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Recalling from lecture 2 that we are studying the general first-order linear stochastic ordi-
nary differential equation

∆X = f(X(t), t) + g(X(t), t)ξ(t)∆t , (1)

where ξ(t) is a Gaussian white noise, and

∆X(t) = X(t+ ∆t)−X(t) , (2)

with
X(0) = X0 . (3)

The first and second moments of the transition density are∫
(y − x)ρ(y, t+ ∆t|x, t)dy = E(∆X(t)|X(t) = x) = f(X, t)∆t , (4)∫

(y − x)2ρ(y, t+ ∆t|x, t)dy = E(∆X(t)2|X(t) = x) = f(X, t)2∆t2 + g(X(t), t)2∆t , (5)

The higher order moments (n > 2) are smaller than O(∆t):

E(∆X(t)n|X(t) = x) = o(∆t) . (6)

The Fokker-Planck equation

The Chapman-Kolmogorov relation for the Markovian probability density ρ gives the transi-
tion density from state y at time s to state x at time t (where s < t) through an intermediate
state z at time u, by integrating over all the possible intermediate states z:

ρ(x, t|y, s) =

∫
ρ(x, t|z, u)ρ(z, u|y, s)dz . (7)

This relation will be used here to interpret a stochastic differential equation as a continuous
limit of the discrete process above. Let ϕ(X) a smooth test-function.∫

ϕ(x)ρ(x, t+ ∆t|y, s)dx =

∫
dxϕ(x)

∫
ρ(x, t+ ∆t|z, t)ρ(z, t|y, s)dz

=

∫
dzρ(z, t|y, s)

∫
dxϕ(x)ρ(x, t+ ∆t|z, t) . (8)
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Expanding ϕ(x) about ϕ(z) for small ∆t we obtain

ϕ(x) = ϕ(z) + (x− z)ϕ′(z) +
(x− z)2

2
ϕ′′(z) + . . . . (9)

Hence, using the moments formulae (4) through (6), we have∫
ϕ(x)ρ(x, t+ ∆t|z, t)dx =ϕ(z)

∫
ρ(x, t+ ∆t|z, t)dx︸ ︷︷ ︸

=1

+ϕ′(z)

∫
(x− z)ρ(x, t+ ∆t|z, t)dx︸ ︷︷ ︸

=f(z,t)∆t

(10)

+
1

2
ϕ′′(z)

∫
(x− z)2ρ(x, t+ ∆t|z, t)dx︸ ︷︷ ︸

=f(z,t)2∆t2+g(z,t)2∆t

+O(∆t) . (11)

Thus ∫
ϕ(z)

(
ρ(z, t+ ∆t|y, s)− ρ(z, t|y, s)

∆t

)
dz = (12)∫ (

ϕ′(z)f(z, t) +
1

2
ϕ′′(z)g(z, t)2

)
ρ(z, t|y, s)dz +O(1) . (13)

Since ϕ(z) is arbitrary, in the continuous limit we obtain the following partial differential
equation (PDE) for the Markovian transition density ρ(x, t|y, s);

∂

∂t
ρ(x, t|y, s) =

∂

∂x

[(
−f(x, t) +

1

2

∂

∂x
g(x, t)2

)
ρ(x, t|y, s)

]
, (14)

known as the Fokker-Planck (or forward Kolmogorov) equation. To solve (14) we need
initial data and boundary conditions. Here we will only worry about the former, which is
given by

lim
t→s

ρ(x, t|y, s) = δ(x− y) , (15)

where the limit above is taken from the right (i.e., t > s). The derivation of the Fokker-
Planck equation can be generalized to higher dimensions. Consider the n-dimensional
stochastic process

X(t) = (X1(t), X2(t), . . .) = Xi(t) . (16)

The stochastic differential equation is

dXi

dt
= fi(x, t) + gij(x, t)ξj(t) , (17)

where the summation over repeated indices is implicit. The associated Fokker-Planck equa-
tion for the Markovian transition density is

∂

∂t
ρ(x, t|y, s) =

∂

∂xi

[(
−fi +

1

2

∂

∂xj
gikgjk

)
ρ(x, t|y, s)

]
, (18)

where we can introduce the symmetric positive, semi-definite diffusion matrix Dij
def
= gikgjk.

At this point it is important to remark that different interpretations of the stochastic dif-
ferential equation lead to different partial differential equations on the transition density.
We will take up this important fact later.
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Itô’s Lemma

Let Xt be a stochastic variable whose evolution is governed by the following SDE, according
to Itô’s interpretation:

dXt = f(Xt)dt+ g(Xt)dWt , (19)

and whose transition probability density satisfies the following Fokker-Planck (or Kol-
mogorov Forward) equation

∂ρX
∂t

=
∂

∂X

[(
−f +

1

2

∂

∂X
g(X)2

)
ρX

]
. (20)

We emphasize that the subscripts above are labels – they do not represent partial differen-
tiation.

Now consider a function of the random process X(t) with a well defined inverse

Y = F (X)⇐⇒ X = G(Y ) . (21)

We want to find a stochastic differential equation for Y and thus we write

ρY dY = ρXdX , (22)

and
∂

∂X
= F ′

∂

∂Y
or G′

∂

∂X
=

∂

∂Y
, (23)

from which we obtain

∂ρY
∂t

=
∂

∂Y

[(
−f +

1

2

∂

∂X
g2

)
F ′ρY

]
=

∂

∂Y

[(
−F ′f +

1

2

∂

∂X

1

F ′
(gF ′)2

)
ρY

]
. (24)

Finally, the equation for the Markovian transition density is then

∂ρY
∂t

=
∂

∂Y

[(
−F ′f − 1

2
F ′′g2 +

1

2

∂

∂Y
(gF ′)2

)
ρY

]
. (25)

Using our “recipe”, we obtain the associated stochastic differential equation

dY =

(
F ′f +

1

2
F ′′g2

)
dt+ gF ′dW , (26)

dF (X) = F ′(X)dX +
1

2
F ′′(X)(dX)2 , (27)

plugging in the equation for dX, using (dX)2 = g2dt+ o(∆t), we obtain

dF (X) =

(
F ′(X)f +

1

2
F ′′(X)g2

)
dt+ gF ′dW . (28)

Equation (28) is known as Itô’s change of variables formula or Itô’s lemma (note the extra-
term 1

2F
′′(X)g2, due to the presence of the noise).
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A linear example: The Ornstein–Uhlenbeck equation

Consider the following model
dU

dt
= −γU + σξ(t) , (29)

where γ and σ are constants, which is Langevin equation with a linear damping term (first
term on the right hand side), the second term being a fluctuation forcing. This could model
for example the acceleration of a solid body immersed in a fluid, resulting on the combination
of the Stokes drag (if the fluid happens to have a mean flow) and the constant battering of
molecules around the body (white noise). Using Itô’s interpretation, the associated Fokker-
Planck equation is

∂

∂t
ρ(u, t|v, s) =

∂

∂u

[(
γu+

σ2

2

∂

∂u
ρ(u, t|v, s)

)]
, (30)

with the initial condition
lim
t→s

ρ(u, t|v, s) = δ(u− v) . (31)

The solution is then

ρ(u, t|v, s) =
1√

2πΣ(t− s)
exp

[
−1

2

(u− ve−γ(t−s))2

Σ(t− s)

]
, (32)

with

Σ(t− s) def
=

σ2

2γ

(
1− e−2γ(t−s)

)
. (33)

To obtain an equation for the expectation of u, we just take the expectation of (29), to
obtain

dE(U)

dt
= −γE(U) , (34)

whose solution is
E(U) = ve−γ(t−s) . (35)

To derive an equation for the second moment, we first obtain an equation for U2. Using
Itô’s change of variables (28) we have

F = u2 , F ′ = 2u , and F ′′ = 2 , (36)

we obtain
dU2 = −2γU2dt+ 2UσdW + σ2dt . (37)

or
dU2 = 2UdU + σ2dt . (38)

The last term in (38) arises from the presence of the noise term. Now take the expectation
of (38) to obtain

dE(U2) = −2γE(U2)dt+ σ2dt , (39)

or
dE(U2)

dt
= −2γE(U2) + σ2 , (40)
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with the initial condition
E(U2) = v2 , t→ s . (41)

The Markovian density equilibrates to a stationary state

lim
t→∞

ρ(u, t|v, s) =

√
γ

πσ2
e−

γ

σ2 u
2

, (42)

which is in the form
ρstat(u, t|v, s) = ρ(u, t|v, s)ρstat(v) . (43)

For the stationary state, the covariance is

Estat(U(t)U(s)) =

∫ ∫
uvρ(u, t; v, s)dudv =

σ2

2γ
e−γ|t−s| . (44)

The power spectrum is simply the Fourier transform of the autocovariance C(t)

S(ω)
def
=

∫ ∞
−∞

C(t)e−iωtdt . (45)

Hence we obtain the Lorenzian spectrum

S(ω) =

∫ ∞
−∞

σ2

2γ
e−γ|t|−iωtdt =

σ2

γ2 + ω2
. (46)

Note that with (46) we can recover a flat spectrum in the white noise limit γ → ∞ with
appropriately rescaled noise amplitude.

Figure 1: The stationary covariance (left) and spectrum (right) for the Ornstein–Uhlenbeck
process with γ = 1 and σ2 = 0.1.
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A nonlinear example: The logistic equation

As an example of nonlinear equation, we consider the logistic equation

dX = (µX −X2)dt , (47)

where µ represents the ratio of birth rate to death rate, with initial condition X(0) = X0 >
0. This is also known as the Verhulst model for population dynamics. The behavior of the
deterministic equation (47) is well known; at large t, the solution approaches the fixed point
µ (this is sometimes referred to as the carrying capacity of the system).

We now consider a stochastic logistic equation by adding a white noise term to the ratio
of birth rate to death rate:

µ(t) = µ̄+ σξ(t) , (48)

with µ̄ a constant. The stochastic differential equation is then

dX = (µ̄X −X2)dt+ σXξ(t)dt , (49)

with the associated Fokker-Planck equation

∂ρ

∂t
=

∂

∂X

[(
X2 − µ̄X +

σ2

2

∂

∂X
X2

)
ρ

]
. (50)

Figure (2) shows numerical simulations for the stochastic logistic equation with two
different initial conditions and various levels of noise. As discussed above, the deterministic
behavior is well known; the solution initially grows (X(0) < µ) or decays (X(0) > µ) and
asymptotically approaches the steady state, or the carrying capacity of the system, µ. For
small noise (σ < 0.1), the solutions oscillate about the deterministic solution. For moderate
noise levels (σ2 ∼ O(1)), the solutions become very intermittent. For even larger levels of
noise, the solutions show a tendency towards extinction.

If there is a stationary state then it must satisfy

0 =
∂

∂X

[(
X2 − µ̄X +

σ2

2

∂X2

∂X

)
ρstat

]
. (51)

In general we can write

0 =
∂

∂X

[(
−f +

1

2

∂

∂X
g(X)2

)
ρstat

]
, (52)

from which we find

ρstat(X) =
N

g(X)2
exp

[
2

∫ X f(ξ)

g(ξ)2
dξ

]
. (53)

With the explicit f and g from the stochastic version of the Verhulst model, we obtain

ρstat(X) = NX2(µ̄/σ2−1)e−
2
σ2X . (54)

The normalization constant is defined as∫
ρstat(X)dX = 1⇒ N

(
σ2

2

)(2µ̄/σ2−1)

Γ

(
2µ̄

σ2
− 1

)
= 1 , (55)
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where Γ(x) is the gamma function. Note that for µ̄/σ2 ≤ 1/2 the normalization constant
defined above is not bounded. Thus there is no stationary state with support on x > 0.
For every small ε > 0, the probability for Xt to fall above ε > 0 as time goes to ∞ is 1
(convergence in probability).

Figure 3 shows a comparison of the stationary probability density (53) with empirical
probability densities at t = 50 based on 10000 numerical simulations, similar to those
presented in figure 2. With small noise, the probability density function almost Gaussian.
As the level of noise increases, the probability density becomes highly skewed (the solution
becomes highly intermittent). Moreover, there is a qualitative change in the behavior of the
stationary density functions for σ2 > 1.0 in (53). With a large level of noise, the probability
density function is compressed near x = 0 (the probability of extinction is very high).

Figure 2: Numerical solutions to the stochastic logistic equation with µ̄ = 1 for various
levels of noise. Note that σ2 = 0 is simply the deterministic solution. For high levels of
noise (σ2 > 1), one observes a tendency towards extinction.
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Figure 3: A comparison between the analytical stationary probability density function Eq.
(53) (solid lines) against the empirical probability function (dots) at t = 50 based on 10000
simulations of the stochastic logistic equation with µ̄ = 1. Note the qualitative change at
σ2 ≥ 1. (In these figure labels X from Eq. (53) is written as x.)
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