Phytoplankton blooms in the Nordic Seas

Raffaele Ferrari Alex Mignot, Glenn Flierl, Stephanie Dutkiewicz Massachusetts Institute of Technology Introduction

Phytoplankton blooms

- Controls on division rates: light, nutrients, turbulence
- Controls on losses: grazing and viral lysis

NPZ model of blooms

NPZ model of blooms

Small environmental perturbations → strong PZ coupling

NPZ model of blooms

Large environmental perturbations -> weaker PZ coupling

Environmental perturbations

Surface insulation

Vertical mixing

Lateral density fronts

Environmental perturbations

Environmental perturbations

Surface insulation

Vertical mixing

Lateral density fronts

Taylor and Ferrari (L&O, 2011)

Real blooms

Nordic Seas Bio-Argo floats

Bio-Argo floats with optical sensors: chlorophyll-a fluorescence, CDOM fluorescence, backscattering of light by particles

- onset with rapid growth rates
- settling to a stable phytoplankton concentration
- termination

- onset with rapid growth rates
- settling to a stable phytoplankton concentration
- termination

- onset with rapid growth rates
- settling to a stable phytoplankton concentration
- termination

- onset with rapid growth rates
- settling to a stable phytoplankton concentration
- termination

Darwin Model

MIT general circulation model

• I° × I° resolution

Darwin biogeochemistry model

- **N**: DIN, Fe, PO₄, Si,O₂, DIC
- P: 9 phytoplankton types: Diatom, SmEuk, LgEuk, Syn, LL/HL Proc, Cocco, Tricho, Uni Diaz
- Z: 2 types of zooplankton large and small
- D: POC, DOC, CDOM, PIC

Dutkiewicz et al. (Biogeosciences, 2015)

Darwin Model

MIT general circulation model

• |° × |° resolution

Darwin biogeochemistry model

- **N**: DIN, Fe, PO₄, Si,O₂, DIC
- P: 9 phytoplankton types: Diatom, SmEuk, LgEuk, Syn, LL/HL Proc, Cocco, Tricho, Uni Diaz
- Z: 2 types of zooplankton large and small
- D: POC, DOC, CDOM, PIC

Dutkiewicz et al. (Biogeosciences, 2015)

Bloom onset

Phytoplankton

Surface PAR & mixed layer depth

Division rates, respiration & grazing

Bloom starts

- when surface PAR increases
- while mixed layer deepens
- when grazing is weak
- P & Z are decoupled

Bloom maturation

Phytoplankton

Division rates, respiration & grazing

Stable environment

Bloom matures when

- grazing catches up with growth
- environment is stable
- P & Z are coupled

Bloom termination

Phytoplankton

Surface PAR & mixed layer depth

Division rates, respiration & grazing

Bloom starts

- when surface PAR increases
- while mixed layer deepens
- when grazing is weak
- P & Z are decoupled

Bloom with strong grazing

Phytoplankton

Surface PAR & mixed layer depth

Division rates, respiration & grazing

Conclusions

- Eight phytoplankton blooms were sampled north of the Arctic Circle by Bio-Argo floats
- The major characteristics of the blooms are captured by the Darwin model
- Phytoplankton blooms north of the Arctic Circle are characterized by three phases
 - Rapid onset without much grazing (decoupled PZ system)
 - Stable maturation with strong grazing (coupled PZ system)
 - Termination (decoupled PZ system)

Bio-Argo float fleet

Bio-Argo floats with optical sensors: chlorophyll-a fluorescence, CDOM fluorescence, backscattering of light by particles