Phytoplankton succession explains size-partitioning of
new production following upwelling-induced blooms
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Introduction

Coastal upwelling areas are highly variable eco-
systems which play a key role in global fisheries
thanks to intermittent episodes of high primary
production, mostly caused by large or chain-form-
ing diatoms (1). Global biogeochemical models,
such as the Tracers Of Phytoplankton with Allo-
metric Zooplankton (TOPAZ) model (2, 3), are of-
ten tailored to represent open ocean systems. They
generally perform poorly in reproducing the bursts
of high chlorophyll observed following upwell-
ing events. We hypothesize that this is because of
the inadequate, or lack of, representation of these
bloom forming large phytoplankton. In this study
(4) we varied the configurations of a modified ver-
sion of the TOPAZ model as a framework to re-
produce the observed patterns and timescales of
community succession and size-partitioned new

production in mesocosms simulating upwelling-in-
duced blooms (5).

(left and center) Ocean chlorophyll a and sea surface temperature from the MODIS Aqua sensor in cold, nutrient-rich upwelling
plumes off California (composite 23-30 April 2011) (6).

(right) Bloom-forming diatom species (top) Chaetoceros debilis, cell size 8-40 um, and Thalassiosira anguste-lineata, cell size 14-80 um,
dominated the plankton community biomass at the end of the mesocosm experiment (5) (micrographs courtesy of (7))

Results Conclusions & Perspectives

The most parsimonious model configuration having the best fit with observations,
in terms of timescale and size-partitioning of new production, was obtained us-
ing an optimized, carbon-specific maximum photosynthesis rate (P___ ) for each of
three phytoplankton size-groups (see table and (4)). The original parametrization
caused very rapid nutrient exhaustion and the “one-size-fits-all” P configura-
tion could not reproduce the patterns of size-partitioned new production.

e Size group-specific P is critical to represent biomass size structure succession.

e Large diatoms dominate through early, sustained high relative specific NO,’
uptake rate.

 Model representation of nutrient acclimation or diatom diversity was not
essential.

e We will apply these findings in a high spatial resolution model of an upwelling

region to simulate characteristic [Chla] >5 mg m~, using the Carbon, Ocean
Biogeochemistry and Lower Trophics (COBALT) model (8).
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