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Abstract
We investigated the short-period variations in vertical fluxes of hydrothermal plumes at mid-ocean ridges through quantita-
tive analysis of digital video images of plumes using the particle image velocimetry method. The analyzed digital video 
images of hydrothermal plumes were selected from the V Vent and Biotransect Vent at the fast-spreading East Pacific Rise, 
the Grotto Mound of the Endeavour Segment at the intermediate fast-spreading Juan de Fuca Ridge, and the TAG vent at the 
slow-spreading Northern Mid-Atlantic Ridge. The PIV was able to track the motion of turbulent parcels instead of individual 
particles within a hydrothermal plume. The mean plume vertical flux was shown to increase with increasing height above the 
vent orifice, revealing significant turbulent disperse of the rising hydrothermal plumes. The dominant periods of oscillation 
in the mean vertical flux were observed to be within a relatively narrow band width of 0.5–5 s despite diverse geological 
settings. Such pervasive short-period variations in plume flux are hypothesized to be caused by the pressure-drop oscillation 
within a network of compressible two-phase fluid within a sub-seafloor hydrothermal source zone. It is further argued that 
both the period and amplitude of plume flux oscillation might increase with decreasing plume vertical flux. The relatively 
narrow band width of the observed oscillation periods might reflect common characteristics in the plume dynamics despite 
diverse geological settings.

Keywords Mid-ocean ridge · Hydrothermal plume · Vertical flux · Entrainment coefficient · Short-period oscillation · 
Pressure-drop oscillation

Introduction

Seafloor hydrothermal systems play a key role in the transfer 
of heat and chemicals from the Earth’s lithosphere to the 
oceans (Kadko 1993; Elderfield and Schultz 1996; Baker 
2007). It was proposed that as much as 34% of the Earth’s 
global heat flux might be transferred through the seafloor 
via hydrothermal venting (Stein and Stein 1994; Elderfield 
and Schultz 1996; German and Von Damm 2006). However, 
hydrothermal vents show dramatic variability at regional and 
local scales; thus, it is important to quantify the fluxes of 
hydrothermal plumes at individual vents.

Two main methods have been employed to estimate 
hydrothermal plume velocities and vertical fluxes. In the 
first method, i.e., the invasive method, devices are used to 
directly measure plume velocities but the physical contact 
of a device with the plume might interfere with the venting 
processes. For example, turbine flow meters were deployed 
at the hydrothermal vents at the East Pacific Rise (EPR) 
and the Juan de Fuca Ridge (JdFR) to estimate plume 
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flow velocities (Converse et al. 1984; Ginster et al. 1994; 
Germanovich et al. 2015). In the second method, i.e., the 
non-invasive method, devices have no physical contact 
with the plume and thus do not interfere with the venting 
processes; as a result, this method has been widely used. 
For example, the acoustic Doppler velocimetry (ADV) was 
used to measure plume velocities and fluxes (Jackson et al. 
2003; Xu and Di Iorio 2012; Xu et al. 2013, 2014). Moreo-
ver, video image frames were analyzed to investigate tidal 
oscillations of hydrothermal plumes (Corliss et al. 1979; 
Macdonald et al. 1980; Rona and Trivett 1992; Ramond-
enc et al. 2006; Crone et al. 2008, 2010; Mittelstaedt et al. 
2010, 2012, 2016; Escartín et al. 2013).

Over the past decades, a large number of studies have 
observed significant variations in flow rates, venting tem-
peratures, chemical compositions, bottom pressures, and 
microseismicities at different hydrothermal systems over 
a broad range of time scales, ranging from a few days to a 
few months, and even up to years (e.g., Little et al. 1988; 
Schultz et al. 1996; Tivey et al. 2002; Scheirer et al. 2006; 
Larson et al. 2007, 2009; Crone et al. 2010; Xu et al. 2013, 
2017; Barreyre et al. 2014; Mittelstaedt et al. 2016). For 
example, it was hypothesized that the observed tidal oscil-
lations in a hydrothermal system were caused either by 
the tide-driven bottom currents (Little et al. 1988; Tivey 
et al. 2002) or by the poroelastic response of crustal fluids 
to seafloor tidal loading (e.g., Larson et al. 2007, 2009; 
Barreyre et al. 2014; Barreyre and Sohn 2016; Xu et al. 
2017). The bottom pressure at the TAG hydrothermal field 
on the Mid-Atlantic Ridge (MAR) at 26°N was measured 
to vary at periods of 22–53.2 min, indicating a nonlinear 
relationship between the pore fluid pressure and crustal 
permeability (Sohn et al. 2009). However, measurements 
using the same technique did not detect similar short-
period signals at the EPR 9°50′ (Carbotte et al. 2004). In 
contrast, Sohn et al. (1995) observed microseismicity with 
distinct periods of 0.07–0.3 s at the southern Juan de Fuca 
Ridge (JdFR) and postulated that this microseismicity 
was caused by transient pressure and hydraulic fracturing 
within the hydrothermal system. Black smoker hydrother-
mal vents could produce numerous narrowband tones at 
periods ranging 0.004–0.1 s (Crone et al. 2006). However, 
plume oscillations at period range of a few seconds have 
rarely been investigated.

In this study, we applied a non-invasive measurement 
technique—the particle image velocimetry (PIV)—to ana-
lyze videos of hydrothermal plumes at multiple mid-ocean 
ridge settings. We first analyzed the plume velocity fields 
and near steady-state features and then quantified the tem-
poral variations in vertical fluxes of plumes. The results 
revealed the predominant, significant temporal variations at 
periods of 0.5–5 s at all studied vents. The pressure-drop 
oscillations in seafloor hydrothermal systems were proposed 

to explain the observed short-period oscillations in plume 
vertical fluxes.

Data

Digital videos of hydrothermal plumes were selected at 
the fast-spreading East Pacific Rise (EPR), the intermedi-
ate-spreading Juan de Fuca Ridge (JdFR), and the slow-
spreading Northern Mid-Atlantic Ridge (NMAR) (Fig. 1a). 
These digital videos were archived at the Data Library and 
Archives of the Woods Hole Oceanographic Institution 
(WHOI). At the EPR (Fig. 1b), videos of the plumes at the 
V Vent (Fig. 2a) were recorded during the Alvin Dive 3760 
in 2002. The average spatial scale is 2.06 mm/pixel, which 
was estimated using the reference length scale of the sub-
mersible temperature probe. Videos of the plumes at the 
Biotransect Vent (Fig. 2b) were recorded during the Alvin 
Dive 3769 in 2002. At the JdFR (Fig. 1c), the video of the 
hydrothermal plume at the Grotto mound of the Endeavour 
Segment (Fig. 2c) was recorded by ROV Jason in 2015; the 
video was obtained online at the Ocean Networks Canada 
(http://www.ocean netwo rks.ca). The average spatial scale is 
0.52 mm/pixel, which was estimated using the 10 cm-spac-
ing laser dots hitting on the plume. At the NMAR (Fig. 1d), 
two videos of the hydrothermal plumes at the TAG Vent 
were selected: One video was recorded during the Alvin Dive 
3895 in 2003, in which two plumes were clearly observed 
(Fig. 2d). The other video was recorded at an unknown date 
(Fig. 2e). In this study, the plume at the V Vent was marked 
as Plume A (Fig. 2a), the plume at the Biotransect Vent 
was marked as Plume B (Fig. 2b), the plume at the Grotto 
mound of the Endeavour Segment was marked as Plume 
C (Fig. 2c), and the three individual plumes at the TAG 
Vent were marked as Plumes D, E (Fig. 2d) and F (Fig. 2e), 
respectively.

All the video clips were transferred to digital data, archiv-
ing at a frame rate of 1/29.97 s between consecutive frames. 
Each video clip was selected to cover a recorded duration 
of 10–20 s, during which the submersible vehicle that took 
the video remained mostly immobile. In each video, the vent 
orifice was clearly visible, with the plume spanning approxi-
mately 500–1000 pixels above the orifice (Fig. 2).

Methods

Image processing

The image processing of each video clip consisted of three 
steps. First, each video clip was decomposed into a series of 
still color RGB image frames. In this step, the digital video 
clips were read by the Matlab function VideoReader, which 

http://www.oceannetworks.ca
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creates an object containing all the video data. The video 
data were then converted into consecutive color RGB images 
at a frame rate of 1/29.97 s between consecutive frames 
using the Matlab function imwrite. For each investigated 
site, we typically obtained an image sequence of 300–600 
still images. Next, the color RGB images were converted 
into grayscale images using the Matlab function rgb2gray. 
Finally, contrast of the grayscale frames was enhanced by 
using the contrast-limited adaptive histogram equalization 
method and the Matlab function adapthisteq (Zuiderveld 
1994) to highlight the zones of flowing fluid.

Particle image velocimetry (PIV)

The particle image velocimetry (PIV) method has been com-
monly used in the study of fluid dynamics including buoy-
ant plumes (Prasad 2000; Adrian 2005; Pham et al. 2005; 
Westerweel et al. 2013; Zhang et al. 2017). Here, we applied 
the PIV method to analyze in-situ video image sequences of 
hydrothermal plumes to retrieve quantitative information on 
plume velocity fields. PIV tracks the motion of tracer parti-
cles in a flow field over a small time interval and calculates 
the instantaneous flow velocity field using a spatial cross-
correlation method (Prasad 2000). Hydrothermal plumes 

are embedded with precipitated particles, fluid parcels, and 
smoke billows owing to plume interactions with the ambient 
seawater (Fig. 2). In this study, we used these distinctly vis-
ible features as tracers to estimate the hydrothermal plume 
flow.

In our study, we used a multi-pass PIV method with suc-
cessively decreasing interrogation window sizes (http://
www.lavis ion.de/en/produ cts/davis .php) and calculated 
the velocities of turbulent fluid parcels from the time series 
images of hydrothermal plumes. The interrogation window 
sizes of the initial and final step were 64 × 64 pixels and 
32 × 32 pixels, respectively, with an overlap of 50%.

Results

Characteristics of hydrothermal plumes

Turbulent parcels

Turbulent fluid parcels of different scales were clearly vis-
ible within rising plumes (Fig. 2). The outlines of turbulent 
parcels within the V Vent plumes at the EPR show that the 
radii of these turbulent parcels ranged from tens to hundreds 

Fig. 1  a Location map of the 
study areas. b Detailed map for 
a section of the fast-spreading 
East Pacific Rise (EPR). The red 
stars mark the locations of the V 
Vent and the Biotransect Vent. 
c Detailed map of the Juan de 
Fuca Ridge (JdFR), which has 
an intermediate-spreading rate. 
The red star marks the location 
of the Main Endeavour Field. 
d Detailed map of a section of 
the slow-spreading Northern 
Mid-Atlantic Ridge (NMAR). 
The red star makes the location 
of the TAG Vent −120˚
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of pixels (Fig. 2a). Through coalescing with adjacent parcels 
and interacting with the ambient water column, scales of 
these turbulent parcels changed rapidly. Turbulent parcels 
with apparent high fluxes were observed to occur periodi-
cally within all six studied plumes (Online supplementary 
material—video clips of six studied plumes). Moreover, 
Plumes A, B and F are more vigorous than Plumes C, D and 
E as viewed from the video clips (Fig. 2).

Plume width

The cross-sectional dimension of a near-bottom hydrother-
mal plume was observed to increase 3–9 times within an 
upwelling distance of hundreds of pixels (Fig. 2), indicating 
rapid entrainment of the ambient fluids into the rising plume.

Other features

Two originally separated plumes were observed to merge 
at about 150 pixels (30 cm) above the vent orifice (Fig. 2a). 
A rising plume was also observed to spread laterally at 
about 250 pixels above the vent orifice (Fig. 2e).

Velocity field

Instantaneous velocity field

In this study, the instantaneous velocity fields calculated 
by the PIV revealed the apparent motion of turbulent par-
cels instead of individual particles (Fig. 3). The outlines of 
these velocity fields agreed well with the plume bounda-
ries, which were identified by the higher concentration 
of optically visible particles relative to the background. 
The detailed turbulent structures of plumes cannot be seen 
clearly from these velocity fields. Due to lateral spreading, 

Fig. 2  Video images of six 
hydrothermal plumes (Plumes 
A–F) at different mid-ocean 
ridges. The red boxes show 
the areas in which the parti-
cle image velocimetry (PIV) 
method was applied. a Image 
captured from the video of the 
V Vent located at the EPR. 
The white dotted ellipses mark 
the boundaries of a subset of 
identifiable turbulent parcels. b 
Image captured from the video 
of the Biotransect Vent located 
at the EPR. c Image captured 
from the video of the Main 
Endeavour Field located at the 
JdFR. d, e Images captured of 
three plumes from the videos 
of the TAG Vent located at the 
NMAR
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a considerable horizontal component was observed in the 
instantaneous velocity field of Plume F (Fig. 3f).

Mean vertical velocity field

The temporally averaged mean vertical velocity field 
reached its maximum speed at the plume centerline, gradu-
ally reduced to almost zero at the plume boundary, and 
completely vanished outside the plume (Fig. 4). Because 
of the edge effects at the image boundaries or the printed 

labels in the upper part of images tending to smear the 
image intensities (Fig. 2), the mean vertical velocities 
at the top of image frames were cut off to zero (Fig. 4). 
However, lateral spreading also contributed to decreasing 
the mean vertical velocity at the top of image frames of 
Plume F (Fig. 4f). For Plume C, the mean vertical veloc-
ity reached its maximum at the plume boundary (Fig. 4c) 
as the turbulent parcels were only observed clearly at the 
plume edge (Fig. 2c).

Fig. 3  Instantaneous veloc-
ity fields of the hydrothermal 
plumes (Plumes A–E) calcu-
lated by the PIV method
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Entrainment coefficient

The horizontal profiles of the mean vertical velocity w(x, z) 
and mean particle concentration (x, z) at any given height z are 
assumed to be self-similar and therefore can be represented by 
Gaussian curves (Morton et al. 1956; Turner 1986):

(1)w(x, z) = wc(z)e
−

x2

bw
2

where wc(z) and c(z) are the mean vertical velocity and mean 
particle concentration at the plume centerline, respectively. 
The radial scale b(z) is the distance from the plume center-
line to the point where the mean plume vertical velocity or 
the mean particle concentration reduces to 1/e of that at the 

(2)(x, z)=c(z)e
−

x2

b2

Fig. 4  Mean vertical veloc-
ity field of the hydrothermal 
plumes (Plumes A–E). For 
Plume C, the mean vertical 
velocity reaches its maximum at 
the plume’s boundary because 
the turbulent parcels are only 
clearly visible at the plume’s 
boundary (Fig. 2c). The dashed 
line delimits the area where 
the vertical flux and the power 
spectrum density are estimated  

 

0 200 400
0

100

200

300

 

 

0 200 400
0

100

200

300

 

 

0 200 400 600
0

300

600

900

 

 

0 100 200 300
0

200

400

Z 
(p

ixe
l)

 

0

200

X (pixel)

 

 

0 200 400 600
0

200

400

a b

c d

e f

0 40

0 15

0 40

0 20

0 20
0 40

pixel/s

Plume Plume BPlume B

Plume DPlume D

Plume FPlume F

Plume CPlume C

Plume EPlume E

Plume AA

X (pixel)
0 100 200



Marine Geophysical Research 

1 3

plume centerline at a given height z. The variable b can be 
inverted by a linear fitting function of z:

For hydrothermal plumes (Morton et al. 1956; Turner 
1986), the coefficient c can be written as follows:

where α is the Gaussian entrainment coefficient, which can 
be defined as the ratio between the mean inflow velocity at 
the edge of the plume and the mean vertical velocity at the 
centerline of the plume (Morton et al. 1956; Turner 1986).

The horizontal profiles of the mean vertical velocity over 
a certain height range agree well with the fitted Gaussian 
curves (Fig. 5). In general, the radial scale b, which char-
acterizes the plume width, increases with increasing height 

(3)b = cz + b0

(4)c =
6

5
�

above the vent orifice and can be fitted into a linear func-
tion of z (Fig. 6). However, for the mean vertical velocity 
profiles, the height variations of the plume width b have 
relatively large misfits for Plumes C and F (light pink dot-
ted line in Fig. 6c, f, respectively). The entrainment coef-
ficients αw estimated for Plumes A–F are 0.21, 0.32, 0.21, 
0.16, 0.16, and 0.31, respectively (Table 1). These entrain-
ment coefficients (0.16–0.32) exceed the range of Gauss-
ian entrainment coefficients (0.07–0.12) that were derived 
for buoyant plumes by previous experiments (Papanicolaou 
and List 1988; Wang and Law 2002; Zhang et al. 2017) and 
numerical simulations (Jiang and Breier 2014).

We also used the horizontal profiles of the mean image 
intensity to estimate the entrainment coefficients (αθ), 
assuming that the image intensity represents particle con-
centration in the plume. The horizontal profiles of the mean 
image intensity agreed well with the fitted Gaussian curves 

Fig. 5  Horizontal profiles of 
the mean vertical velocities 
(red lines) and the mean image 
intensities (black lines) for 
Plumes A–E. Corresponding 
best-fitting Gaussian curves are 
shown for the mean vertical 
velocity profile (dashed red 
lines) and mean image intensi-
ties (black dashed lines)
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(Fig. 5). In general, the radial scale b of the mean image 
intensity profile also increases with increasing height above 
the vent orifice and were fitted into a linear function of z 

(Fig. 6). However, for the image intensity profiles, the height 
variations of the plume width b have relatively large misfits 
for Plume B (gray dotted line in Fig. 6b). The estimated 

Fig. 6  Height variation in the 
plume mean characteristic 
width b identified by velocity 
profiles (red lines) and image 
intensity profiles (black lines) 
using Eq. (1) as a function of 
height above the vent orifice. 
Also shown are the correspond-
ing best-fitting linear trend 
(dashed lines). The entrain-
ment coefficients αw and αθ are 
calculated using Eq. (2). Note 
that the image intensity profiles 
for Plume B (gray dotted line) 
has relatively large misfit to the 
linear trend, while the vertical 
velocity profiles for Plumes C 
and F (light pink dotted lines) 
have relatively large misfits
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Table 1  Entrainment 
coefficients

*Indicates cases where the relationships between plume width and plume height have relatively large mis-
fits to the linear trend

Plume No. Intensity entrainment 
coefficient
αθ

Velocity entrainment 
coefficient
αω

Ratio between αθ 
and αω
λ

Deviations from empir-
ical value (λ0=1.2) (%)

Plume A 0.28 0.21 1.33 10.8
Plume B 0.37* 0.32 1.16 − 3.3
Plume C 0.17 0.21* 0.81 − 32.5
Plume D 0.19 0.16 1.19 − 0.8
Plume E 0.21 0.16 1.31 9.2
Plume F 0.40 0.31* 1.29 7.5
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entrainment coefficients αθ are 0.28, 0.37, 0.17, 0.19, 0.21, 
and 0.40 for Plumes A–E, respectively (Table 1). Thus the 
above analyses imply that the results for Plumes A, D, and 
E might be the most robust, while Plumes B, C, and F might 
be associated with larger uncertainties.

Spatial variations in the vertical flux

The mean vertical flux increased with increasing height 
above the vent orifice and varied greatly for different plumes 
(Fig. 7Aa, Ba, Ca, Da, Ea, Fa). Considering the relatively 
large uncertainties in the plume width-height relationships 
(as shown in Fig. 6) for Plumes B, C, and F, these three 
plumes are shown by light gray shades in Fig. 7. Overall, the 
mean fluxes of Plumes A, B and F are greater than those of 
Plumes C, D and E at the same height above the vent orifice 
(e.g., 100 pixels above the vent orifice, Fig. 7), which is 
consistent with the vigor of plume flows viewed from the 
videos (Fig. 2). At 200 mm above the vent orifice, the verti-
cal flux of Plume A is 3.3 × 104 mm2/s, which is greater than 
that of Plume C of 497 mm2/s. However, due to the lack of 

reference length scales (e.g., a temperature probe or laser 
beam scale) for Plumes B, D, E and F, we only obtained the 
relative values of vertical fluxes for these plumes in unit of 
 pixel2/s. The distributions of plume vertical fluxes can be 
fitted relatively well by Gaussian curves (Fig. 7Ac, Bc, Cc, 
Dc, Ec, Fc).

To estimate the relative variations of the vertical fluxes, 
we normalized the vertical flux and its standard deviation 
by the mean vertical flux at the same height above the vent 
orifice (Fig. 7Ab, Ba, Ca, Da, Ea, Fa). The resultant 1-σ val-
ues of the normalized fluctuation amplitude were relatively 
stable along the vertical axis and ranged from 15 to 55% at 
the selected heights (Fig. 7Ad, Bd, Cd, Dd, Ed, Fd).

Temporal fluctuations in the vertical flux

The time series of the vertical flux (Fig. 8) were obtained by 
horizontally integrating the profiles of instantaneous vertical 
velocity. We focused on certain height ranges delimited by 
white dashed lines in Fig. 4 to investigate temporal plume 
fluctuations to reduce the edge effect. Moreover, in order to 

Fig. 7  Variations of the mean 
vertical fluxes and the normal-
ized fluctuation amplitude as a 
function of the height above the 
vent orifice. Shaded gray areas 
show the temporal 1-σ varia-
tions of the vertical fluxes (left 
column) and the normalized 
fluctuation amplitude (second 
left column), defined as the 
temporal range of plume width 
normalized by the mean plume 
vertical flux. Because of the 
relatively large misfits to the lin-
ear trends in the image intensity 
or vertical velocity profiles for 
Plumes B, C, and F (i.e., Fig. 6), 
these plumes are marked in light 
gray shades. The correspond-
ing Gaussian distributions at 
the selected heights are shown 
for mean vertical flux (third 
column) and the normalized 
fluctuation amplitude (right 
column)
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reduce the random noise, we smoothed the vertical flux time 
series using a moving-average filter (Fig. 8). The period of 
the averaging window is 1/6 s, and the window is moved 
from left to right along the time axis in 1/30 s increments.

Periodic fluctuations can be seen in the plume vertical 
flux time series (Fig. 8). The dominant periods of the verti-
cal flux oscillations of all six studied plumes are limited in 
a narrow band of 0.5–5 s (Fig. 9). In order to identify the 
dominant oscillation periods, we selected several profiles 
from the plume vertical flux time series (Fig. 10). Temporal 
oscillations in the vertical flux are clearly present and ampli-
tudes of the vertical flux vary greatly for different hydrother-
mal plumes from 5 × 103 to 3 × 104  pixel2/s (Fig. 10Aa, Ba, 
Ca, Da, Ea, Fa). The dominant periods for Plume A (Fig. 2a) 
are 0.5, 1.8 and 3.3 s (Fig. 10Ab). Similarly, the dominant 
periods are in the range of 0.5–5 s for the other five plumes 
(Fig. 10Bb, Cb, Db, Eb, Fb).

The periods with the greatest energy for Plumes A–F 
are 1.8, 4.6, 2.9, 4.9, 5.0 and 2.9 s, respectively (Fig. 10Ab, 
Bb, Cb, Db, Eb, Fb). The period t and normalized 

fluctuation amplitude A appear to be correlated for all 
plumes except for Plume C (Fig. 11).

Discussion

Comparison of two entrainment coefficients

The two entrainment coefficients, αθ and αw, are related by

where λ is the concentration-to-velocity width ratio, which 
is ~ 1.2 (Turner 1986; Rona et al. 2006). The ratios between 
the two entrainment coefficients estimated in our study are 
0.81–1.33, and the deviations from the empirical value 
(λ = 1.2) are less than 11% for the five studied plumes 
(Table 1). However, for Plume C the ratio λ = 0.81 and the 
deviation is approximately − 32.5% due to the mean verti-
cal velocity reaching its maximum at the plume boundary 
(Fig. 4c). Considering the uncertainties in the two methods, 
the entrainment coefficients are consistent with each other.

Error analysis

Several factors may have contributed to the errors in 
the instantaneous velocity fields calculated by the PIV 
method. First, the unknown viewing angle of the video 
camera towards the plume may have caused under-esti-
mation or over-estimation of the velocities. Second, the 
2-D projection of a 3-D cone-shaped turbulent plume 
may have obscured the high-velocity core (e.g., Karlstrom 
et al. 2013). Third, the limited spatial resolution of image 
intensity and the relatively low frame rate may have added 
uncertainties to the calculation of the velocity field when 
there were no identifiable flow features in one or both 
consecutive frames or when flow features changed rapidly 
(e.g., Crone et al. 2008). Finally, the inherent bias of the 
PIV method may have under-estimated the velocity fields 
and flow rates (Crone et al. 2008; McNutt et al. 2012).

Although the entrainment coefficients were over-esti-
mated by the two methods using either the mean vertical 
velocity or the mean image intensity, both methods gen-
erated consistent results, indicating that the present PIV 
method under-estimated the plume velocity field propor-
tionally over the whole domain. Thus, the variations or 
relative changes of the flow rates estimated by the PIV 
method were more accurate than the absolute values. Simi-
lar methods have been used to investigate tidal oscillations 
of hydrothermal plume velocities (Mittelstaedt et al. 2016) 
and oscillations in geyser eruption rates (Karlstrom et al. 
2013).
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Probable causes for the observed short‑period 
variations in vertical fluxes

The flow dynamic instability of two-phase fluid, i.e., pres-
sure-drop instabilities, within hydrothermal systems might 
explain the observed plume flux oscillations of 0.5–5 s peri-
ods. Flow instabilities were widely observed in geyser erup-
tion (Karlstrom et al. 2013) and in lava dome growth and 
eruption (Voight et al. 1999; Denlinger and Hoblitt 1999; 
Kozono and Koyaguchi 2012).

Inside the hydrothermal systems at mid-ocean ridges, hot 
seawater fluid ascends adiabatically while heated by axial 
magma lenses. If intersecting the the two-phase boundary of 
seawater, the ascending hot fluid will experience subcritical 
or supercritical phase separation, resulting in the produc-
tion of a low salinity vapor phase and a high salinity brine 
phase (e.g., Delaney et al. 1987; Von Damm and Bischoff 
1987; Cowan and Cann 1988; Von Damm 1988; Bischoff 

and Rosenbauer 1989; Butterfield et al. 1990; Nehlig 1991; 
Kelley et al. 1992, 1993; Saccocia and Gillis 1995). For the 
same vent fields as those investigated in our study, phase 
separation was proposed to account for the variations in 
chemistry of hydrothermal fluids (Edmond et al. 1995; Oost-
ing and Von Damm 1996; Seyfried et al. 2003). Previous 
studies have shown that fluid temperatures for the hydrother-
mal plumes at the EPR and JdFR were just around the sea-
water boiling curve (Hannington et al. 2005), indicting that 
two-phase fluids might exist at shallow depth beneath the 
vent orifice. In contrast, fluid temperatures for the studied 
plumes at the NMAR were below the two-phase boundary 
(Hannington et al. 2005), indicating that two-phase fluids 
might exist at greater depth beneath the vent orifice.

Previous studies have shown that pressure-drop type 
of oscillations could be induced in a chamber of a mixed 
fluid and compressible vapors (Stenning 1964; Kakac 
and Bon 2008; Chiapero et al. 2012; Ruspini et al. 2014). 

Fig. 9  The power spectrum 
densities of the time series of 
vertical fluxes
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According to Fig. 12, the following steady-state relations 
are considered:

where Pi is the pressure in the fluid supply zone below the 
compressible gas chamber, P0 is the pressure in the com-
pressible gas chamber, Pe is the pressure at the vent orifice, 
K1 is an experimentally-determined constant for the inlet 
restriction, Q1 is the flow rate into the chamber and Q2 is 
the flow rate out of the chamber. Pi and Pe are assumed to 
be constant. Under certain conditions, the curve of the pres-
sure drop as a function of Q2 may follow an N-shaped path 
(Fig. 12b). When the slope of the curve of pressure drop as 
a function of Q1 is steeper than that corresponding to Q2, an 
oscillation could occur. The mechanism of pressure-drop 
oscillation can be explained in Fig. 12b. If the two curves 
are intersected where the slope of pressure drop as a func-
tion of Q1 is more negative than that corresponding to Q2, 

(6)Pi − P0 = K1Q
2

1

(7)P0 − Pe = f (Q2)

a small increase in P0 will cause Q2 to decrease more than 
Q1. indicating that more fluid enters the compressible gas 
chamber than that leaves it. Thus, the chamber pressure P0 
increases. The state of the fluid moves up until it reaches 
the peak B. Then a flow excursion from a two-phase state 
to a liquid state could occur from B to C. At C, the amount 
of fluid leaving the chamber is more than that entering it. 
Hence, a decompression process takes place in the cham-
ber from C to D, where the state of the fluid reaches the 
curve minima. Then a flow excursion from the liquid-phase 
dominated two-phase state to the vapor-phase dominated 
two-phase state could occur from D to (A) At this point, 
the fluid entering the chamber is more than that leaving it. 
Hence, a compression process occurs in the chamber from A 
to (B) Thus, the limit cycle A–B–C–D–A represents a fully 
developed pressure-drop oscillation.

Model results predict that shorter periods and smaller 
amplitude of pressure-drop oscillations could result from 
increasing flow rate, increasing inlet fluid temperature, or 
decreasing reservoir compressibility (Kakaç et al. 1990; 

Fig. 10  Selected profiles of the 
vertical fluxes (left column) 
and the related power spectrum 
densities (right column). The 
dominant periods are marked by 
red arrows 0
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Liu and Kakac 1991; Padki et al. 1991; Chiapero et al. 
2012). The normalized fluctuation amplitude A in our 
study represents the amplitude of flux oscillation deviat-
ing from the mean value. The observed oscillation period 
t and the mean fluctuation amplitude A show general cor-
relation for Plumes A, D, and E as predicted by the theo-
retical models (Fig. 11), while Plumes B and F also seem 
to fit this trend. As plume flux Q increases, both the oscil-
lation period t and oscillation amplitude A are expected 
to decrease (red arrow in Fig. 11). Thus the oscillation 
characteristics for most of the plumes, especially Plumes 
A, D, and E, which have the robust relationship between 
plume width and height, seem to be consistent with the 
model predictions.

Previous studies have observed a wide range of oscillation 
periods in the seafloor hydrothermal plume processes from 
changes in acoustic energy (0.004–0.1 s; Crone et al. 2006) 
to hydrothermal microseismicity (0.07–0.33 s; Sohn et al. 
1995), to changes in ocean bottom pressure (22–53 min; 
Sohn et al. 2009), and to changes in flow rate, temperature, 
and chemicals (~ 12 h; e.g., Little et al. 1988; Schultz et al. 
1996; Tivey et al. 2002; Scheirer et al. 2006; Larson et al. 
2007, 2009; Crone et al. 2010; Xu et al. 2013, 2017; Bar-
reyre et al. 2014; Mittelstaedt et al. 2016) (Fig. 13). The 
results of this study have added a unique new window of 
0.5–5 s in the spectrum of oscillation periods. More impor-
tantly, the relatively narrow band width of the observed 
oscillation periods of plumes at three ridges might reflect 
strong common features in plume dynamics despite the 
diverse geological settings of the studied plumes.

Conclusions

The main conclusions of this study include the following:

(1) Turbulent parcels of different scales were observed to 
occur periodically within plumes.

(2) The entrainment coefficients estimated by either the 
mean image intensity or the mean vertical velocity 
were consistent with each other, with a mean value 
of the intensity-to-velocity width ratio of ~ 1.2 as pre-
dicted by theoretical model.

(3) The mean vertical flux was observed to increase with 
increasing height above the vent orifice. The temporal 
1-σ standard variation of the vertical flux was in the 
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range of 15–55% of the mean vertical flux, indicating 
significant dispersion of the turbulent parcels in the ris-
ing plume.

(4) Short-period oscillations of 0.5–5 s were observed in 
plume vertical fluxes. The observed oscillation period 
t and the mean fluctuation amplitude A show correla-
tion, both might increase with decreasing mean vertical 
flux. It is hypothesized that the short-period oscillations 
might be caused by the pressure-drop oscillation within 
a network of compressible two-phase fluid within a 
sub-seafloor hydrothermal source reservoir.
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