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Boundary Layers

The idea of the boundary layer dates back at least to the time of Prandtl
(1904, see the article: Ludwig Prandtl’s boundary layer,  Physics 
Today, 2005,  58, no.12, 42-48). 



Contemporaneously, Ekman…

Considered the effects of rotation although he did 
not really think of his solutions in terms of what we 
would call boundary layer theory.

V.W. Ekman Young Ekman



The principal concept of the boundary originally springs from the 
particular form of the fluid continuum equations in which the 

dissipation terms involve higher order derivatives than the 
inertial, advective terms,  e.g. for the Navier Stokes equations for 

a non rotating fluid:

ρ
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For fluids like air or water the coefficient of 
viscosity μ is often sufficiently small, in a non-
dimensional sense to be clarified more formally 
below,  such that the physical effects of friction 
would seem to be negligible allowing the neglect of 
the last term on the right hand side of the equation.



This is a singular perturbation.

The order of the equations is reduced and we can no longer satisfy 
all the boundary conditions if the viscous term is neglected.

The mathematical issue is how to retain the higher order derivatives 
only where they are needed to help satisfy the boundary conditions 
and

the physical issue is to understand through the applications of
boundary layer theory how (and whether) the action of friction in 
very localized regions may affect the fluid flow in regions outside
the domain directly affected by friction. The interplay between the 
outer region, in which friction is not directly important, and the 
inner region  in which  friction directly acts is a key feature of 
boundary layer theory (a form of singular perturbation theory). 



An Oceanic example
Wind-driven ocean circulation model

εJ(ψ ,∇2ψ )+ψ x = −r∇2ψ +ν∇4ψ +T (x, y)

J(a,b) ≡ axby − aybx ε =U / βL2

ν =
AH

β L3 ,   r =
r*

β L

If r and v neglected and the no slip condition is dropped, there will still
be  a singular perturbation to the equations if the ε term, i.e. the 
nonlinear advection terms are ignored. This leads to an inertial
boundary layer.This equation in its entirety will be discussed more fully 
later.



An outline of where we will be going

1) Linear boundary layer theory

Ekman layers, Boundary layers in density stratified fluids, 
control of interior, experimental applications.

2) Coastal bottom boundary layer.

Boundary layer on shelf for upwelling and downwelling.

Observations (Lentz)

3) Boundary layers in the General Oceanic Circulation.

Sverdrup theory, Stommel, Munk, inertial boundary layers, 
inertial runaway,thermocline and its boundary layer 
structure.



Equations of motion

uux +vuy +wuz −2Ωv=−
1
ρ

px +ν uxx +uyy +uzz⎡⎣ ⎤⎦

uvx +vvy +wvz +2Ωu=−
1
ρ

py +ν vxx +vyy +vzz⎡⎣ ⎤⎦

uwx +vwy +wwz           =−
1
ρ

pz −g+ wxx +wyy +wzz⎡⎣ ⎤⎦

ux +vy +wz =0

Incompressible fluid in a 
rotating system.

If the density is not 
constant must add an 
ernery equation

We are interested in cases where ν is “small”. Must introduce 
scales.



The Ekman Layer

z Ω
U

x
ε vu y + w u z⎡⎣ ⎤⎦ − v =            

E
2

u zz + u yy⎡⎣ ⎤⎦

ε vv y + w v z⎡⎣ ⎤⎦ + u = −
∂p
∂y

+
E
2

vzz + v yy⎡⎣ ⎤⎦

ε vw y + w w z⎡⎣ ⎤⎦      =  −
∂p
∂z

+
E
2

w zz + w yy⎡⎣ ⎤⎦

v y + w z = 0

Far from the boundary the velocity is U(y).

Motion is independent of x (for simplicity)

The pressure has been 
scaled with ρ2ΩLU0

Lengths with L and 
velocity with U0

ε =
Uo

2ΩL
,    the Rossby number

E =
ν
ΩL2 ,   the Ekman number <<1



The solution far from the boundary

uI = U (y),

pI = − U (y ')dy '
y

∫ ,

vI = 0,

wI = 0.

z=E1/2

This is an exact solution of 
the equations of motion but 
does not satisfy the no slip 
condition on z =0.

ζ
We introduce the stretched, 
boundary layer variable.

δ e =
ν
Ω

⎛
⎝⎜

⎞
⎠⎟

1 / 2

,

Corresponding to using 
as a vertical scale,



In the new variable

∂
∂z

= E−1/2 ∂
∂ζ

,     
∂2

∂z2 = E−1 ∂2

∂ζ 2 w = E1/2W (y,ζ )

ε vu y + W u ζ⎡⎣ ⎤⎦ − v =            
1
2

u ζζ + E  u yy⎡⎣ ⎤⎦

ε vv y + W vζ⎡⎣ ⎤⎦ + u = −
∂p
∂y

+
1
2

vζζ + E  v yy⎡⎣ ⎤⎦

ε E vW y + W W ζ⎡⎣ ⎤⎦      =  −
∂p
∂ζ

+
E
2

W ζζ + E  W yy⎡⎣ ⎤⎦

v y + W ζ = 0

Initially consider ε small



Linear Ekman layer problem

−v =            
1
2

uζζ

+u = −
∂p
∂y

+
1
2

vζζ

    0  =  −
∂p
∂ζ

vy + Wζ = 0

The pressure is uniform 
in the boundary layer 
and so is equal to its 
freestream value p = pI (y),

∂p
∂y

=
∂pI

∂y
= −U(y)

− v =  
1
2

uζζ

u − U =
1
2

vζζ

   
v y + W ζ = 0

thus



The solution (1)

Λ=(u−U)+iv
∂ 2 Λ
∂ζ 2 = 2 iΛ

let

Λ=Λoexp(−1+i[ ]ζ)
u =U+e−ζ −Acosζ +Bsinζ[ ]
v= e−ζ   Asinζ +Bcosζ[ ]or

The conditions that 
both u and v vanish on 
z=ζ =0, yields 

A=U(y), B=0

u = U ( y ) 1 − e − ζ co sζ( )
v = U ( y )e − ζ sin ζ



The solution (2)

Note the overshoot

cross isobar flow perpendicular to U(y) U

v



The Ekman spiral

 



The cross isobar flow (in y direction) and Ekman “pumping”

vdz
0

∞

∫ =δe vdζ
0

∞

∫ =
δe

2
U(y) U

Pressure force
Cross isobar flow

W=−
1
2
∂U
∂y

1−e−ζ cosζ+sinζ( )⎡⎣ ⎤⎦

wI(y,0)=E1/2W(y,ζ→∞)=−E1/2Uy /2
and



Spin Down (1)

this vertical velocity is small but it can have a substantial effect on the interior 
flow and is, in many cases the primary mechanism for the destruction of otherwise 
inviscid motion in the interior. For example,  a positive relative vorticity will give 
rise to a positive vertical velocity out of the boundary layer. If the interior is 
bounded from above this will usually imply that a column of fluid in the interior is 
squashed and the result will be to decrease the relative vorticity by the inertial 
effects of vortex squashing.  The rate will depend on the Ekman number but the 
resulting spin-down time will be of the order of and so will be long 

compared with a rotation period of the system but short compared to a 
characteristic diffusion time .

Ω − 1 E − 1 / 2

Ω − 1 E − 1



Spin down (2)

ε
dω z

dt
=
∂w
∂z

For small ε

ε
dωz

dt
=−Ev

1/2w(z=0)=−Ev
1/2(−Uy /2)=−Ev

1/2ωz

2

T s =
2 ε

E 1 / 2
Non dimensional decay time

T*s =
L

Uo

Uo

ΩL
L

ν /Ω( )1/2 =
L

νΩ( )1/2
In dimensional (non 
dimensionless) units



Nonlinear modifications of the Ekman Layer

We can expect that nonlinearity will force additional terms in the 
solution but it will also be the case that it will change the structure of 
the O(1) solution. Since the boundary layer, in linear theory depends 
on the ratio of the viscosity to the rotation Ω, it is often assumed, 
heuristically, that  the first effect of nonlinearity is to change the 
thickness to something like ,                         

where f =2Ω (the Coriolis parameter and the planetary vorticity and 
where ω is the relative vorticity            . 

Hence, the expectation is that positive relative vorticity in the interior 
flow will make the boundary layer thinner. However, positive 
vorticity produces a vertical velocity that will tend to thicken the 
layer

δ = 2ν / ( f +ωz)⎡⎣ ⎤⎦
1/2

ωz = vx −uy



A new stretched variable

Z = εζ =
ε

E 1 / 2 z And consider all variables to be 
functions of both ζ and Z

∂
∂z

→ E−1/2 ∂
∂ζ

+ εE−1/2 ∂
∂Z

To order ε
ε vu y + Wuζ⎡⎣ ⎤⎦ − v =            

1
2

uζζ + 2εuζ Z + E  u yy⎡⎣ ⎤⎦

ε vvy + Wvζ⎡⎣ ⎤⎦ + u = −
∂p
∂y

+
1
2

vζζ + 2εvζ Z + E  vyy⎡⎣ ⎤⎦

εE vW y + WWζ⎡⎣ ⎤⎦      =  −
∂p
∂ζ

+
E
2

Wζζ + 2εWζ Z + E  W yy⎡⎣ ⎤⎦

vy + Wζ + εW Z = 0



The ε expansion

u = uo + εu1 + ...

uo =U − A(y,Z)e−ζ cosζ + B(y,Z)e−ζ sinζ,

vo = A(y,Z)e−ζ sinζ + B(y,Z)e−ζ cosζ

A(0)=U,     B(0)=0

Wo=C(Z)+
1
2
∂A
∂y

e−ζ sinζ+cosζ[ ]+∂B
∂y

e−ζ cosζ−sinζ[ ] C(0) = −
1
2
∂U
∂y



The solution for W0

the vertical velocity must be independent of z at least to order ε and E. This 
implies that C is independent of  Z

Wo=−
1
2
∂U
∂y
+

1
2
∂A
∂y

e−ζ sinζ+cosζ[ ]+∂B
∂y

e−ζ cosζ−sinζ[ ]



The next order problem

Λ1ζζ − 2iΛ1 = Ru + iRv,

Λ1 = u1 + iv1,

Ru ≡ 2 vouoy + Wouoζ⎡⎣ ⎤⎦ − 2uoζ Z ,

Rv ≡ 2 vovoy + Wovoζ⎡⎣ ⎤⎦ − 2voζ Z

Evaluating the terms in Ru and Rv
reveals that a combination of  
some of the terms will have the 
form of the homogeneous 
operator on the left hand side of 
the eqn. If left unaltered those 
terms would introduce spatial 
secular terms, i.e. solutions of the 
form 

and would render our expansion 
invalid for εζ=Z=O(1). To 
prevent that, the terms in Ru and 
Rv involving the derivatives of the 
coefficients with Z are used to 
eliminate all secular terms.

ζe−(1+i)ζ



Removing secular terms

Eliminating terms of the form e− (1+ i )ζ

leaves us with a differential eqn. in Z for A and B

 

∂
∂Z

A − iB[ ]+ A − iB[ ] −C
w  term
{ +

UIy

2i(1+ i)

vorticity  term6 74 84⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 0

C = −UIy

A−iB=UIe
−UIyZ/4eiUIyZ/4

=UIe
−UIyZ/4 cos(UIyZ / 4)+isin(UIyZ / 4)(

and so

)



The weakly nonlinear solution

A(Z) =Ue−Uy Z /4 cosUyZ / 4,

B(Z) = −Ue−Uy Z /4 sinUyZ / 4

or

vo =Ue−ζ 1+εUy /4⎡⎣ ⎤⎦ sin(ζ 1− εUy / 4⎡⎣ ⎤⎦)

uo =U 1− e−ζ 1+εUy /4⎡⎣ ⎤⎦ cos ζ 1− εUy / 4⎡⎣ ⎤⎦( )⎡
⎣⎢

⎤
⎦⎥

The exponential decay decreases when the relative vorticity is 
positive, i.e. when Uy < 0. The effect of the vertical velocity in 
thickening the boundary layer dominates the vorticity effect in 
determining the boundary layer thickness.



The vertical velocity

Wo=−
1
2
Uy 1−e−(ζ+UyZ/4) sin(ζ−UyZ/4)+cos(ζ−UyZ/4)⎡⎣ ⎤⎦⎡⎣ ⎤⎦

At lowest order

To complete the solution we need to find the next 
order corrections to u and v, i.e. to solve

Λ 1ζζ − 2 iΛ 1 = R u + iR v ,

Λ 1 = u 1 + iv1 ,

R u ≡ 2 v o u o y + W o u oζ⎡⎣ ⎤⎦ − 2 u oζ Z ,

R v ≡ 2 v o v o y + W o v oζ⎡⎣ ⎤⎦ − 2 v oζ Z

after the secular terms have 
been removed.



The non secular problem
(no particular religious meaning implied)

Runonsec = e−2ζ AAy + BBy + ABy − BAy⎡⎣ ⎤⎦ − iUye
−ζ (1−i)(A+ iB),

Rvnonsec = e−2ζ AAy + BBy + ABy − BAy⎡⎣ ⎤⎦

Λ 1 = u 1 + iv1

let

Λ1ζζ
−2iΛ1=e−2(ζ+γZ)(1+i)UUy−iUUye

−ζ(1−i)e−γZ(1+i) γ =Uy / 4

Λ1=UUy
(1+3i)

10
e−2(ζ+γZ) −e−ζ(1+i){ }+1/4 e−ζ(1−i)−γZ(1+i) −e−ζ(1+i){ }⎡

⎣⎢
⎤
⎦⎥



The cross isobar flux to order ε

E1/2 (vo +εv1)dζ =E1/2 1
2

U+ε
7
20

UUy
⎡
⎣⎢

⎤
⎦⎥0

∞

∫

linear nonlinear

The divergence of this flow yields the vertical 
velocity at the edge of the boundary layer

wI(y,0)=−E1/2 Uy +ε
7
40

Uy
2 +UUyy( )⎡

⎣⎢
⎤
⎦⎥



The form of the cross isobar flow to order to order ε

The panel on the left shows the cross isobar (v) flow for the linear solution (R0=0, solid line) and the 
solution corrected for nonlinear effects (R0= 0.5, dashed line – and clearly “pushing” the validity of the 
expansion). The panel on the left is for negative , uniform shear (positive relative vorticity) and the panel 
on the right is for positive shear (negative vorticity).
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Nansen’s problem

sea surface z=0

f/2 wind stress

ocean

U o =
2τ o

ρ fδ e

,     f = 2Ω

Scale for velocity −∞ ≤ z ≤ 0

uζ = τ ,      vζ = 0 (non dimensional)

− 2 v = u ζζ

+ 2 u = vζζ  
v y + W ζ = 0

linear problem



Ekman’s solution

u =
τ
2

eζ co s(ζ − π / 4 )

v =
τ
2

eζ sin (ζ − π / 4 )

u→τ/2,  v→−τ/2
ζas goes to zero

stress

Surface velocity



The profiles of velocity and the Ekman flux

The Ekman velocities  u (solid) and v(dashed) 

for a stress in the x direction.

U e = u dζ
0

∞

∫ = 0 ,

V e = v dζ
0

∞

∫ = − τ / 2

total flux is to the 
right of the stress. In 
dimensional units:

Ve
* =UoδegVe =−

2τo

ρfδe

δe
τ
2
=−

τ*

ρf
r

U*e = −
k̂ ×

r
τ *

ρ fIn general:



The Ekman hodograph spiral



The vertical velocity

W = −
1
2
∂τ
∂y

1− eζ cosζ⎡⎣ ⎤⎦

W (−∞) = −
1
2
∂τ
∂y

with dimensions restored and in 
vector  form,

 
we ≡

Uδe

L
W −∞( )= k̂g∇×(

r
τ* /ρf )

Nonlinear similar to previous example. However one simple 
result follows almost immediately.

For a wind stress of one 
dyne/cm2 the vertical velocity is 
order of 10-4 cm/sec ~ 10 
cm/day and is responsible for 
driving the major part of the 
ocean circulation.



Role of nonlinearity on Ekman transport (and pumping)

Consider stress in x direction but now include a very strong 
geostrophic current in the x direction whose scale is much greater 
than the Ekman depth. Again, with solutions independent of x

ε vu y + Wuζ⎡⎣ ⎤⎦ − v =            
1
2

uζζ + E  u yy⎡⎣ ⎤⎦

ε vvy + Wvζ⎡⎣ ⎤⎦ + u = −
∂p
∂y

+
1
2

vζζ + E  vyy⎡⎣ ⎤⎦

εE vW y + WWζ⎡⎣ ⎤⎦      =  −
∂p
∂ζ

+
E
2

Wζζ + EW yy⎡⎣ ⎤⎦

vy + Wζ Z = 0



The linearized equations

−
∂p
∂y

= u g (y ) >> u e ≈ τ
ρ f δ e

ε vu gy − v =
1
2

uζζ

u − u g =
1
2

vζζ

Vertically integrating and using

uζ =τ,      vζ =0

Ve =
−τ

2 1 − εugy⎡⎣ ⎤⎦
,

U e = 0



Ekman transport (dimensional)

 

r
U*e =−

k̂×
r
τ /ρ

f +ζg

Relative vorticity

Refs.
M. E. Stern 1965 Interaction of a uniform wind stress with a 
geostrophic vortex. Deep Sea Res. 12, 355-367
P.P. Niiler 1969 On the Ekman divergence in an oceanic jet. J. 
Geophys. Res. 74, 7048-7052

This holds only when the 
stress and geostrophic 
current are collinear 



General nonlinear formulation

Again, expand in a series in ε and introduce the “slow” variable

Z = εζ

Λ 0 = A(Z )eζ (1+ i ) , Λ 0 = uo + ivo

uo = ug (y) + eζ Ar cosζ − Ai sinζ( ),
vo = eζ Ai sinζ + Ar cosζ( ) Ar(0)=τ2    Ai(0)=−τ2

W0=−
τy

2
−

eζ

2
∂
∂y

Ai−Ar( )cosζ+ Ai+Ar( )sinζ⎡⎣ ⎤⎦



Order ε problem

1
2
Λ1ζζ −iΛ=−eζ(1+i) ∂

∂Z
(Ar −Ai)+i(Ar +Ai)[ ]

+eζ(1+i) −
τy

2
(Ar −Ai)+i(Ar +Ai){ }+ugy

2i
Ar +iAi{ }⎡

⎣
⎢

⎤

⎦
⎥

+eζ(1−i) ugy

2i
−Ar +iAi[ ]+e2ζ (1+i)

2
Ai(Ary +Aiy)+Ar(Ary −Aiy)⎡⎣ ⎤⎦

Possible resonant 
terms

Removing the secular terms leads to

Ar =
τ

21/2 e−Z τ y /2+ugy /4⎡⎣ ⎤⎦ cos(Zugy / 4 + π / 4)

Ai = −
τ

21/2 e−Z τ y /2+ugy /4⎡⎣ ⎤⎦ sin(Zugy / 4 + π / 4)



The structure of the O(1) solution

uo =ug +
τ

21/2 e
ζ 1−ε

τy

2
+

ugy

4
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ cos ζ(1−εugy / 4)−π / 4{ },

vo =            
τ

21/2 e
ζ 1−ε

τy

2
+

ugy

4
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ sin ζ(1−εugy / 4)−π / 4{ }

δε =
δ

1− ε τ y + ugy / 2{ }( )1/2 Boundary layer thickness

δ * =
2ν

f −
2τ *y*

ρ fδ
−

u*gy*

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1/ 2

dimensionalsame result if we linearize
in transition region around

ug(y) and W= -τy/2



Boundary layer flux to O(ε)

Solution for non secular forcing yields

εv1dζ
−∞

0

∫ =−
3
8
ετugy

And using the O(1) solution’s 
dependence on ε

(vo +εv1)dζ
−∞

0

∫ =−
τ
2
−ετ

τy

8
+

ugy

2
⎡

⎣
⎢

⎤

⎦
⎥

W(−∞)=
∂
∂y

vo+εv1
−∞

0

∫
⎛
⎝⎜

⎞
⎠⎟dζ

W(−∞)=−
1
2
∂
∂y

τ
1−ε ugy+τy /4{ }
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Thomas, L.N. and P.B. Rhines,  2002. Nonlinear 
stratified spinup. J.Fluid Mech., 473, 211-244 
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