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1 Introduction

Data assimilation is a crucial component of numerical weather prediction (NWP) schemes. It
is the method by which the initial conditions for the model are determined. NWP models
are obviously not perfect models of the atmosphere but if they were then the accuracy of the
initial conditions would be the sole factor determining the forecast skill of the model.

Data assimilation involves using time series of observations over the recent past to estimate
the state of the system at the present moment. Simply using the observations taken at the
present moment is not enough because firstly these observations will contain errors and sec-
ondly these observations are incomplete. That is, there is not an observation of every relevant
variable at every model gridpoint.

Data assimilation methods can be placed into two categories. Sequential methods such as
nudging integrate the model forward in time with extra non-physical forcing terms which push
the model towards the observations. If the model is linear (which NWP models are not) then it
can be shown that the optimal nudging scheme takes the form of a Kalman filter. Variational
methods seek to minimize a cost function which is the measure of the misfit between the model
and observations over the assimilation period. Variational methods are regarded as the “next
generation” of assimilation schemes and they are now used operationally.

An important distinction between sequential schemes and the variational method is that
the model is used as a strong constraint and thus the trajectory that results from assimilation
(called the analysis) must be a valid trajectory of the model. This is not so in sequential
methods in which observations are essentially blended with the model. This means that if the
aim of assimilation is to validate the model the variational method is to be preferred. In this
paper only variational based assimilation schemes will be considered.

In section 2 the adjoint method will be described. The Lorenz model will then be used to
illustrate the problem of multiple minima when assimilating into strongly nonlinear models.
The problem of data assimilation in strongly nonlinear systems has been addressed by several
researchers [Stensrud and Bao, 1992, Miller et al., 1994, Pires et al., 1996, Evensen, 1997]. As
with this previous work the Lorenz model will be used as a simple example. However, the
previous work has assumed that the system and the model are identical. In this work the case
when the model is not an exact copy of the system will also be considered. The Quasi Static
Variational Algorithm (QSVA) [Pires et al., 1996] will be explained and simple but effective
improvement to this method will be outlined. The modified and standard QSVA algorithms
will be compared in section 5.



2 Variational data assimilation and the adjoint method

As the name suggests variational data assimilation uses a variational method to find the model
state at time t = 0 which leads to the best fit between the model and observations over the
period 0 < t < T . “Best fit” is usually means the minimum mean square error but other cost
functions (or objective functions) can be used. The computational efficiency of the variational
method is greatly aided by the existence of a means to calculate the gradient of the cost function
in the space of initial conditions which is only slightly more computationally expensive than
calculating the cost function itself. This is done by integrating the model equations forward
in time and then integrating the adjoint version of the model backwards in time.

Consider a time-discrete dynamical model, M, which can be written as

xt+1 = M(p,xt) (1)

where p is a vector of model parameters and xt is the state of the model at time t. An objective

function, J , which is a measure of the misfit between the model and the actual observations is
now introduced. The goal is to minimize the objective function, J , under the constraint given
by Eq. 1. This can be done using the method of undetermined multipliers. Thus the function
that must be minimized is

L = J +
T

∑

t=0

λ′

t(xt+1 − M(p,xt)) (2)

where λt is the vector of undetermined multipiers and a prime denotes the transpose. Differ-
entiation of Eq. 2 with respect to λt recovers the original model equation. Differentiation of
Eq. 2 with respect to xt gives

∂J

∂xt

−

(

∂M(p,xt)

∂xt

)

′

λt + λt−1 (3)

Eq. 3 can be rearranged to give

λt−1 =

(

∂M(p,xt)

∂xt

)

′

λt + Gt (4)

where

Gt = −
∂J

∂xt

(5)

Eq. 4 is sometimes called the adjoint equation. Notice that it can be solved by integrating it
backwards in time forced by the forcing function Gte The initial condition for λ is λN = 0.
It will be shown below that this initial condition will result in the vector λ0 being equal to
the negative of the gradient of the objective function with respect to the initial condition, x0.
First J is differentiated with respect to the initial condition, x0, to obtain

∂J

∂x0

= −
T

∑

t=0

(

∂xt

∂x0

)

′

Gt (6)



The matrix of partial derivatives in Eq. 6 must now be evaluated. This can be done by
induction as follows.

∂xt

∂x0

=
∂M(p,xt−1)

∂x0

=
∂M(p,xt−1)

∂xt−1

∂xt−1

∂x0

(7)

Taking the transpose of Eq. 7 gives

(

∂xt

∂x0

)

′

=

(

∂xt−1

∂x0

)

′
(

∂M(p,xt−1)

∂xt−1

)

′

=

(

∂xt

∂x0

)

′

M′

t−1 (8)

In the last step the matrix Mt has been introduced for convenience. This matrix is defined as

M′

t =

(

∂M(p,xt)

∂xt

)

′

(9)

Substitution of Eq. 8 into Eq. 6 gives

∂J

∂x0

= −
T

∑

t=0

M′

1M
′

2...M
′

t−1Gt (10)

It will now be shown that λ0 is equal to the negative of the expression given in Eq. 10. First
Eq. 4 is rewritten as

λt−1 = M′

tλt + Gt (11)

Thus λt−2 can be expressed as
λt−2 = M′

t−1λt−1 + Gt (12)

Substituting for λt−1 in Eq. 12 using Eq. 11 gives

λt−2 = M′

t−1(M
′

tλt + Gt) + Gt−1 (13)

This process can be continued to obtain an expression for λ0.

λ0 =

T
∑

t=0

M′

1M
′

2...M
′

t−1Gt = −
∂J

∂x0

(14)

where the last step can be made by comparison with Eq. 10. Once the undetermined multi-
pliers have been determined the gradient of the cost function with respect to the parameters,
p, can also be calculated.

∂L

∂p
= −

T
∑

t=0

λ′

t

∂M(p,xt)

∂p
(15)

The gradients with respect to the initial conditions and the parameters can be combined to
give ∇J = [−λ0, ∂L/∂p] enabling the best combination of parameters and initial condition to
be found. For this work the optimization was performed with an iterative Newton method from
the IDL package. However, this requires the storage of the Hessian matrix. Real NWP models



have around 104 variables and thus the Hessian matrix is unfeasibly large. Conjugate-gradient
methods are usually employed for such large models [Navon and Legler, 1987].

In the above derivation a general cost function was used. A specific cost function, namely
the mean square error, will now be considered. Let H be the observation matrix which relates
the state of the system, x, to the observations that would be made if the system were in the
state x. That is, if the system is in state x the vector of observations is given by Hx. If yt is
the vector of actual observations at time t then the mean square error cost function is given
by

J =
1

2

T
∑

i=0

(yi − Hxi)
′(yi − Hxi) (16)

Thus Gt is given by

Gt = −
∂J

∂xt

= H′(yt − Hxt) (17)

To keep computational expense down when the adjoint method is used with large NWP models
the forward model described by Eq. 1 is linearized about the basic trajectory. If the basic
trajectory is written as x̄t and the deviation from this trajectory is written as x′

t then the
linearization of Eq. 1 can be written as

x′

t+1 = L(x̄t)x
′

t (18)

The linear model L is referred to as the Tangent Linear Model or TLM. The adjoint model
given by Eq. 4 is also linearized about the trajectory x̄t. The linearized adjoint model will be
referred to as the ADJM.

3 The Lorenz model

As with previous work in this area the Lorenz model will be used as toy nonlinear system with
which to test ideas.

The equations of the Lorenz model can be written in matrix form as

dX

dt
= −σ(X − Y ) (19)

dY

dt
= rX − Y − XZ (20)

dZ

dt
= XY − bZ (21)

where σ, r and b are parameters of the model. The Lorenz model can be written in discrete
form as





Xt+1

Yt+1

Zt+1



 =





1 − στ +στ 0
rτ 1 − τ −Xtτ
Ytτ 0 1 − bτ









Xt

Yt

Zt



 (22)



Figure 1: The MSE cost function in the Lorenz model as a function of error in the initial
value of the Y coordinate. The function becomes increasingly pathological as the assimilation
period is increased.

where τ is the length of the time step used in integrating the model. The TLM of Eq. 22
is given by
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Y ′

t+1

Z ′

t+1



 =





1 − στ +στ 0
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 (23)

Where an overbar denotes the trajectory about which the model is linearized and a prime
denotes the deviation from this trajectory.

Using Eq. 9 the adjoint form of Eq. 22 is

M′

t =





1 − στ (r − Zt)τ Ytτ
στ 1 − τ Xtτ
0 −Xtτ 1 − bτ



 (24)



To illustrate a major problem in variational assimilation in chaotic systems a set of “ob-
servations” was generated using the Lorenz model by running it with the standard parameters
(σ = 10,r = 28,b = 8/3) and taking the X component only as the observed variable, this
corresponds to H = [1, 0, 0]. The MSE cost function defined in Eq. 16 was then calculated as
a function of error in the initial value of the Y coordinate. The results when the cost function
was evaluated over periods of 1, 2, 4 and 10 dimensionless time units are shown in Fig. 1.
For short periods the cost function is smooth and has a single, global minimum in the vicinity
of the true initial condition. However, as the time period is increased local minima appear
and the cost function becomes pathological for longer assimilation periods. Clearly finding
the global minimum of the cost function when the assimilation time is 10 units is a daunting
task. There are methods, such as simulated annealing and genetic algorithms, which could be
tried but exploiting the option of controlling the cost function would seem to be the best line
of attack.

4 Quasi Static Variational Assimilation

Quasi Static Variational Assimilation (QSVA) was introduced by Pires et al. [Pires et al., 1996].
The QSVA algorithm can be outlined as follows:-

1. Start with an initial guess of the state of the system and let the initial assimilation time be
n = ∆.
2. Minimize the MSE over the assimilation period t = 0 to t = n to produce a new estimate
of the state of the system at time t = 0.
3. Increase n to n + ∆ and repeat step 2 until n = T .

The aim of the QSVA algorithm is to keep the estimate of the state of the system at time
t = 0 in the basin of the global minimum, even as the local minima appear. In this algorithm ∆
is a preset parameter. How should ∆ be chosen? In their experiments with the Lorenz model
Pires et al. used a value of ∆ = 0.2/τ where τ is the model time step. The most efficient value
of ∆ will depend on the particular system under consideration and also the region of phase
space which the system is in at the time. In some regions of their phase space nonlinear systems
can be well approximated by linear models and in these regions assimilation can be performed
over relatively long periods. In other regions the assimilation period must be increased more
slowly to remain in the basin of the global minimum. Thus a simple modification of the QSVA
algorithm is proposed. In the modified algorithm ∆ can be adapted so this modified algorithm
will be refered to as Adaptive Quasi Static Variational Assimilation or AQSVA. The criteria
for choosing the assimilation period will be that the model can “shadow” the observations over
the assimilation period. The shadowing time Ts will be taken to mean that ||Hxt − yt|| < ε
for all t ≤ Ts.

The AQSVA algorithm is as follows:-

1. Start with an initial guess of the state of the system. Integrate the model until either



Perfect model/noise free QSVA AQSVA Standard

Computational expense 36316 16460 41300
Shadowing time 5.00 5.00 0.42
Error in x0 10−5 3 × 10−4 4.3

Table 1: Perfect model without observational noise.

t = T in which case Ts = T or until ||Hxt − yt|| ≥ ε in which case Ts is the shadowing time.
2. Minimize the MSE over the period t = 0 to t = Ts to produce a new estimate of the state
of the system at time t = 0.
3. Unless Ts = T or Ts is no longer increasing return to step 1.

The parameter ε must be chosen. It should be large enough to allow for experimental noise
but it should be small enough such that the tangent linear model is valid. Since the TLM has
a single quadratic minimum in the MSE cost function.

5 A comparison of QSVA and AQSVA

A series of numerical experiments was performed to compare the accuracy and efficiency of
the standard QSVA algorithm and the modified AQSVA version. The Lorenz equations with
parameters σ = 10, r = 28 and b = 8/3 were used as the system. The Lorenz equations were
also used as the model into which the observations were assimilated. A perfect model and
imperfect model were considered. Perfect model refers to the case when the parameters of
the model were the same as those for the system while in the imperfect case the value of r
in the model was changed from 28 to 30. In all the experiments only the X variable of the
system was “observed”. In some of the experiments noise was added to the observed values
of X. This noise was uncorrelated and Gaussian with a standard deviation of 0.2. The full
assimilation period in each experiment was 5.00 time units.

The results of the experiments are shown in Tables 1-4. Each table was constructed by av-
eraging the results of 10 experiments with different initial conditions. All the initial conditions
lay on the attractor of the system. As well as the QSVA and AQSVA algorithms standard
MSE minimization was also included in the experiments. That is when an attempt was made
to minimize MSE over the entire assimilation period from the initial first guess. The compu-
tational expense of each of the methods was measured in terms of integration steps. That is,
forward integration steps of the TLM plus backward integration steps of the ADJM.

In the case of perfect models the accuracy of the AQSVA algorithm is comparable with the
QSVA algorithm. Although the accuracy of the final estimate for the initial condition is slightly
worse when using AQSVA this inaccuracy is much less than the inaccuracy in this estimate
caused by adding noise to the observations. Both algorithms can find model trajectories that
shadow the observations to the end of the assimilation period with the exception of one of the
ten AQSVA cases without noise. Standard MSE minimization always performs very poorly.
This isn’t suprising given the fact that for an assimilation period of 5 time units the cost



Perfect model/noise s.d. = 0.2 QSVA AQSVA Standard

Computational expense 54912 17674 42700
Shadowing time 5.00 4.94 1.17
Error in x0 0.12 0.12 5.8

Table 2: Perfect model with observational noise.

Imperfect model/no noise QSVA AQSVA Standard

Computational expense 109940 25402 46000
Shadowing time 0.11 1.58 0.25
Error in x0 9.28 2.60 3.90

Table 3: Imperfect model without observational noise.

function has many local minima in which the optimization algorithm can become trapped.
The most important difference between QSVA and AQSVA is the computational expense.
AQSVA is typically about half as expensive as QSVA.

For the imperfect model making a direct comparison between the QSVA and AQSVA
algorithms is complicated by the fact that they are essentially attempting to do different
things. While the QSVA algorithm is trying to minimize the MSE over the entire assimilation
period the AQSVA algorithm stops as soon as shadowing breaks down. This difference is
reflected in the shadowing times which the algorithms achieve. QSVA shadowing times are
never very long because in its efforts to fit the model to observations at later times the algorithm
sacrifices a good fit for earlier times. The AQSVA algorithm does not make this sacrifice and it
thus achieves shadowing times an order of magnitude longer than QSVA. AQSVA also obtains
better estimates for the state of the system at the beginning of the assimilation period. Again
AQSVA is several times cheaper computationally than QSVA. In the imperfect model case the
computational saving of AQSVA is even higher than for the perfect model because AQSVA
never assimilates to the end of the assimilation period.

The reason for the cheapness of AQSVA compared to QSVA can be explained as follows.
In some parts of phase space the model is close to linear and thus MSE can be minimized
over relatively large time periods without secondary minima becoming a problem. However,
in QSVA the value of ∆ is determined by the regions of phase space where the model is most

Imperfect model/noise s.d. =0.2 QSVA AQSVA Standard

Computational expense 125028 15683 48400
Shadowing time 0.11 1.39 0.30
Error in x0 27.6 2.66 4.34

Table 4: Imperfect model with observational noise.



nonlinear and where the assimilation period must be increased slowly. If this limiting value of
∆ is used in all regions of phase space the algorithm is less efficient than AQSVA where the
value of ∆ can be varied, taking a large value when the model is well approximated by the
TLM and a small value when it is not.

When data assimilation is being used to obtain an estimate of the state vector at time
t = T to initialize a forecast it is of no use if the AQSVA algorithm stops short of t = T .
In this case the AQSVA can be run from the point when shadowing breaks down, using the
estimate of the state vector at t = Ts as the initial estimate for the next run of the AQSVA
algorithm. This procedure can be repeated until a sequence of discontinuous trajectories has
been constructed which shadow the observations for the complete assimilation period.

6 AQSVA in a system with dynamical noise

In the previous section imperfect model was taken to mean that the parameters of the model
were not the same of those of the system. Another way in which a model can be imperfect is
by lacking extrinsic forcing terms which are present in the system. To investigate this effect
stochastic forcing terms were added to the Lorenz equations of the system. Thus the system
became

dX

dt
= −σ(X − Y ) + WX(t) (25)

dY

dt
= rX − Y − XZ + WY (t) (26)

dZ

dt
= XY − bZ + WZ(t) (27)

where WX,Y,Z represent uncorrelated gaussian noise with zero mean and variance w2 = 25.0.
Again the X coordinate of the system was the observed variable. The AQSVA algorithm was
then used to find a shadowing trajectory of the model which had the same parameters as the
system but lacked the stochastic forcing terms. A typical result is shown in Fig. 2.

The thin solid line is the X coordinate of the system with stochastic forcing. The dashed
line is the X coordinate of the model when the actual initial condition is used. Note that in
this case the trajectoroy of the model deviates from the observations after about 3 time units.
The thicker solid line is the trajectory found using the AQSVA algorithm. This trajectory
shadows the stochastically forced system for about 6 time units even though the forcing terms
were missing. The reason for this is that in the Lorenz system the relatively small forcing
terms are only important when the system is close to a decision point in phase space. At such
a point a small perturbation can determine which of the two unstable fixed points the system
will orbit. A slight change in the state of the system at t = 0 can “fake” the effect of this
forcing.



Figure 2: Assimilation in the presence of dynamical noise. The thin solid line is the X coor-
dinate of the system with dynamical noise. The dashed line is the X coordinate of the model
with identical parameters to the system and initialized with the same initial state but without
the stochastic forcing terms. The thick solid line (which overlies the thin solid line until about
6 time units) is the X coordinate of the model without the dynamical forcing terms after the
thin solid line was assimilated into it.



7 An alternative cost function

As described above one of the main problems with the MSE cost function in strongly nonlinear
systems is the existence of many local minima in addition to the global minimum. Perhaps an
alternative approach to the problem is to use a different cost function. The length of time for
which the model can shadow the observations would seem to be a reasonable measure of the
validity of the model. The shadowing time, Ts, can be written as follows.

Ts =
T

∑

i=0

i
∏

k=0

H(ε2 − r2
k) (28)

where H is the Heaviside step function and rk = ||yk − Hxk||.
Note that the step function is zero if the distance between the model and observations

exceeds ε. Also note that each term in the sum over time contains a product of all the
step functions up to that time, thus if any term is zero all the terms that follow it are zero.
Equation 28 does not have a continuous derivative which can be used to force the adjoint
equation. The step function can be replaced by a smooth approximation of a step function,
K. A pseudo-shadowing time can now be defined as

T ∗

s =
T

∑

i=0

i
∏

k=0

K(ε2 − r2
k) (29)

If the cost function is defined as J = −T ∗

s the forcing term for the adjoint equation is given
by

Gt = −
∂J

∂xt

=
2H′(yt − Hxt)

K(ε2 − r2
t )

[

dK

dr2
t

]

ε2
−r2

t

T
∑

i=t

i
∏

k=0

K(ε2 − r2
k) (30)

A possible form of the function K is

K(z) =







0 z < −β
− 1

4β3 z3 + 3

4β
z + 1

2
−β ≤ z ≤ +β

1 z > +β







(31)

In numerical experiments using the Lorenz model the alternative cost function described
by Eqs. 30 and 31 did not produce estimates of the initial state as accurately as AQSVA.
This may be because the model used was always very similar to the system, even in the
“imperfect” model experiments. The pseudo-shadowing cost function may be an effective way
to maximize shadowing time in models which are not structurally the same as the systems
they are modeling.

8 Summary

The QSVA algorithm introduced by Pires et al. [Pires et al., 1996] has been slightly modified
to include adaptive increments in the assimilation time determined by the models ability



to shadow observations. The adaptive QSVA (AQSVA) algorithm was compared with the
conventional QSVA using the Lorenz equations as a simple system-model combination. The
AQSVA method was found to be more computationally efficient than standard QSVA.

An alternative to the MSE cost function based on shadowing time was proposed although
it was not determined what practical advantages this pseudo-shadowing cost function may
have over AQSVA.
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