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 Bayes’ Rule is commonly used in the assimilation of data into ocean and 
atmosphere models. We hope the following will be useful to those who are new to 
Bayesian inference and want to develop a little knowledge and intuition about this 
subject.   
 
Example 1: A drug trial. 
 
A Coach’s Dilemma  
 
A friend of yours, a member of a tennis team, tests positive on a mandatory test for 
steroids.  In considering disciplinary action, the player’s coach does a little research and 
finds out that the test turns up positive 95% of the time when given to people using 
steroids. He concludes that your friend is probably a user and decided to suspend her 
from the team. Your friend objects, telling coach that people not taking steroids may 
sometimes test positive.  The coach agrees and decides to seek more literature on the test.  
He finds a new statistic, namely that the test comes up positive 2.93% when given to 
random tennis players.  This just enforces the coach’s intuition that your friend’s positive 
test is not a false positive.  However, he also realizes that if the test were given to a 
population with no steroid users, all the positives would be false!  He realizes that in 
order to estimate the likelihood that your friend is a steroid user, he needs to know 
something about the percent of tennis players that are users. After a bit more research, he 
learns that this is 1%.  He is still uncertain, however, as to how to use this information.  
 
The coach would do well to learn a little about conditioned probability: the chance of an 
event happening given some condition.  He wants to know the probability that a certain 
tennis player is taking steroids given that she has tested positive for them; but the first set 
of information he is given is the likelihood that a person will test positive for steroids 
given that she is already taking them.  
 
To gain a bit more insight into this situation, let’s look at the raw data from the drug trial 
that was used to produce the statistics quoted above.  In this trial, the test was given to a 
population of 10,000 tennis players. It was first established through confidential surveys 
that 1% of this group are steroid users.  Then from this and the information already given:  
 
# of steroid users = 100 
# of steroid users who will test positive = 95 
# of total positive tests=10,000 x .0293=293 
likelihood that a player testing positive is a steroid user=95/293=.324 
 
So, the likelihood that your friend is taking steroids is only about 1 in 3.   
 



Marginal, Conditional and Conjoint Probability 
 
This problem can be approached using Bayes’ Rule, which is the foundation for a whole 
branch of statistics.  Before we discuss the Rule, let’s introduce some formal concepts 
and notation.  
 
Let p(X) denote the probability that an event X will occur, also known as the marginal 
probability.  In the drug trial, the possible events were very limited.  Either the drug test 
is positive (X=T) or negative (X=F); either the person being tested is a steroid user 
(X=U) or not (X=N). Thus 
 

p(T) = probability that a random tennis player will test positive =2.93% 
p(N) = probability that a random tennis player is steroid free = 99% 

 
Next define the conditional probability P(X|Y) that event X will occur given that Y has 
occurred. For example 
 
  p(T|U)=probability that a tennis player will test positive (T), given that they are 
already taking steroids (U) = 95%. 
 
 p(N|F)=probability that a person is steroid free (N) given that they test negative 
(F) =.9995 
 
(This last calculation takes a little more thought and the reader might want to work out 
the answer and check it against ours.) 
 
To introduce Bayes’ Rule, we need to consider one other type of joint probability, namely   
the likelihood that X and Y occur together.  This is known at the conjoint probability and 
is denoted p(X,Y).  For example, the probability that a random tennis player within our 
population of 10,000 tests positive for steroids (T) and that the players is using steroids 
(U) is 
 
 p(T,U)=95/10,000=.095. 
 
(Contrast this with likelihood p(T|U)=.95 that a player tests positive for steroids, given 
that they are using steroids.)   
 
Note that conjoint probability is sometimes denoted p(X∩Y).   
 
Bayes’ Rule 
 
Thomas Bayes was an 18th Century Presbyterian minister who lived in England and who 
was interested in mathematics, statistics, and philosophy.  To derive his Rule (which was 
published posthumously) suppose that we wish to compute the conjoint probability 
p(F,U): the likelihood that a tennis player will test negative for steroids and that the 
person is a user.  One way to proceed would be to first identify the group that tests 



negative for steroids.  Inspection of the numbers given above show that this group is 
made up 10,000-293=9707 individuals. Next, we scan this group for steroid users, of 
which there are 5.  So for a population of 10,000 tennis players the likelihood that a 
player tests negative and is a user is p(F,U)=5/10,000=.0005. An equivalent way of 
performing the same calculation is to first compute the likelihood p(F) that a person tests 
negative for steroids, then multiply it by the probability p(U|F) that people from within 
the group that tests negative is taking steroids: 
 
  p(F,U)= p(F)p(U|F) =(9,707/10,000) ×(5/9,707)=.0005   (1a) 
 
 Alternatively we can change the order in which we count. We can first identify all 
of the players that are using steroids (100) and from this group identify those who test 
negative (again just 5).  We might denote this likelihood as p(U,F) to signify that we first 
identify the group of users, then select the ones from this group that test negative. Of 
course the answer is the same (5/10,000) as before. Equivalently, we can compute p(U,F) 
by multiplying the likelihood p(U) of steroid use by the probability p(F|U) of a negative 
test among the steroid users: 
 
  p(U,F)= p(U)p(F|U) =.01×.05=.0005     (1b) 
  
 From (1a,b) it is apparent that     
   
  p(X,Y)=p(Y)p(X|Y)=p(X)p(Y|X)    (2) 
or 
 
             p(X|Y)= p(Y|X) p(X)/p(Y)            (Bayes’ Rule)  (3) 
 
 
In Bayesian lingo, the distribution p(X|Y) is referred to as the posterior,  p(Y|X) as the 
likelihood, p(X) as the prior, and p(Y) as the marginal distribution or evidence. The 
intuitive connection of these terms to the problems we will address below is not always 
obvious. In particular, the term likelihood seems very general and could refer to any 
probability distribution.  Note that this distribution is also known as sampling distribution 
or measurement model, both of which have a bit more meaning for the temperature 
measurement scenario that is presented below.   
 
This is one form of Bayes’ Rule.  It is based on a principle that is self evident, almost 
childishly simple, namely that the odds of two simultaneous events can be computed in 
either order: one can first add up the number of times the first event takes place, then 
select from that group the number of times that the second event takes place, or vice 
versa. Had the tennis coach known about Eq. (3) he could have computed the probability 
p(U|T) that his tennis player was using steroids given her positive test result.  The coach 
was given p(T|U)=.95 (the likelihood that a steroid user will test positive), p(T)=.0293 
(the likelihood that a random tennis player will test positive) and p(U)=.01 (the likelihood 
that a random tennis player is a user).  This would have given him 
p(U|T)=(.95×.01)/.0293=.324.  



 
 
One further observation: the evidence distribution p(Y) (that Y occurs at all) is clearly the 
sum of all the instances of Y, divided by the total number of opportunities for Y to occur.  
The total number of occurrences of Y can be computed by taking the number of 
occurrences of Y for each possible X and then summing over all the possible X values, 
which we denote xi.  Thus 
 
  p(Y)=∑i p(Y|xi)p(xi)      (4) 
    
 
and it is only necessary, therefore, to know p(Y|X) and p(X) in order to evaluate the 
entire right-hand-side of (3).  If X is a continuous variable then (4) is replaced by 
p(Y)=∫ p(Y|X)p(X)dX.  In some applications, it is easiest to regard P(Y) as it occurs in 
Eq. (4) as just a normalizing factor, computed to ensure that for any Y, the area under the 
posterior distribution p(X|Y) is unity.   
 
 
Example 2: coin flips. 
 
 Suppose you make simultaneous coin tosses with 4 coins, leading to 24=16 
possible outcomes.  You are interested in the following probabilities 
 
 1T ->     Exactly one tail turns up:   4 possibilities 
            H ->     At least one head turns up:  15 possibilities 
 
Also note the following:     
  
p(H)= probability of at least one head=15/16 
p(1T)= probability of exactly one tail=4/16 
p(H,1T)= probability of exactly one tail and at least one head=4/16 
p(1T|H)= probability of exactly one tail given at least one head=4/15 
p(H|1T)= probability of at least one head given exactly one tail=1 
 
We can also verify that Bayes’ Rule works for this case by noting 
 
p(H,T)=4/16    
p(T) p(H⎥1T)=(4/16)x1=4/16   
p(H) p(1T⎥H)=(15/16)x(4/15)=4/16 
 
so that  
 
p(H⎥1T)= p(1T⎥H) p(H)/ p(1T)=(4/15)(15/16)/(4/16)=1 
 
 
 



 
Example 3:  Assimilation of a temperature measurement into an ocean model. 
 
Calibration of the temperature sensor.  
 
Suppose that you plan to measure the ocean temperature with a thermistor and that you 
first need to calibrate the instrument in a laboratory tank.  The true temperature X of the 
water in the tank is considered known to a very high degree of accuracy, perhaps from an 
expensive laboratory thermometer.  The temperature in the tank is varied over the 
approximate range, say 12oC to 18oC, that you expect to see at the location where the 
instrument will be deployed.  We will consider two ways in which one might carry out 
the calibration. In each, we will divide up the temperature scale in a series of even 
intervals, say of size 1/10,000 oC, and we will use lower case symbols xi or yi to represent 
the temperature range of the ith interval.  Any temperature reading is defined by the 
discrete interval that it lies in.   
 
Case 1:  The tank is maintained in the narrow temperature range x1 corresponding, say, to 
12 to 12.0001 oC, and repeated readings yi of the thermistor are made. The resulting 
histogram gives an approximation of p(Y|x1), the probability of a measurement yi given 
that the true temperature xi lies in the range 12 to 12.0001 oC.  (Here Y just represents the 
full range of possible temperature intervals (y1,y2,y3,….), which might include 
temperatures outside of the true range.) Next the tank temperature is reset to lie in the 
interval x2=12.0001,12.0002) and the process repeated to get p(Y|x2).  Eventually the full 
range of expected temperatures xi is covered. We now have a   
P(Y|X) for all expected xi.  
 
Case 2:  The temperature of the tank is allowed to vary continuously during the day in a 
way that mimics the expected variations of the ocean region that will be sampled.  For 
example, the target region might be the ocean surface mixed layer in a subtropical region 
where the daytime/nighttime temperature varies by a few degrees. In this sense, the 
laboratory tank becomes a model of the region that we want to measure.  To calibrate the 
thermistor, simultaneous readings of the thermistor and the reliable laboratory 
thermometer are made repeatedly over the course of the day and over many days.  
 
For each approach, we can store the data in a table in which the rows correspond to 
different xi values, the columns correspond to yj values, and the entry (i,j) gives the 
number of times that xi and yj occur together.  From this histogram we could easily 
construct the conjoint probability distribution p(X|Y).  The entry (i,j) would then give  
p(xi,yi), the probability that true temperature xi and measured temperature yi  occur 
together.  Or, by examining the distribution of yj value within a particular row i of the 
table, we could compile p(Y|xi), the probability distribution of the measured temperature 
given the true temperature xi.  In principle this last distribution should depend only on the 
sensor being tested and not on the scenario under which it is tested. If the true 
temperature of the tank is xi then the distribution of measurements yj  of that true 
temperature should not depend on how the true temperature xi was established.  So 
p(Y|xi), and more generally p(Y|X),  should be the same for Method 1 and Method 2, 



provided that a sufficient amount of data is collected over the same true temperature 
range.   
 
Although p(Y|X) should be the same for the two methods, there is no reason to expect 
that p(Y,X), p(Y) or P(X) will be the same.  In Method 1, for example, we might have 
taken 1000 temperature readings when the tank temperature was set to x5, whereas the 
temperature might have spent very little time in the x5 range in the Method 2 scenario, 
resulting in only 100 readings.  This might mean that the chance of y5 and x5 occurring 
together is much greater under Method 1.    
 
As an illustration, suppose we have only two true temperature bins x1 and x2, and that all 
the sensor readings fall into the same two bins, y1 and y2. Below are hypothetical tables of 
(xi,yj) value collected under the two scenarios. In Scenario 1, where the true temperature 
of the tank is held constant while multiple readings are taken, there are an equal number 
of temperature readings, 12 to be exact, in each true temperature range. In Scenario 2, 
where the true temperature is forced to vary continuously, there are 8 readings 
corresponding to true temperature x1 and 15 readings corresponding to x2.  Therefore the 
marginal probability p(x1)=12/24=1/2 in the first case, but is equal to 8/23 in the second 
case.  Likewise, p(x1,y2)=3/24 in the first case and =2/23 in the second, while 
p(x1|y2)=3/11 in Case 1 and =2/12 in the second.  The reader can verify that only the 
likelihood p(Y|X) remains the same: for example, the conditional probability p(y1|x2)=1/3 
in each case.   
 
 
 y1 y2 
x1 9 3 
x2 4 8 

 
Table 1a:  A table histogram showing the number of measurements of each combination 
of true temperature bin xi and measured temperature bin yj for the Scenario 1 experiment 
and with the temperature range divided into only two bins.  An equal number (12) of 
measurements have been made in each true temperature class. 
 
 
   
 y1 y2 
x1 6 2 
x2 5 10 

 
Table 1a:  Same as Table 1a, but for the Scenario 2 experiment.  The number of 
measurements made in each true temperature class is no longer uniform. 
 
 



Before deploying the instrument in the ocean, we first carry out a simulated experiment 
using the environment established in the second method, where the tank temperature 
cycles through a range of values each day. This will simulate the natural diurnal 
temperature variation of the target ocean.  Since the true temperature in the tank is now 
regarded as unknown, we ignore readings form the accurate thermometer.   We then take 
a temperature reading yj with the thermistor and ask what is the probability distribution 
p(X| yj) of the true temperature X given the measurement yj. 
In the idealized case where there are only two temperature bins y1 and y2 we can answer 
this questions by looking at Table 1b. If the measured temperature is y2, say, then the 
probability that the true temperature is x1 is 5/15=1/3 and the probability that the true 
temperature is x2 is 10/15=2/3.  
 
So far we have not had to use Bayes’ Rule.  But suppose that we do not have access to 
the raw data used to construct the histogram tables. Like the tennis coach in the first 
example, we only have access to published statistics provided by the person or company 
that has carried out the testing.  Again, we seek p(X|Y) because we want to know the 
distribution of true temperatures X that accompany any measured value yj∈Y, but we are 
given quantities like p(Y|X), p(Y) and p(X).  Application of Bayes’ Rule (3) and use of 
Eq. (4) yields 
 

  p(X Y ) = p(Y X)p(X)
p(Y )

=
p(Y X)p(X)
p(Y xi )p(xi )i∑  .   (5) 

 
Thus, we really only need two distributions p(Y|X) and p(X) to find  p(X|Y).  As we have 
seen, the likelihood function (or measurement model) p(Y|X) depends only on the 
instrument and does not depend on which experiment (Case 1 or Case 2) is used to obtain 
it.  On the other hand, the prior distribution p(X) differs between two cases, and if we are 
trying to interpret the meaning of a measurement made in the tank under the Case 2 
scenario, it is crucial that we use the prior distribution obtained under Case 2 conditions. 
 
The Real Ocean 
 
 If we now deploy the thermistor in the real ocean and make a single measurement 
yj we are again interested in p(X| yj), the probability distribution of the true temperature 
given the measurement.  As long as the laboratory calibration remains valid (the sensor 
has not started to drift, say) we can use the likelihood distribution (measurement model) 
p(Y|X) already obtained.  For the sake of illustration, let’s suppose that the laboratory 
calibration shows that the instrument errors are normally distributed, with standard 
deviation r and are unbiased (i.e. the errors have zero mean).  We also consider the limit 
of very small bin size, so that X and Y vary continuously.  Then 
 
   P(Y X) = (2π )−1/2e−(Y −X )

2 /2r2 .   (6) 
 
 If there is no prior information about temperature variations in the region we are 
modeling, the prior distribution p(X) remains unknown. However, under the Case 2 



scenario we clearly do have prior knowledge of the regional temperature variations and 
have, in fact, set up the laboratory tank to vary in a way that is consistent with this 
knowledge.  We may then use the p(X) obtained in Case 2 in our application of Eq.  (5). 
Success very much depends on how well the p(X) so obtained matches the true 
distribution.  Had we no prior knowledge, we could have still done a calibration as in 
Case 1, but the p(X) so obtained would be inappropriate.  Under these conditions we 
might choose to use a flat distribution for p(X): 
 

  p(X) =
w−1   (Xmin < X < Xmax )

0  (otherwise)

⎧
⎨
⎪

⎩⎪
,    (7) 

 
where  Xmin<X< Xmax gives the possible range of temperatures that can occur in the 
system and w=Xmax-Xmin. The use of (7) reflects the any particular X is just as likely to 
occur as any other.  We leave it as an exercise to show that when (7) is used (in the limit 
of infinite w where appropriate) then  p(X|Y)= p(Y|X).   
  
 
Using a model to estimate the prior: data assimilation 
 
In the field of data assimilation, we are faced with essentially the same problem as posed 
above.  We have a likelihood distribution p(Y|X) based on the instrument and perhaps on 
other uncertainties that are associated with the way in data is measured.  To apply Bayes’ 
Rule we need a prior P(X) and we now consider obtaining it from a model. The prior 
must reflect the probability that any particular value of X occurs in the system we are 
measuring.  If the model is trustworthy, then we can examine its past history in order to 
construct an approximation for P(X), much the same as was done in the tank temperature 
experiment.  
 
One challenge is that at the time the model run is initiated, the only information we have 
about the past is contained in the imposed initial conditions.  Suppose that the model is 
initiated at t=0 and is run forward to the time t1 of the first available observation.  Then 
we have a limited history, in most cases too brief to construct P(X).  However, we can 
increase the amount of available information by implementing an ensemble of model runs 
beginning with slightly different initial conditions.  We might argue that the original 
initial conditions are known only within some range of uncertainty, and that any model 
run started from within that range yields a valid approximation of the true state of the 
system.  Below are some common schemes that are used to implement this notion.  All of 
these apply to sequential data assimilation (also known as filtering).   
 
The Particle Filter 
 
In almost any realistic setting, we will never actually have a full continuous 
representation of P(X), although X will usually be a continuous variable.  We therefore 
approximate P(X) as a discrete probability mass function (PMF), which results in the 



necessity to approximate P(X|Y) as a discrete PMF as well.  The particle filter is a data 
assimilation method which then describes how to calculate P(X|Y) via Bayes rule.  
 
To make things simple, we continue with the case in which the model predicts a single 
scalar quantity, namely the temperature X at some location in the ocean.  X is divided 
into discrete bins (or ‘particles’) xi that span the full range of possible temperatures at that 
point. We can think of P(xi) as the probability that xi occurs (the marginal probability), 
and represent this probability as a weight wi.  This distribution of weights is a discrete 
representation of P(X) as shown in Figure 1. 

   
Figure 1.  Schematic of the particle filter. The initial distribution (lower left) is 
represented as a set possible states or particles, each represented by red bar. Particle j is 
characterized by a range of X values about some central value xj and by a probability or 
‘weight’ wj.  In the forecast step, the X-value for each particle is evolved under the model 
from time to to t1 in order to obtain the prior distribution at t=t1. The weights remain 
unchanged during this step. Next comes the analysis stage in which Bayes’ Rule is 
applied to each particle in order to adjust the weights, given an observation y at time t1. 
During this step the X-values remain the same but the weights are updated.  The posterior 
distribution thus obtained is then evolved forward in time in order to create a prior 
distribution for the analysis at time t2.      
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It may be that the only prior information we have at the beginning of the model run is the 
initial condition.  In some cases the initial condition is informed by past history; in other 
cases there is virtually no past history (as when the flow in a circulation model is initiated 
from a state of rest).  In either case, we represent the initial condition using our set of 
weighted ‘particles’.  Each particle is then evolved forward in time under the model until 
the time t1 of the first observation Y.  The temperature (or temperature range) assigned to 
each particle then changes, but we require that each retain its assigned weight.  
This forecast distribution is regarded as the prior P(X), to be used in the analysis stage 
that comes next: it contains information contained in the initial conditions and in the 
history of evolution of the model over to<t<t1.  Clearly this may not be a very good 
approximation of the true prior, but the situation will improve in time as more data are 
assimilated. 
 
In the analysis step, we apply Bayes’ Rule in order to update the weight of each particle 
in view of the data.  This updated set of particles and weights is then a discrete 
representation of P(X|Y).  To calculate the (updated) weights according to Bayes Rule, 
we take our prior distribution P(X), represented by the ensemble {xi,wf

i} where i ranges 
over all the particles and “f” stands for “forecast”.  For each particle xi, we calculate the 
likelihood p(Y|xi) evaluated at Y=y for our actual observed quantity y. given our 
observation y (the actual observed quantity.)  In the Gaussian case described above, the 
likelihood is  
 
                            P(Y xi ) = (2π )

−1/2e−(Y −xi )
2 /2r2 ,   (8) 

 
and  P(xi)=wi

f.  Then by Bayes’ rule, we have 
 

  wi
a = P(xi ,Y ) =

(2π )−1/2e−(Y −Xi )
2 /2r2wi

f

P(Y )
    (9) 

 
which we can evaluate for each particle xi. The marginal distribution P(Y) is calculated 
by summing over all i: 
 
 
  P(Y ) = (2π )−1/2

i
∑ e−(Y −xi )

2 /2r2wi
f      (10) 

      
 
The new ensemble (xi,wi

a
 } corresponding to our new set of weights is our analysis 

distribution. The xi values are the same as in the prior, but weight of each is updated.  
Since Y in this case is just a single value (the measured temperature), P(Y) is a single 
value. It serves here as a normalizing factor that insures that the probability function on 
the right-hand side of (9) will sum to unity.   
 
If data is available at future times t2, t3, etc. we repeat the above procedure, first evolving 
the temperature xi of each particle forward in time while conserving its weight wi in order 



to get a new forecast distribution.  The weights are then updated as in (9) to get an 
analysis distribution.  
 
Note that the model may not directly predict the quantity we are measuring. In the 
laboratory tank we measure temperature but the model may determine density, which 
must then be related to temperature using an equation of state.  For this reason, we 
introduce an observation operator H that projects the model state variable into 
observation space:  Y=H(X).  In this case, xi in the above relations is replaced by H(xi).  
In this way the actual observation is compared to what we would expect to have observed 
if our model and initial conditions were perfect.  
 
The Kalman Filter 
 
Here the model is assumed to be linear and the model states are assumed to have a 
normal distribution.  The governing linear equations then determine how the mean and 
standard deviation of this distribution evolve, so that just one calculation is needed to 
produce the prior distribution.  The analysis stage then consists of multiplying two 
Gaussian distributions (P(Y|X) and P(X)) together. The product of two Gaussians is a 
new Gaussian with mean and standard deviation given by  
 

  Xa = X f +
σ f
2

σ f
2 +σ d

2 (Y − X f )   and    σ a
2 =

σ f
2

σ f
2 +σ d

2 ,  (11a,b) 

where Y and X f  are the means of the observations and forecast, and σ d
2  and σ f

2 are the 

respective variances.  The mean Xa is therefore intermediate between the originals, and 
lies closer to the mean of the distribution with the lower variance.  If the variance σ d

2  of 
the observational data is much smaller than the forecast variance,  then Xa will lie close 
to the mean Y  of the observation. Note further that the analysis standard deviation is 
smaller than the standard deviations of both original standard deviations.  (In the 
Bayesian context, this can be understood as: we have more information after combining 
the prior and the observation, so we have less uncertainty than we had in the prior alone, 
or in the observation alone.)  
 
 
The Ensemble Kalman Filter 
 
The ensemble Kalman filter (EnKF) attempts to relax the requirements of normal 
distributions and a linear model.  Instead of evolving forward a Gaussian mean and 
standard deviation at the prediction stage, it evolves forward an ensemble of model states 
using the (possibly nonlinear) model.  The resulting forecast ensemble, which is generally 
non-Gaussian, will act as a discrete approximation of the distribution of model forecast 
states. The analysis step then consists of updating each forecast ensemble member based 
on how close it is to the observation and on the uncertainties of the forecast and the data.  
For the prediction of a scalar quantity, the update equation for each ensemble member is 
just (3.4a), σ f

2  and σ
d

2   being the sample variances of the forecast and measurement 



ensembles, and replacing \bar{X}_f with x_i, and \bar{Y} with y_i.  [Aside: there are 
several ways to implement the EnKF, but the “perturbed observation” method requires 
you to replace “y” above with “y_i=y+eta_i”, where eta_i is a random variable with mean 
0 and std dev r (observational error). This is necessary so that, when the limits are taken, 
the Gaussian EnKF result does have the correct Bayesian distribution. Let me know if 
you want to talk about this.] 
  
When the model is linear and the distributions are Gaussian, the EnKF will provide the 
correct Bayesian posterior (the same as the Kalman filter) in the limit of an infinite 
ensemble.  However, since this update is based on Gaussian assumptions, it tends to 
break down when the distributions are highly non-Gaussian.  For instance, if the prior 
distribution has two distinct peaks, the posterior distribution resulting from the EnKF 
update will neither be Gaussian, nor will it be the true Bayesian posterior distribution. 
  
In the two examples shown in Figure 2, the prior distribution is bimodal (two Gaussians).  
The observation likelihood distribution is Gaussian, with small variance (left panel) and 
larger variance (right panel).  The posterior distributions are calculated using Bayes’ rule 
(possible analytically, since you can write down the distribution of a two-Gaussian 
bimodal prior), the particle filter (PF), and the ensemble Kalman filter (EnKF.)  The 
particle filter and the Bayesian posterior indistinguishable, because 10,000 particles were 
used for this 1D example.  The same number of ensemble members are used in the EnKF, 
but clearly, it fails to correctly represent the Bayesian posterior in both cases. 
 
  

 
 
 
The particle filter is better at handling highly non-Gaussian distributions, but the number 
of particles necessary for the particle filter increases exponentially as the dimension of 
the model state increases, and thus quickly becomes computationally infeasible.  The 
EnKF, on the other hand, can be slightly modified to work well with 50-100 ensemble 
members, regardless of the state dimension.  As long as the model is only weakly 
nonlinear (and the probability distributions are only weakly non-Gaussian), the EnKF is a 
relatively robust method that works well and is computationally feasible.  In fact, the US 
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Weather Service has historically used a version of the EnKF to generate its weather 
forecasts. 
 
Why is the PF more costly to implement than the EnKF? 
 
Laura:  I think it has to do with the fact that the PF is usually trying to approximate more 
complicated distributions than the EnKF tries to approximate.  Off the top of my head, I 
don't know whether the PF and the EnKF can use the same number of particles to 
approximate a 1D Gaussian, with both getting the posterior variance right. 
 
One practical reason that the PF might need more than the EnKF in a 1D case is that the 
basic, unmodified particle filter is recursive.  That is, the weights are constantly updated 
by being multiplied by a factor derived from Bayes' rule.  So, as soon as one particle 
starts to get more weight than other particles, it will usually just keep getting more and 
more weight, until all the other particles have weight 0 and your "discrete distribution" is 
just a single point.  The EnKF update doesn't have this characteristic. 
 
In more detail - regardless of the number of particles, that "weight collapse" is bound to 
happen for a finite ensemble eventually.  This is why particle filters generally require 
"resampling."  When the weight distribution hits a predetermined threshold, a new 
ensemble of particles is resampled from the weighted particle distribution, and the 
weights are reset to 1/N.  (So, instead of having one particle with a very high weight and 
some particles with 0 weight, you throw away the particles with 0 weight and make 
[slightly perturbed] copies of particles with very high weight, and then continue on.) 
 
 
 
   


