GFD 2007
Boundary Layers

The idea of the boundary layer dates back at least to the time of Pranditl
(1904, see the article: Ludwig Prandtl’s boundary layer, Physics
Today, 2005, 58, no.12, 42-48).

I have set myself the task of inves-
tigating systematically the motion of a
fluid of which the internal resistance
can be assumed very small. In fact,
the resistance is supposed to be so
small that it can be neglected wherever
great velocity differences or cumula-
tive effects of the resistance do not
exist. This plan has proved to be very
fruitful, for one arrives thereby at
mathematical formulations which not
only permit problems to be solved but
also give promise of providing very sat-
isfactory agreement with observation.

... the investigation of a particular flow
phenomenon is thus divided into
two interdependent parts: there is on
the one hand the free fluid, which
can be treated as inviscid according to
the vorticity principles of Helmholtz,
and on the other hand the transition
layers at the fixed boundaries, the
movement of which is controlled by the
free fluid, yet which in turn give the
free movement its characteristic stamp by the emission of vortex sheets.

Ludwig Prandtl Ludwig Prandtl 1875-1953



VW.Ekman Young Ekman

Considered the effects of rotation although he did
not really think of his solutions in terms of what we
would call boundary layer theory.



The principal concept of the boundary originally springs from the
particular form of the fluid continuum equations in which the
dissipation terms involve higher order derivatives than the
Inertial, advective terms, e.g. for the Navier Stokes equations for
a non rotating fluid:
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For fluids like air or water the coefficient of
viscosity u Is often sufficiently small, in a non-
dimensional sense to be clarified more formally
below, such that the physical effects of friction
would seem to be negligible allowing the neglect of
the last term on the right hand side of the equation.



The order of the equations is reduced and we can no longer satisfy
all the boundary conditions if the viscous term is neglected.

The mathematical issue is how to retain the higher order derivatives
only where they are needed to help satisfy the boundary conditions
and

the physical issue is to understand through the applications of
boundary layer theory how (and whether) the action of friction in
very localized regions may affect the fluid flow in regions outside
the domain directly affected by friction. The interplay between the
outer region, in which friction is not directly important, and the
inner region in which friction directly acts is a key feature of
boundary layer theory (a form of singular perturbation theory).
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If r and v neglected and the no slip condition is dropped, there will still
be asingular perturbation to the equations if the € term, i.e. the
nonlinear advection terms are ignored. This leads to an inertial
boundary layer.This equation in its entirety will be discussed more fully

later.



An outline of where we will be going

1) Linear boundary layer theory

Ekman layers, Boundary layers in density stratified fluids,
control of interior, experimental applications.

2) Coastal bottom boundary layer.

Boundary layer on shelf for upwelling and downwelling.
Observations (Lentz)

3) Boundary layers in the General Oceanic Circulation.

Sverdrup theory, Stommel, Munk, inertial boundary layers,
inertial runaway,thermocline and its boundary layer
structure.



Equations of motion

1
U“x+VUy+V‘“z_M:_;px”[“xx*%”zz] Incompressible fluid in a
1 rotating system.
WJMQWM+ZM=—;Q+{%+%+%}

1 L
WV, WY, + WY, =——], —9+[Wxx +W, +sz] If the density is not

p constant must add an

ernery equation
u, +v, +w, =0

We are interested in cases where v is “small”. Must introduce
scales.



The Ekman Layer
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X
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zlvu, +wu, |-v= Slua+u, ] The pressure has been
g[vvy + WV, ] +U=— 8—|O+ E[VZZ + vyy] scaled with /OZQ—UO
oy 2
e[va + WWZ} - _ Z—p+ %[sz + Wyy} Lengths with L and
: velocity with U,
vy +w, =0 &= J, , the Rossby number
2QL

Far from the boundary the velocity is U(y).

Motion is independent of x (for simplicity)

14

E =—, the Ekman number <<1
QL




The solution far from the boundary

u, =U(y), o :
This i1s an exact solution of

, the equations of motion but
p, =—[U(y)dy" does not satisfy the no slip
condition on z =0.

v, =0,

w, = 0.
We introduce the stretched, Corresponding to using
boundary layer variable. as a vertical scale,

z=E"( - (1)

Q)



In the new variable

0 _g 0 o = o

a2 % & Foa w=E"W (y,¢)
s[vu, +Wu, - v = ~[u.+Eu,]
efve, e Wy Jwu= -0 v v E v, ]
cE[ VW, +WW, | :—S—Z+%[W§;+Ewyy]
v, +W, =0

Initially consider & small



The pressure is uniform

_op 1 :
=gy Ve In the boundary layer
o P and so is equal to its
oC freestream value  p=p,(y),
v, +W,=0
P_P_ )
y o
thus 1
> —V= Sl
2
1
u-U = EV“



The solution (1)

let
i ‘ 0°A .
A=(U—U)+IV SV
_ u=U+e*[-Acos{+Bsing]
A=/¥9ﬁ~[1+l]§) or v= e*[ Asin{+Bcos(]
The conditions that
both u and v vanish on A=), B=0

z=¢=0, yields U=U (y)(1 — e “cos C)

v=U(y)e~“sin¢



2%

The solution (2)

° i —_—uflJ

Lo = wl o

61 1

L Note the overshoot

cross isobar flow perpendicular to U(y) —
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The cross isobar flow (in y direction) and Ekman “pumping”

0 e . 2
!vdz:ée_([vdg”:EU(Y) I . U

Cross isobar flow
Pressure force

1a0r, .
W:—Ea[l—e * (oo +sing)|

and

W0)=E" Wy {—)=—E", /2



Spin Down (1)

this vertical velocity is small but it can have a substantial effect on the interior
flow and is, in many cases the primary mechanism for the destruction of otherwise
inviscid motion in the interior. For example, a positive relative vorticity will give
rise to a positive vertical velocity out of the boundary layer. If the interior is
bounded from above this will usually imply that a column of fluid in the interior is
squashed and the result will be to decrease the relative vorticity by the inertial
effects of vortex squashing. The rate will depend on the Ekman number but the
resulting spin-down time will be of the order of Q “'E ~*"*and so will be long

compared with a rotation period of the system but short compared to a
characteristic diffusion time .Q ~'E ~*



Spin down (2)

For small ¢
do, oOw
& = —
dt 0z

g%: ]jZV\(Z=O)=—E,ﬂ2(—%/2)=—E,]/Z%

T = 2¢ Non dimensional decay time
S E 1/2
Lu L L In dimensional (non

=T U aL (viQ)?  ()” dimensionless) units



We can expect that nonlinearity will force additional terms in the
solution but it will also be the case that it will change the structure of
the O(1) solution. Since the boundary layer, in linear theory depends
on the ratio of the viscosity to the rotation (2, it is often assumed,
heuristically, that the first effect of nonlinearity is to change the
thickness to something like ,

s=[2vI(f+w)]"
where f =242 (the Coriolis parameter and the planetary vorticity and
where w is the relative vorticity

®, =V, —U,

Hence, the expectation is that positive relative vorticity in the interior

flow will make the boundary layer thinner. However, positive
vorticity produces a vertical velocity that will tend to thicken the
layer



7 = ¢l = ¢, And consider all variables to be

E'/? functions of both £and Z
2—)E_1/2 a +8E—1/2£
0z oL
To order ¢
g[vuy+Wu§]—v= %[u§§+25u;Z+E u,
op 1
g[vvy +Wv¢:|+ u= —a+ E[V“ +2¢v, +E vyy]
op E
cE[ VW, +WW, | = “oc” E[W“ +2eW,, +E W, |

vV, + W, +eW, =0



The & expansion

U=u,+&u, +...

u, =U-A(y,Z)e ™ cos+B(y,Z)e *sing

v, = A(Y,Z)e *sind+ B(y,Z)e * cos¢

AO)=U, B0)=0

o 1P B e 18U
V\g—C(Z)+26ye [S|n./;+0(B§]+6ye Joosg—sing] C(O)__Ea—y



The solution for W,

the vertical velocity must be independent of z at least to order £and E. This
implies that C is independent of Z

W= ;(Z;% Z/A‘e{[sing“ +cns§]+%/B e*oos¢—sin¢]




Ay, —2iA; = Ru + iRy,

A, =Uu; +1v,,

RuEZ[vu +W_u

o;] - 2uog“Z’

RVEZ[VV +W_v

og] - 2Vo§2

Evaluating the terms in Ru and Rv
reveals that a combination of
some of the terms will have the
form of the homogeneous
operator on the left hand side of
the eqn. If left unaltered those
terms would introduce spatial
secular terms, i.e. solutions of the
form e

and would render our expansion
invalid for e¢=Z2=0(1). To
prevent that, the terms in Ru and
Rv involving the derivatives of the
coefficients with Z are used to
eliminate all secular terms.



Removing secular terms

Eliminating terms of the form e~ "¢

leaves us with a differential eqn. in Z for A and B

( B g
0 . . U,
6_Z[A_ iB]+[A- |B]L £C + o i)J =

w term

C=-U

ly

and so A—IB= Ue
=U,e " (cos(U, 2/ 4) +isin(U, Z / 4))

UyZ14 Uy 214



-U,Z/4
A(Z)=Ue cosU,Z /4,

or

-U,z/4 -
B(Z)=-Ue sinU,Z/4

—4’[1+5Uy /4

v, = Ue Ssinl1-au, /4])

u,=U [1— e-;[1+euy/4] Cos (4[1_ J, |/ 4})}

The exponential decay decreases when the relative vorticity is
positive, I.e. when U, < 0. The effect of the vertical velocity in
thickening the boundary layer dominates the vorticity effect in
determining the boundary layer thickness.



At lowest order

W =—;q[1—ewm) [sn-Uz/a)+asg-Uz/4) |

To complete the solution we need to find the next
order corrections to u and v, i.e. to solve

Ay — 2iA; = Ru + iRy, after the secular terms have
been removed.
A, =u, + v,



RUypneee =€ | AA + BB, +AB, - BA |-iU,e““"(A+iB),

nonsec

RVognee =€ | AA + BB, +AB, — BA |

let
A =u, +1v,

/\Jg iy A —_g4D) (L +im _juy e g7 y=U, /4

A =WJ {(1"‘3) {e—z(g+y2) <) }+1 /4 {e—al—l)—yzaﬂ) e-g(m)}}



The cross 1sobar flux to order ¢

I 1 I
EY? (v +ev)d :E”Z—{Uhe—w}
_(.;( 0 1) g 2 20

y

N

linear nonlinear

The divergence of this flow yields the vertical
velocity at the edge of the boundary layer

.
w (y,0)=—E" {Uy + 8% (Uy2 + ww)}



The form of the cross isobar flow to order to order ¢

w(z/é)

v(zfh)
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The panel on the left shows the cross isobar (v) flow for the linear solution (R,=0, solid line) and the
solution corrected for nonlinear effects (R,= 0.5, dashed line — and clearly “pushing” the validity of the
expansion). The panel on the left is for negative , uniform shear (positive relative vorticity) and the panel
on the right is for positive shear (negative vorticity).
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f/2

wind stress
i sea surface z=0
Scale for velocity ocean —0<7<0
2T

o = — f=2Q

pio,
u.=7z, Vv.=0 (non dimensional)

¢ ¢
—2V = U, _
linear problem
+2U =V

&
vy+W§=O



T

e‘cos(¢ -7z 14)

c
Il

2
U—1/2 v——/2
v=%efsin(;—7z/4) as ¢ goesto zero

Se " stress

Surface velocity



The profiles of velocity and the Ekman flux
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The Ekman velocities u (solid) and v(dashed)

for a stress in the x direction.

In general:

vdg = —-7/2

Il
O =y 3

total flux iIs to the
right of the stress. In
dimensional units:
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The vertical velocity

_ ¢
W= _Ea_y[l e cos/ | For a wind stress of one
dyne/cm?the vertical velocity is
107 order of 10 cm/sec ~ 10
W (=o0) = - Ea_y cm/day and is responsible for
driving the major part of the
with dimensions restored and in ocean circulation.

vector form,

_u5

(z.1 pf)

Nonlinear similar to previous example. However one simple
result follows almost immediately.



Role of nonlinearity on Ekman transport (and pumping)

Consider stress in x direction but now include a very strong
geostrophic current in the x direction whose scale is much greater
than the Ekman depth. Again, with solutions independent of x

g[vuy+Wu§]—v: %[u§§+ E uyy]
0 1
g[vvy+Wv§]+u_—£ E[V“JFE vyy]
0 E
sE[VW, +ww, ] = —£+?[Wg+ EW,, |

v, + W

y CZZO



op o
ay—ug(y)>>ue~%)]¢5e

1
EVU,, —V = —U, _ _ _ :
2 Vertically integrating and using
1
Uu—u, =—v
9 44 p— p—
2 U=z V=0
-7
V =
R ° 2[1— gugy}
U,=0



0 — sz;/p

€

f+¢; |
\ This holds only when the

Relative vorticity —Stress and geostrophic
current are collinear
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Again, expand in a series in ¢ and introduce the “slow” variable
=&l

A, =A(Z2)e*™), Ay =u, +iv,

U, = U, (y)+ eg(Ar cosg — A, sin .,/),

V, = e (A sind + A, cos¢) A(O):% A(O):_%

€ 0 \ .
W=y A A



Order ¢ problem

Possible resonant

A f-eZ (A —A)+i(A +A)]
terms

4“{—3 (A-A)+i(A +A 2 {A +iA }}

€2 [ +in T U AR, +A)+A (A, -A)]
Removing the secular terms leads to

A = g elnlrld] CoS(ZU,, [ 4+ 1 4)

r = 512
2

gl sin(Zu,, /4 + 1 4)

Ai :_21/2



The structure of the O(1) solution

(7 Ug)
1-g —+—
V, = %e 2 4j3|n{4(1—augy/4)—7z/4}
o :
0. = = Boundary layer thickness
@—E{Ty+ugy/2}) ( \1/2
same result if we linearize 5 - 2v
in transition region around ' C27., Uy,
pfo 2

u,(y) and W= -t,/2

dimensional



Solution for non secular forcing yields

? av,dd = —§ Prnl And using the O(1) solution’s
—0 ' g ¥ dependence on ¢

Thomas, L.N. and P.B. Rhines, 2002. Nonlinear
stratified spinup. J.Fluid Mech., 473, 211-244

0 T 7. U
V+av)de=———er 2+
_J;O(o 1) é/ 2 ‘C'T|:8 2

W(-o)=

0

10 T
s fusas — "
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