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1 Introduction

Mutual synchronization is a common phenomenon in biology. It occurs at different levels,
ranging from the small scale of the cardiac pace-maker cells of the SA (Sino-Atrial) and AV
(Atrium-Ventricular) nodes in the human hearth that synchronously fire and give the pace
to the whole muscle, to the coordinated behaviours of crickets that chirp in unison and of
fireflies that flash together in some parts of southeast Asia.

The dynamics of coupled oscillators is a very broad field of research; the approach we
have chosen is only one of the many that are possible. The question we would like to answer
is something like: “What special phenomena can we expect to arise from the rhythmical
interaction of whole populations of periodic processes?” [1].

Winfree [1] was the first to underline the generality of the problem, fixing the first as-
sumptions for a mathematical model. In his work each oscillating species (cell, or cricket,
or firefly) is modeled as a nonlinear oscillator with a globally attracting limit cycle; The
oscillators were assumed to be weakly coupled and their natural frequencies to be randomly
distributed across the population.

Kuramoto [2] proposed the first model (called for this reason the Kuramoto model). His
assumptions were that each oscillator is equal to the others, upto the frequency and phase,
that the system has a mean field coupling and that the amplitudes of the oscillations are all
the same (phase-only model). The equation of the model for the n oscillator is:

dθn
dt

= ωn +
K

N

N∑

j=1

sin(θj − θn) + ξn, (1)

where K is the coupling strength, ωn is a random variable with probability density function
g(ω) and ξn is white noise.

Defining as order parameter the complex number,

reiψ =

∑N
j=1 eiθj

N
, (2)

it’s possible to measure the synchronization among the oscillators phases: r = 0 corresponds
to the completely incoherent state, finite r to synchronization.

Kuramoto determined that r = 0 is always a steady solution; but there exists, in the
case of no added random noise, a critical value of the coupling parameter Kc = 2

πg(0) below

which only incoherent populations exist (r = 0). For K > Kc a population of synchronized
oscillators can exist (r > 0).
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Figure 1: Numerical simulations on the discrete Kuramoto model with N = 256, D = 0.01, K = 0.65;
(upper) time evolution of the probability density function computed on the trajectories of the system
splitting up the θ axe in sub-intervals; (lower) time evolution of the absolute value of the order
parameter
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Figure 2: Numerical simulations on the discrete Kuramoto model with N = 256, D = 0.01, K = 0.8;
(upper) time evolution of the probability density function computed on the trajectories of the system
splitting up the θ axe in sub-intervals; (lower) time evolution of the absolute value of the order
parameter
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The results of the numerical simulations, performed solving equation (1) with N = 256
and two different values of the coupling parameter K, are shown in figures (1) and (2); in the
upper panels the time evolution of the discrete probability density function 1 is plotted; in
the lower panels, the time evolution of the order parameter is displayed. The initial condition
is, in both cases, a population of oscillators with phases uniformly distributed in [0, 2π].

When K = 0.8 > Kc, in a very short time, the phases of the oscillators gather together in
a small range of angles and then begin drifting coherently. The order parameter grows quickly
and exhibits small oscillations due to the random noise added to the system (figure (2)).

A different situation arises with K = 0.65 < Kc; a coherent behaviour never starts, even
if small structures can be noticed: small population of oscillators synchronize and drift for
short periods of time. This is reflected in the order parameter that oscillates between 0 and
0.3 and decreases only slowly (figure (1)).

1.1 A continuous model

Using the approach sketched in the previous paragraph, it’s difficult to go much farther; it’s
not easy, for example, to answer questions such as ”Is the coherent state (K > Kc) stable?”

Strogatz & Mirollo [3] introduced a partial differential equation that describes the be-
haviour of the Kuramoto model in the limit N → ∞.

The idea is that, in the continuous limit, the state is described by a probability density
function: ρ(θ, ω, t). The Kuramoto equation (1) becomes:

v = ω + K

∫
∞

−∞

∫ 2π

0
sin(φ − θ)ρ(φ, ω, t)g(ω)dφdω, (3)

where v is the velocity at the point (θ, ω, t). Moreover, the density function ρ has to satisfy,
for each given ω, a normalization law

∫ 2π

0
ρdθ = 1; (4)

and a Fokker-Plank-type conservation law 2

∂

∂t
ρ(θ, ω, t) +

∂

∂θ
(ρ(θ, ω, t)v(θ, ω t)) = D

∂2

∂θ2
ρ(θ, ω, t), (5)

1The θ axis is divided into 64 intervals and, at each instant of time, the normalized histogram of the phases
of the oscillators is computed.

2The derivation of the two equations has the flavor of the BBGKY hierarchy in plasma physics and can be
found in [4]. Some rationalization of equation (5) can be given on recollecting that because the probability is
conserved,

∂

∂t

∫ θ2

θ1

ρ(θ)dθ = ρ(θ1)v(θ1) − ρ(θ2)v(θ2)

= −

∫ θ2

θ1

∂

∂θ
(ρv)dθ

ρt = −
∂

∂θ
(ρv),

and on remembering Einstein’s derivation of the diffusion equation in his work on the explanation of the
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where θ ∈ [0; 2π] and ω ∈ [−∞;∞].
The order parameter (2), in the continuous limit, becomes:

reiψ =

∫
∞

−∞

∫ 2π

0
eiθρ(θ, ω, t)g(ω)dθdω. (6)

2 Linear Stability Theory

Strogatz & Mirollo [3] worked on the linear stability of the continuous Kuramoto equation.
We will try to sketch the main results, useful for the discussion that follows.

With direct substitution into the equations (3) and (5), it can be seen that ρ0 = 1
2π is a

steady state solution for the system; it corresponds to the incoherent state with r = 0.
By linearizing ρ around the steady state solution, that is

ρ = ρ0 + ε(c(ω, t)eiθ + c∗(ω, t)e−iθ) + h.h.,

where ε is a small parameter and c∗ is the complex conjugate of c, then substituting into (3)
and introducing the notation

G(ω, t) =

∫
∞

−∞

∫ 2π

0
sin(φ − θ)ρ(φ, ω, t)g(ω)dφdω,

it can be seen that G is different from zero only for functions that have a component on
the bases eiθ and e−iθ. That is, the higher harmonics do not give any contribution and the
linearized equation (5) becomes

ct = −(D + iω)c +
K

2

∫
∞

−∞

c(ν, t)g(ν)dν. (7)

The discrete spectrum can be computed by seeking solutions of the form c(ω, t) = b(ω)eλt.
By substituting into equation (7), multiplying by g(ω) and integrating over ω, one finds the
dispersion relation,

1 =
K

2

∫
∞

−∞

g(ν)

λ + D + iν
dν. (8)

When λ is negative, the order parameter decays and the system reverts to the incoherent
state; vice versa for lambda positive, the order parameter exponentially grows and this is, in
the coupled oscillators system, the onset of synchronization.

The system has, also, a continuous spectrum at ω = −iD (see [3]). As the dissipation is
always positive, the modes in the continuous spectrum are either all decaying or, at most,
neutrally stable when D = 0.

Brownian motion [5], which indicates that

ρt = 2〈ξ2〉ρθθ

= Dρθθ
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Figure 3: Continuous spectrum for the dispersion relation (8) either for the case D 6= 0 (left) and
for the noise-free case with D = 0 (right). The discrete spectrum is composed of only one mode that
exists for K > Kc and lies to the right of the continuous spectrum (inside the grey region in the
picture); in the noise-free case the discrete mode either is unstable or doesn’t exist.

2.1 An example

Choosing as probability density function a lorentzian, that is

g(ω) =
1

π

1

ω2 + 1
,

the dispersion relation can be solved analytically; the computed growing rate λ is

sgn(λ + D)λ =
K

2
− 1 + D

and the critical coupling (that is the value of K at which the system is neutrally stable) is

Kc = 2(1 + D).

If D = 0, then Kc = 2
πg(0) ; this is the same result that Kuramoto found working on the

discrete system, as described in the introduction.

Summarizing, for K ≤ 2, the system does not have any discrete mode; for 2 < K < Kc

the system is stable and exponentially decaying; if K = Kc it has a neutral mode and with
K > Kc an unstable growing mode (figure (3(left))).

It’s interesting to notice that, if the dissipation is zero, the system can only be either
unstable, with a growing mode (K > Kc), or neutrally stable, with no mode (K ≤ Kc)
(figure (3(right))). But, looking at figure (4(right)), it can be seen that the order parameter
is, however, decaying exponentially.

How can we explained this apparent contradiction? Let’s look at the solution of the initial
value problem with K < Kc and the initial condition

c(ω, 0) =
2

π

1

ω2 + 4
.
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1−ω
2

1+ω
2 ; initial condition ρ̃0 = 1

2π
and ρ̃1 = ξ 2

π

1

4+ω
2 ; (left)

D = 0.01, Kc = 0.739, ξ = 0.001 and K = 0.8: over-critical coupling, the order parameter grows
linearly and then, when the nonlinearity becomes strong enough, saturates; (right) D = 0, Kc = 2− 4

π

, ξ = 0.1 and K = 0.5: under-critical coupling, the order parameter grows, initially, and then decays.
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Figure 5: (a): real part of the first Fourier component of ρ(θ, ω, t) at two different times, obtained with
the numerical simulation described in figure (4(right)). (b): real part of the first Fourier component
of ρ(θ, ω, t) at time t = 60 analytically computed. In both case is possible to observe the increasing
number of oscillations.

Integrating equation (7) via Laplace’s transform, we find that

c(ω, t) = {
2

π

1

ω2 + 4
−

1

3π

5

2iω − 1
−

1

3π

1

2 − iω
}eiωt

+
5

3π

1

2iω − 1
e−( K

2
−1)t +

1

3π

1

2 − iω
e−2t.

Evidently, the function c(ω, t) is proportional to the non-decaying and non-separable term
eiωt. As time goes on, this term becomes increasingly crenellated.

What we are seeing here is equivalent to the Landau damping in plasma physics; the
order parameter is proportional to the integral of the function c(ω, t); even if the latter
doesn’t decay, as soon as it starts crenellating, the positive and negative part cancel and the
integral decreases.

In fact, computing the absolute value of the order parameter, we have

r =
10

3
e−( K

2
−1)t −

4

3
e−2t

which decays exponentially as t → ∞.

3 Numerical Integration

The integration of the discrete model (equation (1)) has been performed with a fixed step
(∆t = 0.1), fully-implicit predictor-corrector scheme. The fixed time step is forced by the
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noise added to the derivatives that avoids the convergence of most adaptative methods.
In the continuous model (equations (5) and (3)) the density function ρ is periodic with

period 2π, so the latter can be expanded in the Fourier series:

ρ(θ, ω, t) =
∞∑

m=−∞

ρ̃(θ, t)eimθ

Substituting into the equations (5) and (3), we obtain the system of nonlinear ordinary
differential equations for the Fourier coefficients ρ̃m:

ρ̃0t = 0,

ρ̃mt = −Kπm〈ρ̃−1〉ρ̃m+1 − (imω + Dm2)ρ̃m + Kπm〈ρ̃1〉ρ̃m−1

for m 6= 0

where

〈f(ω)〉 =

∫
∞

−∞

f(ω)g(ω)dω (9)

For each value of ω, truncating the Fourier series at m = L, the system can be efficiently
integrated (a semi-implicit Adams-Bashfort-Moulton predictor-corrector scheme leads to the
inversion of a tri-diagonal matrix). We used L = 16, 32, 64, 128 in the computations; the
smaller the dissipation or the longer time windows considered, the bigger the number of
Fourier components necessary to approximate properly the Kuramoto system. We found
L = 32 a good compromise in many situations.

A little more attention is needed for the evaluation of the integral (9). We found that
the most efficient way of computing it is via Gauss-Legendre quadrature formulae, setting
compact support for g(ω), and using the solution for ρ, produced at the previous available
time step.

In figures (6) and (7) the solutions computed for ρ(θ, ω, t) are shown; in the sub-critical
case, when the coupling parameter K is smaller than Kc, stripes of probability can be noticed,
which increase in number and, slightly tilting, start shrinking. At fixed θ, this is the same
crenellation as described above and seen in figure (5).

When K > Kc, in the super-critical case, the probability gathers, initially, in a stripe-
like area, but immediately also starts to deplete from the central region. Unlike before, the
number of stripes doesn’t increase (in this case there’s no Landau damping); two areas collect
the whole probability. The process is reminiscent of the formation of a shock layer in the
white regions in figure (7), but a truely weak solution does not form due to the dissipation
introduced by the noise.

4 A symmetry property

Looking at the numerical results of the previous section, it can be observed that, starting
from ρ(θ, ω, 0) and g(ω) which are even functions in ω, a symmetry is preserved during the
evolution of the dynamics; that is ρ(θ, ω, t) = ρ(−θ,−ω, t). This behaviour can be explained
in a general way.
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Figure 6: ρ(θ, ω, t) at six successive instant of time obtained via numerical integration of the Ku-
ramoto continuous model with D = 0 and K = 0.5 (see figure (4)(right) for further details). The
coupling K is sub-critical.
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Figure 7: ρ(θ, ω, t) at six successive instant of time obtained via numerical integration of the Ku-
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Let’s start stating that the probability density function is so that, for each integer n,

ρ(θ, ω, t) = ρ(θ + 2πn, ω, t) = ρ(2πn − θ,−ω, t) = ρ(−θ,−ω, t). (10)

The symmetry property will be proved by construction.
Let’s expand sin(φ − θ) in equation (3); the first integral can be rewritten

∫
∞

−∞

∫ π

−π
sin(φ)ρ(φ, ω, t)g(ω)dφdω (11)

=

∫
∞

−∞

∫ 0

−π
sin(φ)ρ(φ, ω, t)g(ω)dφdω +

∫
∞

−∞

∫ π

0
sin(φ)ρ(φ, ω, t)g(ω)dφdω;

If we make the change of variables φ′ = −φ and ω′ = −ω and we use equation (10), expres-
sion (11) becomes

(11) = −

∫
∞

−∞

∫ π

0
sin(φ′)ρ(φ′, ω′, t)g(ω′)dφ′dω′ +

∫
∞

−∞

∫ π

0
sin(φ)ρ(φ, ω, t)g(ω)dφdω

= 0.

At the end,

G(θ, t) = − sin(θ)

∫
∞

−∞

∫ π

−π
cos(φ)ρ(φ, ω, t)g(ω)dφdω

= −G(t)sin(θ). (12)

Substituting (12) into equation (5), it can be noticed that ρ(−θ,−ω, t) is a solution of the
Kuramoto model.

5 Weakly Nonlinear Theory

When K = Kc, the system is, by definition, linearly neutrally stable. In this situation and
for D 6= 0, Bonilla & al. [6] and Crawford [7] developed an asymptotic expansion around
the equilibrium solution and derived a Landau-type ordinary differential equation for the
amplitude of the perturbation.

Defining ε � 1, they chose the scalings,

ε2t = T

∂t = ∂T ε2,

where T is the slow time (when t is very big, T is small),

K = Kc + ε2K2 + · · ·

12



and expanded the function ρ such that

ρ(θ, ω, T ) =
1

2π
+

= ε(ρ1(ω)a1(T )eiθ + ρ∗1(ω)a∗1(T )e−iθ) +

= ε2(ρ2(ω)a2(T )eiθ + ρ∗2(ω)a∗2(T )e−iθ) +

= ε3(ρ3(ω)a3(T )eiθ + ρ∗3(ω)a∗3(T )e−iθ) +

= o(ε4).

From equations (5) and (3) it follows that

ε2
∂ρ

∂T
= −ω

∂ρ

∂θ
−

∂

∂θ
ρK

∫
∞

−∞

∫ 2π

0
sin(φ − θ)ρg(ω)dφdω + D

∂2ρ

∂θ2

and
G = εG1 + ε2G2 · · ·

At the first order (O(ε)) :

ρ1 =
K

∫
∞

−∞
ρ1(ν)g(ν)dν

2(ω − iD)
.

Continuing to O(ε3), eventually, one derives the amplitude equation,

a1T =
K2

2
a1 + (Kcπ)2I|a1|

2a1

where

I =

∫
∞

−∞

ρ1g(ω)

ω − 2iD
dω = constant

We can see from the expression for ρ1 that this kind of approach is not satisfactory when
D = 0; ρ diverges at ω = 0, but as long as it’s a probability density, this can not have any
physical meaning and has to be avoided.

5.1 Weakly Nonlinear Theory: D 6= 0, but small

In this section we try to sketch how it’s possible to develop an asymptotic expansion for the
case 1 � D 6= 0. Let’s choose the variables to scale as in the previous case (Hopf scaling)
but let’s say that D = ε2D2. The motivation for this scaling can be found in the numerical
experiments we performed and in the analysis by Daido and Crawford [4].

Substituting, as in the previous paragraph, into the equations (5) and (3) we have

ε2ρT + (
Gθ

2π
+ (ρG)θ)(Kc + ε2K2) = ε2D2ρθθ
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and at the first and second order we can derive the following expressions for ρ1 and ρ2 :

O(ε) : ωρ1θ +
G1θKc

2π
= 0,

ρ1 = −
KcG1

2πω

O(ε2) : ωρ2θ +
G2θKc

2π
= −Kc(ρ1G1)θ,

ρ2 =
K2
cG

2
1

2πω2
−

KcG2

2πω
.

Here is the problem we have to overcome; to treat properly the case D � 1 we need a
critical layer around ω = 0; in fact, at this point, the asymptotic expansion breaks down and
ρ2 is bigger than ρ1 .

Inside the critical layer, we set the new independent and dependent variables

ω = εy

ρ = Z(θ, y, T ) = Z0 + εZ1.

The equation in the inner region becomes

ε2ZT + εyZθ + (
Gθ

2π
+ (ZG)θ)(Kc + ε2K2) = ε2D2Zθθ

and at the first two orders

O(ε) : yZ0θ +
G1θKc

2π
+ Kc(Z0G1)θ = 0,

Z0 = −
1

2π

KcG1

y + KcG1

O(ε2) : yZ1θ +
G2θKc

2π
+ (Z1G1)θKc =

−Z0T − (Z0G2)θKc + D2Z0θθ,

((y + KcG1)Z1 +
KcG2

2π
)θ =

F(
G1T

(y + KcG1)2
,

G1θ

(y + KcG1)2
,

D2G
2
1θ

(y + KcG1)3
)

where F is a function, that for our purpose we not need derive.
Even in the inner region we still have trouble: when y + KcG1 = 0, Z0 diverges and Z1

diverges even more; the asymptotic expansion breaks down another time.
This is very peculiar; the first inner layer is not sufficient at all and it’s necessary for

another critical layer, a second, inside the first. Moreover the shape of this inner layer is
peculiar: it develops around the curve y + KcG1 = 0. The whole situation is sketched in
figure (8).

In this second inner layer we define the new independent variable

y + KcG1 = εαξ

14
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and the new dependent variable

Z = Γ(θ,
y + KcG1

εα
, T ).

Deriving a new equation, in this second inner layer, is very technical and we will not
develop it. The reason lies in the strange relation between T , θ and ξ, imposed by the shape
of the layer. On the change of variable to ξ, the θ and T derivatives pick up additional
ξ−derivatives,

[Zθ]y,T = [Γθ]ξ,T +
KcGθ

εα
[Γξ]θ,T

[ZT ]y,θ = [ΓT ]ξ,θ +
KcGθ

εα
[Γξ]T,θ

and this makes it much more complex to derive useful analytical expressions.
We conclude this section sketching an argument for determining the scaling parameter α.

We can deduce from the relations (13) the scaling for Z0 and Z1,

O(ε) : Z0 ∼ O(ε−α)

O(ε2) : Z1 ∼ O(ε−2α OR D2ε
−3α).

Hence Z1 scales in different way depending on the value of D2.
We now apply the condition that Z0 and εZ1 have to scale at the same order, which is

where the expansion formally breaks down and we enter the innermost region. There are
two different situations, depending upon the value of D2: if D2 = 0, then α = 1, and when
D2 6= 0, then α = 1/2. The reason of the scaling we chose for D becomes, now, more clear and
we would have lost this double behaviour with a higher scaling of the noise term (D → εβD
with β > 2).

Summarizing the results in this section, when D is finite but small, the derived asymptotic
expansion reveals that we need, at least, two critical layers, one inside the other. The first,
around ω = 0, is of order ε; the second, snake-shaped, is inside the first and has a characteristic
width that depends upon the value of D2.

6 Steadily propagating solutions

In this section we look for steadily propagating solutions for ρ, that is

ρ(θ, ω, t) = ρ(θ − Ωt, ω),

where Ω is the propagation velocity.
Substituting this expression into equation (3) and making the change of variable Φ =

φ − Ωt, we find

G(θ, t) =

∫
∞

−∞

∫ 2π

0
sin(φ − θ)ρ(φ − Ωt, ω)g(ω)dφdω

=

∫
∞

−∞

∫ 2π

0
sin(Φ − (θ − Ωt))ρ(Φ, ω)g(ω)dΦdω

= G(θ − Ωt, ω).
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From this, we can observe that G preserves the dependence on (θ − Ωt) that ρ is supposed
to have.

Equation (5), in the situation D = 0, becomes

(ω − Ω)ρθ + k(Gρ)θ = 0; (13)

integrating over θ

ρ =
J (ω)

ω − Ω + kG(θ − Ωt)
(14)

where J (ω) is a generic function of ω.
As N.J.B. says in these situations, we are in bad shape; as long as ρ is a probability

distribution function, it can not have singularity; as long as ω is a real variable that spans
the entire real axis, the pole from the denominator of ρ is hard to avoid.

This is an interesting point; if the dissipation is zero the system does not admit steadily
propagating solutions. But what happens when the dissipation is small?

If D 6= 0, equation (13) has an additional term, and after the integration over θ, we have

(ω − Ω)ρ + kGρ = J (ω) + Dρθ. (15)

For the sake of simplicity, let’s say that we have fixed ω to a certain value; then there’s a
value of Θ = θ − Ωt at which the denominator of equation (14) vanishes; we call this value
∆.

As D → 0, ρ scales as 1/(Θ − ∆); hence we need an inner layer in the proximity of
Θ − ∆ = 0 in which the dissipative term becomes important. For this reason we choose the
following scaling and variables,

Θ − ∆ = εδ

ρ =
1

ε
R

D = ε2

Substituting in equation (15) and noting that ∂θ = ∂Θ = ε−2∂δ we have

kGΘ(∆)δR = J (ω) + Rδ

Integrating over δ, we can find the expression of the probability distribution function in the
inner layer and check the condition for the matching with the outer:

Rδ = kGΘ(∆)δR − J (ω)

(Re
−kGΘ(∆)δ2

2 )δ = −J (ω)e
−kGΘ(∆)δ2

2

R = R0e
kGΘ(∆)δ2

2 − J (ω)e
kGΘ(∆)δ2

2

∫ δ

−∞

e
−kGΘ(∆)δ

2

2 dδ.

The value of R0 can be computed with the normalization condition (4).
This solution is potentially dangerous; it has to be bounded, otherwise it again diverges;

moreover in the limit of δ going to infinity (that is, going out of the inner layer) R has still
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Figure 9: Steadily propagating solution with Ω = 0: a sketch of ρ(θ, ω). Near the phase θ (where
ω + KG(θ) = 0 and G′(θ) < 0) a critical layer (light gray region) is necessary. In the outer layer ρ is
zero everywhere.

to be limited, for a proper matching with ρ. Using these two conditions, we fix the value of
J (ω) and R0

J (ω) = 0 for GΘ(∆) < 0,

J (ω) = 0, R0 = 0 for GΘ(∆) > 0, (16)

The matching with the outer layer is straightforward; as δ goes to infinity, R it’s zero and
ρ is zero everywhere. In figure (9) is shown a sketch of the situation for Ω = 0.

Summarizing this result, steadily propagating solution can not develop for D = 0; with D
finite, but small, they exist only in a small layer, that follows the line (ω−Ω+kG(θ−Ωt)) = 0
where GΘ(∆) < 0.

The probability density ρ is exponentially small everywhere in the outer layer; for this
reason the integral for G is limited to the inner, and

G(Θ, t) =

∫
∞

−∞

∫ 2π

0
sin(Φ − Θ, t))ρ(Φ, ω)g(ω)dΦdω

=

∫
∞

−∞

∫
∞

−∞

sin(∆(ω) − Θ, t))R0e
kGΘ(∆)δ2

2 g(ω)dδdω

6.1 An example: Ω = 0

Let’s say that Ω = 0, so that we look for a steady solution of the kind ρ(θ, ω). In this case,
steadily propagating solutions can develop only along the line ω + KG(θ) = 0.

Choosing a symmetric initial condition and applying relation (12), the curve becomes

ω = KG(t) sin(θ).
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Moreover, along the line, solutions can form only where Gθ < 0, that is

−G(t)
d sin(θ)

dθ
< 0

d sin(θ)

dθ
> 0,

as K and G are both positive. In figure (10) this prediction is compared to the actual solution,
obtained with the numerical simulations. As it can be seen, the agreement is evident and
this explains the depletion of probability noticed in the middle of the plane θ-ω, in figure (7).

7 The case g(ω) = δ(w)

In the previous two sections we appreciate that, if we set D small, but different from zero, it’s
possible to perform an asymptotic expansion and steadily propagating solutions can develop.
But what happens when D = 0? The described approach only underlined that this is a critical
situation. In this section, with D = 0, we will show how is possible to solve analytically the
Kuramoto equations in the case that g(ω) is a Dirac’s delta function.

In this case all the oscillators share the same frequency ω = 0 and have different phases.
Starting from a symmetric initial condition, that is ρ(θ, 0) = ρ(−θ, 0), and using prop-
erty (12), equations (5) and (3) become

ρt(θ, 0, t) − k∂θ(ρ(θ, 0, t) sin(θ)

∫ 2π

0

∫
∞

−∞

cos(φ)ρ(φ, 0, t)δ(ω)dωdφ) = 0

ρt(θ, t) − k∂θ(ρ(θ, t) sin(θ)

∫ 2π

0
cos(φ)ρ(φ, t)dφ = 0;

Setting

F(t) =

∫ 2π

0
cos(φ)ρ(φ, t)dφ,

the last relation becomes

ρt − k sin(θ)F(t)ρθ = k cos(θ)F(t)ρ. (17)

We solve this equation by the method of characteristics; for equation (17) the character-
istic equation is

dt

1
=

dθ

−k sin(θ)F(t)
=

dρ

k cos(θ)F(t)ρ
.

Hence,

dθ

dt
= −k sin(θ)F(t)

dρ

dt
= k cos(θ)F(t)ρ.

Solving the first, we obtain

tan(
θ

2
) = tan(

θ0

2
)e−k

∫ t

0 F(t′)dt′ ; (18)
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Figure 10: ρ(θ, ω, t) at t = 180 obtained via numerical integration of the Kuramoto continuous model
with D = 0.01 and K = 0.8 (see figure (4)(left) for further details). UPPER: contour plot of ρ; the
super-imposed sketched line is ω = KG(t) sin(θ). The steadily propagating solution (with Ω = 0) can
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dividing the first with the second

dρ

dθ
= −ρ cot(θ)

ρ sin(θ) = constant = ρ0(θ0(θ, t)) sin(θ0(θ, t)).

The derivation here becomes a little technical :

ρ = ρ0

2 tan(θ0/2)
1+tan2(θ0/2)

2 sin(θ/2) cos(θ/2)
= ρ0

2 tan(θ/2)E(t)
1+tan2(θ/2)E2(t)

2 sin(θ/2) cos(θ/2)

= ρ0
e−kq

e−2kq cos2(θ/2) + sin2(θ/2)

where q =
∫ t
0 F(t′)dt′ and E = ekq.

As time goes on, we expect the order parameter to saturate to a certain constant value;
this is what we saw in the numerical simulations. The order parameter is, by definition,
proportional to G by a factor 2π. Calling F the saturation value of G then q, the integral of
F , becomes

q ∼ Ft as t → ∞.

Choosing, now, the initial condition ρ0 = cos(θ0), and recalling relation (18), we find

ρ0 =
1 − tan2(θ0/2)

1 + tan2(θ0/2)
=

1 − tan2(θ/2)E2

1 + tan2(θ/2)E2

=
e−2kq cos2(θ/2) − sin2(θ/2)

e−2kq cos2(θ/2) + sin2(θ/2)

Finally, substituting ρ0 into the expressions for ρ and q we have

ρ = e−kq
e−2kq cos2(θ/2) − sin2(θ/2)

(e−2kq cos2(θ/2) + sin2(θ/2))2

and
dq

dt
= e−kq

∫ 2π

0
cos(θ)

e−2kq cos2(θ/2) − sin2(θ/2)

(e−2kq cos2(θ/2) + sin2(θ/2))2
dθ (19)

The integral in (19) can be evaluated in the limit that q goes to infinity. Making the
change of variable θ = 2xe−kq and expanding in Taylor’s series the trigonometric functions,
it becomes:

dq

dt
=

∫
∞

−∞

−2x2

(1 + x2)2
dx = −2π

q = −2πt

Summarizing, as the time goes on, q grows linearly; ρ becomes small everywhere except
near θ = 0 where ρ ∼ ekq, so that it grows exponentially. The dynamics brings probability
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toward a singular phase (the point θ = 0 here); this is exactly what we saw in the numerical
simulation, although with different g(ω), and along a curve on the (θ, ω) plane.

Concluding, the solution is a spike-shaped shock-like object. This is also consistent with
another fact, which is namely that, with g(ω) = δ(ω) and the alternative coupling, sin(φ −
θ) → δ(φ − θ), the Kuramoto model reduces to the Burger’s equation,

ρt(θ, 0, t) + [Kρ2(θ, 0, t)]θ.

8 Discrete vs. Continuous

An important question is whether the continuous approximation, made in the limit N → ∞,
remains valid with a relatively small number of oscillators. That is, if the results, obtained
in the previous sections, are applicable to equation (1).

We don’t have a final answer to such a question, but, comparing figures (11) and (12),
obtained from the discrete model with N = 256, with (6) and (7), can be seen that the main
behaviours are the same. In particular, in figure (12), we see the probability gathering in two
symmetric areas of the plane, as in the continuous case of figure (7).

A peculiarity of the discrete case is that the concentration of probability drifts in the
θ direction; we suppose this to be related to the fact that, although the probability den-
sity function, from which the initial condition is extracted, is symmetric, the actual initial
condition is not.

9 Conclusions and other remarks

The Kuramoto model generates many interesting results; many more than what we were
expecting. So, in this report, for brevity reasons, we have omitted several of the analyses we
made. We mention two particular ones here:

First, we studied the issue of transient amplification: starting from a situation of equi-
librium with a sub-critical coupling, and imposing perturbations of different intensities, one
can find solutions to the linear initial-value problem that grow to arbitrarily large amplitude
before decaying. One important question is whether this transient growth induces nonlinear
behaviour in the full system before the disturbance can decay. But, from the numerical sim-
ulations, the system appears to be very robust, with a decay that is very much similar to
what predicted by the linear theory no matter how big the transient growth. In other words,
the nonlinearity of the system doesn’t provide any new, unexpected behaviours.

Second, we also applied Nyquist methods to the linear stability problem: in the linear
analysis section we computed analytically the value of the growth rate and the critical value
of the coupling parameter for the Lorentzian. For general g(ω), the integral in (8) can be
solved numerically to furnish similar results, but in many situations it is helpful to have a
quick, general understanding. We used the Nyquist criteria to derive the following result
that, here, we only state: the maximum number of unstable growing rates, for the linearized
Kuramoto system, is the number of monotonic pieces of g(ω) divided by two.

On the other hand, there is further work to be done in at least two different directions:
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Figure 12: The same as in figure (11) except K = 0.8 (super-critical coupling).
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• the comparison of the discrete and continuous model is only sketched and needs more
numerical explorations. Moreover, do traveling solutions, as we saw in figure (12), exist
in the continuous case? In figure (1) structures can be noticed, even if the coupling is
sub-critical and we are expecting incoherence. What is the origin of these structures?
Do they only depend on the initial condition?

• The change in the form of the coupling seems to be critical (see ad example [4] and [8]).
What happen if the coupling is different than sin(φ − θ)? Why?
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