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On Earth, the origin of

1fe depended on

the evolution of non-ec

uilibrium redox

chemuistry that involves five of the
The “Big Six”~

H, C,N, O, Pand S

And at least 54 other “trace
elements’



Take Away 1
Life is Electric

 All organisms derive energy for growth and
maintenance by moving electrons from a
substrate to a product.

* All substrates and products must
ultimately be cycled.

* Biological processes are paired
(e.g., photosynthesis and respiration)



The ensemble of redox reactions are also

coupled on a
Planetary SCALE

Oxygenic Photosynthesis

2H,0 + CO, > (CH,0), + 0,

Aerobic Respiration:

(CH,0), + O, - 2H,0 + CO,




)

The electron “marketplace’

Maintaining life on a planet
requires recycling of electrons

What were the sources and sinks
of electrons 1in the Archean and
what are they today?



In the Archean Oceans ...

* [t was H,, Fe(ll), H,S and CH,0O



The major source of electrons
today is

LIQUID WATER
(H,0)









Take Away 2 — as per Vernadsky

All living organsisms on Earth
exchange a gas with their
environment — via redox
reactions

Many of the core metabolic
processes are related to gas
exhange reactions
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Take Away 3 — The
processes are not that
complicated

This metabolic map implies
there are only about core
genes responsible for all
electron transport reactions on
the planet!



Metals in protein “transistors”

il

HS~  CH4 [ Hp €= [CH,0]

Photosynthesis
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Motifs

* There appear to be only 35 motifs in all of

the extant electron transfer reactions in
nature.

* Decifering the evolutionary history of these
motifs is one of the grand challenges of
science.



A secondary structural tree of EC1 proteins

001

4Fe-4S type2 Iron hydrogenase
- 4Fe-4S type2 4Fe-4S ferredoxin
4Fe-4S  Nitrite/sulphite reductase
siroheme  Nitrite/sulphite reductase
— Aromatic-ring-hydroxylating dioxygenase
R Rieske iron-sulphur protein
Nitrate reductase
Aldehyde oxidase/xanthine dehydrogenase
Aldehyde oxidase/xanthine dehydrogenase
Aldehyde oxidase/xanthine dehydrogenase
Fe Desulfoferrodoxin
—— Cu  Multicopper oxidase
Zn  Superoxide dismutase
Cu Cytochrome c oxidase subunit Il
,— Fe Intradiol ring-cleavage dioxygenase
[ Fe Taurine catabolism dioxygenase TauD/TfdA
— Cu Peptidyl-glycine alpha-amidating monooxygenase
Fe Isopenicillin N synthase

Cu Copper amine oxidase
| [ Fe Extradiol ring-cleavage dioxygenase
Mn Germin, manganese binding site mangan

Formate reductase
4Fe-4S type2 NADH: ubiquinone oxidoreductase-like, 20kDa subunit iron
Nitrogenase/oxidoreductase
Nitrogenase/oxidoreductase
Ni  Nickel-dependent hydrogenase
Heme Nitric oxide synthase
4'__: 4Fe-4S type3 4Fe-4S ferredoxin
Fe Extradiol ring-cleavage dioxygenase
4Fe-4S Light-independent protochlorophyllide reductase
|E 4Fe-4S Nitrogenase iron protein, subunit NifH/Protochlorophyllide reductase
NADH: ubiquinone oxidoreductase-like
4Fe-4S type1 Iron hydrogenase
4Fe-4S type1 NADH: ubiquinone oxidoreductase-like
Fe Aromatic amino acid hydroxylase
Heme Multihaem cytochrome
Heme Cytochrome P450, E-class, group |
FE8-S7 Nitrogenase/oxidoreductase
(Fe4-S4)2  Nitrogenase/oxidoreductase
. . Heme Cytochrome P450, B-class
g'_}%;':’l/a‘lrg%'?ag%l}ee Heme Cytochrome P450, E-class, group IV ,
: ° Cu Di-copper centre-containing copper € ¢ &
Heme Heme peroxidase Sheet%
4Fe-4S type1 4Fe-4S ferredoxi

Kim et a|, Phil Trans 2013 |r_Cu Cytochfome c oxnda_se, subunit I.bacterlal .type
Hem Cytochrome c oxidase, subunit | bacterial type




Take Away 4

 On Earth, the electron transfer reactions
are almost entirely driven by Light
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Calculated Relative Quantum Yield
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Conclusions

1. In the first ca. 2.5 Ga of Earth’ s history, nature
invested heavily in R&D from which a “core” set
of metabolic machines evolved.

2. All of the key metabolic processes were
developed in prokaryotes

3. There are approximately 400 core metabolic
genes that make biological electrons flow
across the planet world.

4. These metabolic sequences are coupled on local
and planetary scales to facilitate an electron
market between C, N, O, and S.

5. The electronic potential is driven by light



Terrestrial Planet Finder
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Glows from other planets
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