

Putting together the next OBB Advance Plan & NASA PreDec Survey reports

Anastasia Romanou, Columbia U. and NASA/GISS

OCB Pre-Decadal Survey/OBB Advanced Plan meeting, WHOI, July 2015

Earth's Living Ocean: 'The Unseen World'

An advanced plan for NASA's Ocean Biology and Biogeochemistry Research

Broader goals for the Advanced Plan & the pre-Decadal Survey report

- Key questions in OBB science
 (science themes -> overarching questions (to be prioritized) -> integrated mission themes -> mission priorities)
- Needs for sustained measurements
 (process studies, field campaigns, international collaboration, technology development)

Science Traceability Matrix

Roadmap for the Advanced Plan

Science Traceability matrix

science themes	overarching questions (prioritized)	Integrated mission themes	Mission priorities

Overarching Science Themes

carbon-climateecosystem interactions and feedbacks

coastal processes and ecosystems

the meso- & submesoscale

acidification

fisheries and interactions of at the higher trophic levels

High latitude oceanography & biogeochemistry

Carbon-Climate-Ecosystem

Image courtesy of earthobservatory.nasa.gov

- Quantification of ocean biogeochemical cycles; stock sizes, transformation rates;
- Partitioning in the different pumps of CO2;
- Land-atmosphere-ocean-ice interactions
 - high frequency variability forcing (storms, hurricanes, floods)
 - Boundary fluxes: continental runoff, seafloor inputs (hydrothermal & volcanic, hydrates, permafrost), atmospheric deposition
 - Exchanges with land-atmos-ice system DMS, biogenic aerosols, oxygen, nitrogen, phosphorus
 - Light availability at surface; absorption in the water column; ocean albedo
- Identify Regimes of variability under different climates
 - Upwelling regime, marginal ice zones, extreme events, blooms, HNLC, etc (eg fluoresence can detect iron-limited zones), acute local events (landslides, contaminations, oil spills)
 - Stressors under climate or environmental variability
- Separation of mutliple in-water constituents: NOT EVERYTHING COVARIES WITH CHL!!! Through light retrievals, physiological variability through C:CHL ratios from passive remote sensing obs

UNIVERSITY

Coastal Processes and Ecosystems

- Links to the global hydrologic cycle
- Land use and urban waste inputs
 - Sediments, nutrient, pollutant fluxes
 - Trophic structure; Habitat loss
- Hot spots of productivity
- Connections to the open ocean
 - Export of pollutants, organic carbon to open ocean & sea floor
 - Open ocean vs coastal ocean: eg. deoxygenation in coastal & open ocean
 - Upwelling from the deep ocean
- Soil carbon export to coastal regions (SMAP mission)

Acidification

- Rate of change of pH/alk
- Consequences to marine biology (species all the way to ecological communities) and geochemistry
- Altering species interactions and community structure
- Natural variability impacts on carbonate ion concentrations
- Acidification in coastal environments; particularly in combination with other stressors, eg warming, eutrophication, deoxygenation
- Coincident measurements of SST and SSS, or SST, chl-a and PIC

UNIVERSITY

Meso- and Submeso- scale

- Spatial & temporal distribution of mixing, turbulence, eddy stirring; fronts, narrow currents, eddies; vertical velocities
- Role in the biological pump (e.g. onset of blooms)
- Role in primary productivity
- Observing System Simulation Experiments (OSSE's) to downscale satellite measurements (SST, SSS, SSH,color, etc) to resolving scales; validated with in situ measurements
- detailed processes models will be developed and employed to understand many factors that are beyond present observational capabilities.
- High spatial resolution SSH, can we do better than SWOT?

Fisheries and interactions at Higher Trophic Levels

- Extractive activities (fishing) monitoring
- Sequential depletion of productivity
- Devaluation of fish stocks
- Changes in species composition of ecosystem
- cascading effects through tropic levels due to removal of top predators

Recommended Mission Themes

- Continuation of existing missions
- All physical measurements (SST,SSS,SSH, mixex layer depth?,waves, winds, currents, topography,precipitation,sea ice changes, land ice...)
- Broader spectrum; higher spectral resolution 350-3000n; higher spatial resolution; global and regional;
- Frequent and synoptic scale obs for small-scale phenomena in coastal environments
- Global separation of optically active and ecosystem components (advance radiometry and aerosol characterization)
- High spatial and temporal resolution coastal
- Active Assessment of Plant Physiology and Composition
- Not a mission per se: supporting other obs and modeling

Observational Strategies (previous plan)

- Global Sun-synchronous Hyperspectral Imagin Radiometer
- Global Geostationary hperspectral Imaging Radiomerters
- Milti-spectral High Spatial Resolution lager
- Portable Sensors from Suborbital Platforms
- Variable Fluorescence Lidar
- Mixed Layer Depth and Illumination Sensor
- Ocean Particle Profiler and Aerosol Column Distributions

Steering group members

Heidi Dierssen

Mike Behrenfeld

Michelle Gierach

Antonio Mannino

Frank Muller-Karger

Matthew Long

Raymond Najjar

Maria Tzortziou

Paty Matrai

Dave Schimel

Anastasia Romanou

Review panel members

Jorge Sarmiento

Dave Siegel

Galen McKinley Galen

Scott Doney

Antony Freeman

Paula Bontempi

Cool title about Living Ocean

An advanced plan for NASA's Ocean Biology and Biogeochemistry Research

