethe x-direction, and two contracting directions.
(for further details seesection 7 from Lecture 3 and 1 frpm Lecture 8). Using a similar
approximation to that usedin section3.1 we can compute an averagestressby dividing the
tension T by the areaA and an averageshearfrom the velocity gradient r u � (v2 � v1)=L.
Then the extensional viscosity is given by

� ext �
TL

A(v2 � v1)
: (10)

Other devicesto measureextensionalviscosity include the �lamen t stretching rheometerand
the Moscow rheometer. The �lamen t stretching rheometerworks by placing a uid between
two plates which are pulled apart rapidly (2 m within a second)at a constant strain rate and
the applied force on the bottom plate is measured. The Moscow rheometer allows surface
tension to squeezea �lamen t of uid and measuresthe rate of thinning. The \W orthington
jet" could also be used as a possible method to measurethe inhibition of stretching: a
solid sphereis dropped into a uid, as it breaks the surfacea cavit y forms and the �lling
of this cavit y creates an upwards jet. In non-Newtonian uids the extensional viscosity
retards the motion of the drop and the rebound of the surface[5]. Theory to describe the
correlation between the maximum height of this jet and the extensional viscosity has yet
to be developed. Other devicesto measureextensional viscosity include o w betweenfour
rollers or opposedjets, �lm blowing and Meissner's�lm on an expanding squaregrid.

3.5 Temp erature, concentration and molecular weight scaling

Material properties depend on a variety of parameters, including the concentration and
molecular weights of the polymers and also temperature. Using an appropriate choice of
non-dimensionalparametersthe data may be collapsedto give a power-law dependencefor
viscosity asa function of shearrate. Figure 17 shows a plot of the non-dimensionalreduced
viscocity and reducedshearrate, which are de�ned as
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Figure 16: Spinline apparatus for measuringextensional viscosity

� r = � ( _ ; T)
� (0; T� )
� (0; T)

; (11)

_ r = _
� (0; T)
� (0; T� )

T� � �

T�
; (12)

where T� and � � are a referencetemperature and density, respectively. Similarly, �gure
18 shows a plot of dimensionlessviscosity against dimensionlessshear rate for a seriesof
solutions with di�eren t concentrations of polymers. Figure 19 shows the power law depen-
denceof viscosity on molecular weight. In the dilute regime, (lower molecular weights) the
dependenceis linear and in the entangled regime(higher molecular weights) the viscosity is
proportional to the molecular weight to the (empirically determined) 3.4 power. The signif-
icanceof thesescalingsis that the rheological properties can be determined at a reference
condition and then extrapolated to other conditions.

3.6 Cox-Merz rule

The Cox-Merz rule is an empirical rule which states that the dependenceof the steady
shearviscosity on the shear rate can be estimated from the dynamic viscocity (seesection
3.3) as a function of frequency as the two curves are approximately identical (�gure 20).
This has important practical applications as it is easierto acquire data over a wide range
of oscillation frequencies.We force a uid periodically with frequency ! so that the strain
 (t) =  ei! t and write the resulting stressas

� (t) = G� (! ) (t) =
�
G0+ iG 00�  ei! t ;

where G� is a complex elastic modulus. We can also write

� (t) = � � _ (t) =
�
� 0+ i� 00� i!  ei! t

for a complex viscosity � � . The Cox-Merz rule states that � = j� � j and N1 = 2G0.

3.7 Non-dimensional Parameters

All materials have a relaxation time � , the time required to return to its basestate after
being perturb ed, for instance by stretching. This timescale can be seenin �gure 3 as the
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Figure 17: Dimensionlessviscosity and �rst normal stressdi�erence plotted against dimen-
sionlessshearrate for a variety of temperatures.
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Figure 18: Dimensionlessviscosity plotted against dimensionlessshear rate for a seriesof
solutions with di�eren t solution concentrations.

reciprocal of the shearrate at which the graph of viscosity versusshearrate beginsto turn
over. In non-Newtonian uid o w the ratio of the timescalesof deformation and relaxation
is important. Two important non-dimensional parameters that expressthis quantit y are
the Weissenberg number and the Deborah number. The Weissenberg number is a measure
of the strength of the shearrate and is de�ned by

Wi = _ � :

The Deborah number is the ratio of the characteristic time-scaleof the o w to the relaxation
time,

De =
U�
L

:

Note that the Deborah and Weissenberg numbers are often the same(but not always) and
either can be used to quantify the importance of relaxation in the uid. For De � 1 the
material relaxes relatively quickly and it behaves like a viscous uid. Conversely, when
De � 1 the uid doesnot relax on the timescaleof the o w and soacts like an elastic solid.

Notes by Neil Burr ell and Julia Mul larney
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Figure 19: Viscosity versusmolecular weight for a variety of polymers.
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Figure 20: Illustration of the Cox-Merz rule. The curvescompareproperties under steady
shear to their oscillating equivalents.
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