Lecturel: Introduction

E. J. Hinch

Non-Newtonian uids occur commonly in our world. These uids, suc astoothpaste,
saliva, oils, mud and lava, exhibit a number of behaviors that are di erent from Newtonian
uids and have a number of additional material properties. In general, these di erences
arise becausethe uid has a microstructure that in uences the ow. In section 2, we will
preser a collection of someof the interesting phenomenaarising from o w nonlinearities,
the inhibition of stretching, elastic e ects and normal stresses.In section 3 we will discuss
a variety of devicesfor measuring material properties, a processknown as rheometry.

1 Fluid Mechanical Preliminaries

The equations of motion for an incompressible uid of unit density are (for details and
derivation seeany text on uid medanics, e.g. [1])

@+(ur)u=r S+F (1)

@
r u=0 (2)

whereu is the velocity, S is the total stresstensorand F arethe body forces. It is customary
to divide the total stressinto an isotropic part and a deviatoric part asin

S= p+ 3)

wheretr = 0. These equations are closedonly if we can relate the deviatoric stressto

the velocity eld (the pressure eld satis es the incompressibility condition). It is common

to look for local models where the stressdependsonly on the local gradients of the o w:
= (E) whereE is the rate of strain tensor

1
Ezéru+ruT; (4)

the symmetric part of the the velocity gradient tensor.

The trace-free requiremert on  and the physical requiremert of symmetry = T
means that there are only 5 independert componerts of the deviatoric stress: 3 shear
stresses(the o -diagonal elemernis) and 2 normal stressdi erences (the diagonal elemeris
constrainedto sumto 0). Thesetwo normal stressdi erences are

N1i= xx yy %)
No= 4 yy- (6)



Throughout this seriesof noteswe will frequertly referto two model ow types: Simple
shar and Uni-axial extension In simple shearthe velocity prole isu = _(y;0;0) where _
is the shear rate. The rate of strain tensor in this caseis

0 1
0O _ 0
E=@ 0 0A:
0 00O
For uni-axial extension,u = (x; y=2; z=2) with rate of strain tensor
0 1
1 0 0
E= @0 1=2 o0 A;
0O O 1=2

where _is the magnitude of the strain. Note that _and _are both scalars,whereasE is a
tensor.

2 Phenomena

2.1 Non-linear Flow

In the simple example of ow down a pipe at low Reynolds numbers, the ow rate in
Newtonian uids increaseslinearly with the applied pressuredrop (see gure 1). Any
uids which deviate from this relation are then non-Newtonian. These uids can be further
classi ed depending on how this relation changes,relative to the Newtonian example. Sher
thinning uids becomeless viscous with increasing shear rates and so have larger than
linear growth with pressure-dropin the ow rate. The microstructures of such materials
are smashedup at higher shear. This results in lower viscosities,hencethe uid o ws more
easily Shear thickening uids becomemore viscouswith increasing shear rate and hence
have lessthan linear ow rates. Shear thickening behavior is lesscommon and generally
arisesin uids that have a highly regular microstructure at rest. When the uid begins
to move, the microstructural componerts jam against ead other, thickening the uid thus
preventing movemert. Finally there are yield uids for which there is no ow below a
certain critical pressuredrop. Somecommonyield uids are ketchup, toothpaste, silicate-
rich lava and mud. The viscousproperties of all of these uids are strongly dependent on
temperature and pressure.

2.2 Inhibition of Stretc hing

Another phenomenonassaiated with somenon-Newtonian uids is a dramatic resistance
to stretching of uid elemers comparedto Newtonian uids. Typically, the force required
to stretch the uid is 1000times greater than that required to shearit. Measuremerts
of the extensional viscosity, the resistanceof the uid to stretching motions, show large
variations in behavior depending on the type of ow (see gure 2).

The high extensional viscositiespreser in these uids give rise to a multitude of con-
sequencesBubblesrising in these uids form cuspsat the downstream end, thus avoiding
the large stretching ow out of a rear stagnation point (see gure 3). A similar e ect in
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Figure 1: Flow rate asa function of pressuredrop for ow down a pipe.

jets inhibits the ejection of spray. The formation of droplets is a highly straining event that

occurs at the pinching o of a parcel of uid. In a uid containing a few parts per million

of high molecular weight polymers, this e ect is inhibited by the high extensional viscosity

(see gure 4). This lack of spray formation could provide a bene cial e ect for re hoses
and in aircraft fuel by preventing potentially explosive mists of droplets from forming.

The inhibition of stretching by high extensionalviscositiesis also thought to be impor-
tant in the processof turbulent drag reduction. Addition of very small amounts of high
molecular weight polymers to turbulent uid o ws can dramatically reducethe amount of
drag in pipe ows. Drag reductions of 50% are possiblewith polymer concerrations of 10
parts per million (ppm) and as much as an order of magnitude reduction with concerira-
tions of only 500ppm. This reduction is not well understood and is a much-debated issue
in current researt). One hypothesisis as follows: drag in turbulent owsis largely due to
turbulent bursting everts which transport low momertum uid from near the walls into the
interior of the pipe. Thesebursts are highly straining o ws and soare lessfrequert with the
addition of polymers and the attendant increasein extensional viscosity. Suc reductions
in drag can be critical for oil pipelines (the trans-Alaskan pipeline) and anciert municipal
sever systems. (In Bristol, so great was the drag reduction after a rainfall that a hydro-
dynamic shock wave was formed in the sewer system and propagated down the network
blowing o manhole coversasit passed.)

Conversely non-Newtonian e ects can be detrimental for some industrial processes,
for example through the formation of upstream vortices (see section 6 from Lecture 3).
Consider o w from a resenwoir out a hole: asseenin gure 5, Newtonian uids o w toward
the hole from the ertire resenoir while non-Newtonian uids canform recirculating vortices
upstream. Theseupstream vortices are industrially important in the processingof polymers
because uid that stays in the tank for longer can be signi cantly degraded(e.g. by a
longer exposureto heating), and hencecan lead to the production of inconsistert materials.
Theseupstream vortices are causedby high extensionalviscosity in the following way: the
stretching of uid elemers is proportional to the width of the conethrough which uid ows
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Figure 2: Extensional viscosity measuremets for the M1 Boger uid from (1) open siphon,
(2) spinline, (3) cortraction ow, (4) opposing jets, (5) falling drop, (6) falling bob, (7)
cortraction ow, (8) contraction ow [from [2]].

into the hole. For non-Newtonian uids shearis preferertial to stretching and a narrower
coneof extensional o w forms at the cost of recirculating vortices ([3]). On the other hand,
for Newtonian uids the coneof uid o wing out through the hole lls the entire container.

2.3 Elastic E ects

Many non-Newtonian uids are called visco-elasticbecausethey exhibit a variety of elastic
e ects in which straining of the uid can store energy A dramatic example is shown in
gure 6 which shaws the cutting of visco-elasticliquid asit is poured. The lower portion of
the uid falls as expected, however the upper portion rebounds upward into the container
from which it is being poured. Another interesting e ect is the open (tub eless)siphon,
in which uid is drawn up over the wall of the upper container by elastic forcesfrom the
descending uid (see gure 7). Finally in ow out of an ori ce, non-Newtonian uids shaw
an expansion of the stream of uid known as die swel (see gure 8). This expansionis
causedby the releaseof elastic energy stored in the uid asit is stretched in the outlet
tube. This tension causesa vertical rebounds after the uid leavesthe tube and becauseof
incompressibility the stream must expand in the transversedirection.

2.4 Normal Stress E ects

Our nal category of non-Newtonian e ects cortains those causedby stressesnormal to
shear ow. These e ects can be viewed as being due to tension in the streamlines of the
ow. For example, there can be dramatic e ects on the distribution of particles in shear
ows. In simple shearthere is aggregation of particles. The tension presert in the curved
streamlines surrounding two particles produces a net force on the particles that pushes
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Figure 3: Photographs of air bublesin (a) a newtonian uid (b-c) a non-newtonian uid
(front and side view). Notice the asymmetry.

Figure 4: Photograph of high-speed jets for pure water and 200 ppm polyethylenexide in
water.



Figure 5: Streamlines of ow out a hole for (a) glycerin, De = 0 and (b-e) i for 1.67%
agueouspolyacrylamide solution, De= 0:2, 1, 3 and 8.

Figure 6. Aluminum soap solution cut in midstream

Figure 7. Schematic of the open-siphone ect
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Figure 8: Sthematic of the die swell e ect for Newtonian and non-Newtonian uids

them together (gure 9) with a cumulative e ect as showvn in gure 10. A similar e ect

is the migration of particles to the certer of a pipe. The parabolic velocity pro le givesa
non-uniform shearthat is higher near the walls of the pipe than in the certer. This makes
the tensionin the streamlinesgreater near the wall and thus appliesa net force which causes
particles to migrate towards the certer asin gure 11.

___-tension in streamlines
— resultant force

Figure 9: Balance of forcesfor two particles in a simple shear.

A nal example of the e ect of normal stressesis that of a spinning rod in a bath of
uid. For low rates of rotation, a Newtonian uid will havea at (or slightly depressed)ree
surface. For comparable rates of rotation in the non-Newtonian uid, we seean upwards
de ection in the free surface, which is higher in the certer (see section 4 from Lecture
3). The shearcausedby the rotating rod createstension in the circular streamlines. This
\ho op" stressbalancesthe hydrostatic pressureof a column of uid above it, allowing the
uid to \clim b" the rod asin gure 12.
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Figure 10: Particle aggregationin shearedpolymer solution [after [4]].
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Figure 11: Migration of particles to certerline in a non-Newtonian pipe o w.

3 Rheometry

Rheometry is the study of material properties of uids including shear viscosities, exten-
sional viscosities and normal stressesas well as the dependenceof those properties on
temperature and pressure.In this sectionwe discussthe de nitions of theseproperties and
the medcanismsusedto measurethem.

3.1 Simple Shear Devices

There are many ways to generatea shear ow in the laboratory that allow us to measure
uid properties. One of the simplest is shavn in gure 13. The uid lies betweentwo
parallel plates with the top plate freeto move under an applied force and the bottom plate
held xed. This method works for uids, sud asheavy tars, which are su cien tly viscous
sothey do not ow out of the sides. The top plate is draggedat constart velocity v across
the uid and feelsa force F. The area of the plates is A and their separationis h. The

shearrate acrossthe layer is v



Figure 12: A photograph of the rod climbing e ect. The deviceconsistedof a rod immersed
in the lower, darker uid. As the rod is rotated, normal stressescausea uid column to
rise near the rod.

Possible values of this shearrate range from _ 10 °s ! for ne particles sedimening,
_10's 1 for food being chewed and as high as _ 10 s in lubrication shear ows. The
tangertial shearstressis
F
Xy — K;
and the shearviscosity is given by the ratio of thesetwo quartities,
Xy _ F h .

===
Typical valuesof for non-Newtonian uids are quite large, for examplepolymer melts have
10° Pas and molten glasshas 10'2Pas (for water = 10 3Pas). Shear-thinning
materials often have approximate power law dependencewith shearviscosity as a function

of shearrate, that is
()=k "% forn< 1: (7)

For molten polymersn 0.6, toothpaste hasn  0:3 and greasehasn  0:1.
A variety of other devicesexist for measuringshearviscositiesand theseare summarized
below (gure 14). The capillary tube rheometeris usedfor measuremets on low viscosity
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Figure 13: Device for measuring simple shear

Fixed plate

liquids with high shearrates. The Couette device is used for ows which have very low
Reynolds numbers and so does not su er from any inertial instability. Howewer, a defect
of thesetwo devicesis that the shearrate is not uniform throughout the device henceit is
not clear what value of _is being measured. The cone-and-platerheometeris designedso
that the shearrate is independert of position for small angles 2 (gure 14). Sample
rheometric data are shovn in gure 15. The plateau at low shear rates, with power law
behavior above a critical value is characteristic of non-Newtonian uids (seesection 3.7).

3.2 Normal Stresses

The normal stresseg(the rst normal stressdue conceptually to the tension in the stream-
lines) can be measuredusing the cone-and-plate device described earlier. Tensionin the
streamlines producesan axial thrust pushing the cone and plate apart with a force which
can be measured(see gure 14). With the samedevice, the secondnormal stresscan be
found by measuringthe distribution of pressureover the surfaceof the coneor, if the rst
normal stressis known, it can be computed from the axial thrust on two rotating parallel
plates. A nal apparatus for measuringthe secondnormal stressis Tanner'stilted trough,
in which non-Newtonian uid ows down an inclined trough. The free surfaceis curved
due to the in uence of the secondnormal stressand this bowing can be measuredwith an
optical device.

3.3 Oscillatory Rheometry

Rheometersof the parallel plate and cone-and-platevarieties often have the capability to do
small amplitude oscillatory sheartests. Thesetests involve the application of a sinusoidal
stress (or strain) to the upper plate or cone of the rheometer. The resulting strain (or
stress) can be resolved into componerts that are in phasewith the input (elastic response)
and 5 out of phasewith the input (viscousresponse). From thesedata a complex modulus,
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Figure 14: lllustration of devicesfor measuring shear viscosities. The vertical scalein the
cone-and-plateillustration is exaggerated.
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Figure 15: Dependenceof viscosity on shearrate for two polymer solutions ( and ) and
an aluminum soapsolution ( ). All data weretaken at 298K.
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G , is determined as a function of frequency
G = G+ iG® (8)

where G° (storage modulus) and G®(loss modulus) give information on energy storageand
energydissipation in the ow, respectively. For a perfectly elastic solid, G%= 0and G°= G,
the elastic modulus. For a Newtonian uid, G%= 0and = C;‘— where! is the frequency
3.4 Extensional Viscosity

For the uni-axial extensional o w, we can de ne the extensional viscosity as,

XX 1 l ¥4
ext = 2 3yy 2 2, (9)

where », yy and ;; are the diagonal componerts of the stresstensor. Unfortunately,
in the laboratory this steady straining ow cannot be maintained inde nitely . An approxi-
mation to this ow is the spinline experiment (gure 16) where, at every point in the ow,
there is one straining direction, in this casethe x-direction, and two cortracting directions.
(for further details seesection 7 from Lecture 3 and 1 frpm Lecture 8). Using a similar
approximation to that usedin section 3.1 we can compute an averagestressby dividing the
tension T by the areaA and an averageshearfrom the velocity gradient r u  (v2  vi)=L.
Then the extensional viscosity is given by

TL

A(v2  vy) : (10)

ext
Other devicesto measureextensionalviscosity include the lament stretching rheometerand
the Moscow rheometer. The lament stretching rheometerworks by placing a uid between
two plates which are pulled apart rapidly (2 m within a second)at a constart strain rate and
the applied force on the bottom plate is measured. The Moscowv rheometer allows surface
tension to squeezea lament of uid and measuresthe rate of thinning. The \W orthington
jet" could also be used as a possible method to measurethe inhibition of stretching: a
solid sphereis dropped into a uid, asit breaksthe surfacea cavity forms and the lling
of this cavity createsan upwards jet. In non-Newtonian uids the extensional viscosity
retards the motion of the drop and the rebound of the surface[5]. Theory to describe the
correlation betweenthe maximum height of this jet and the extensional viscosity has yet
to be deweloped. Other devicesto measureextensional viscosity include ow between four
rollers or opposedjets, Im blowing and Meissner's Im on an expanding squaregrid.

3.5 Temperature, concentration and molecular weight scaling

Material properties depend on a variety of parameters, including the concernration and
molecular weights of the polymers and also temperature. Using an appropriate choice of
non-dimensionalparametersthe data may be collapsedto give a power-law dependencefor
viscosity asa function of shearrate. Figure 17 shows a plot of the non-dimensionalreduced
viscocity and reduced shearrate, which are de ned as
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Figure 16: Spinline apparatus for measuring extensional viscosity

(= (ST) 7((%;;)): (11)
- _@©enT |
T T T 2

where T and are a referencetemperature and density, respectively. Similarly, gure

18 shaws a plot of dimensionlessviscosity against dimensionlessshear rate for a seriesof
solutions with di erent concerirations of polymers. Figure 19 shows the power law depen-
denceof viscosity on molecular weight. In the dilute regime, (lower molecular weights) the

dependenceis linear and in the entangled regime (higher molecular weights) the viscosity is
proportional to the molecular weight to the (empirically determined) 3.4 power. The signif-
icance of these scalingsis that the rheological properties can be determined at a reference
condition and then extrapolated to other conditions.

3.6 Cox-Merz rule

The Cox-Merz rule is an empirical rule which states that the dependenceof the steady

shearviscosity on the shearrate can be estimated from the dynamic viscocity (seesection

3.3) as a function of frequency as the two curves are approximately identical (gure 20).

This hasimportant practical applications asit is easierto acquire data over a wide range

of oscillation frequencies.We force a uid periodically with frequency! sothat the strain
(t) = €'t and write the resulting stressas

=G () ()= G+ic® &'}
where G is a complex elastic modulus. We can also write
M= (= O+i % €'

for a complexviscosity . The Cox-Merz rule statesthat =j jand Ny = 2G°

3.7 Non-dimensional Parameters

All materials have a relaxation time , the time required to return to its basestate after
being perturb ed, for instance by stretching. This timescale can be seenin gure 3 asthe
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Figure 18: Dimensionlessviscosity plotted against dimensionlessshear rate for a seriesof
solutions with di erent solution concerrations.

reciprocal of the shearrate at which the graph of viscosity versusshearrate beginsto turn

over. In non-Newtonian uid ow the ratio of the timescalesof deformation and relaxation

is important. Two important non-dimensional parameters that expressthis quantity are
the Weissemerg number and the Deborah number. The Weisseberg number is a measure
of the strength of the shearrate and is de ned hy

The Deborah number is the ratio of the characteristic time-scaleof the o w to the relaxation
time,

Note that the Deborah and Weisselberg numbers are often the same(but not always) and
either can be usedto quantify the importance of relaxation in the uid. For De 1 the
material relaxesrelatively quickly and it behaves like a viscous uid. Conversely when
De 1the uid doesnot relax on the timescaleof the ow and soacts like an elastic solid.

Notes by Neil Burrell and Julia Mullarney
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Figure 20: lllustration of the Cox-Merz rule. The curvescompare properties under steady
shearto their oscillating equivalerts.
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