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The impacts of turbulence, mixing, and
stratification on phytoplankton blooms:

unraveling causation from observations

~Andrew J. Lucas




Ocean Carbon and Biogeochemistry Workshop. July 22, 2015

Outline:

e Sverdrup’s 1-dimensional model of bloom formation.

* Examining Sverdrup’s assumptions and modern
formulations of schematic bloom models.

e [he era of turbulence is upon us: prolonged in situ
~ microstructure measurements.
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1-D models of phytoplankton blooms:
Sverdrup Critical Depth hypothesis
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1-D models of phytoplankton blooms:
Sverdrup Critical Depth hypothesis

Critical depth:

Depth at which vertically integrated
biomass accumulation equals
respiration losses

£ cr.

Sverdrup: “Vernal bloom” is
Initiated when the mixed layer
depth is shallower than the
critical depth.

Springtime shoaling of mixed layer depth

Critical depth (D¢/)
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H.U. Sverdrup, Journal du Conseil, 1953
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1-D models of phytoplankton blooms:
Sverdrup’s analytical model for for the critical depth

Assumptions:
1) There is a mixed layer.

2) Layer is actively mixing such that plankton all
receive mean irradiance.

3) No nutrient limitation.
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1-D models of phytoplankton blooms:
The Figure that Launched 1,050 Studies

(according to Web of Science)
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Figure 2, Results of observations at Weather Ship “M” (66°N., 2°E. Gr.). The symbols
are explained in the graph, where the followin?v abbreviations have been used:—

Dia, Diatomaceae; Coc, Coccolithophoridae; Dif, Dinoflagellatae; Nau, Nauplii;

and Cop, Copepods.
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Modern perspectives of the North Atlantic Spring Bloom initiation
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Mahadevan et al. (2012) Science 337: 54-58
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Modern perspectives of the North Atlantic Spring
Bloom initiation

* One-dimensional (the cessation of convective mixing; Taylor and
Ferrari 2011) and 3-dimensional (slumping of horizontal gradients,
Mahadevan et al. 2012) processes lead to re-stratification.

* NAB phytoplankton accumulations are normally associated with
stratification, but accumulation rates need not be (e.g. Behrenfeld
and Boss 2014).
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A tew thoughts about stratitfied turbulence and blooms

Southern Ocean mixed layer

Very strong wind forcing, 75-100 m deep
mixed layer. What is the distribution of
turbulence?
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Very strong wind forcing, 75-100 m deep mixed layer. What is
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mixed layer, drops abruptly at the
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Very strong wind forcing, 75-100 m deep mixed layer. What is
the distribution of turbulence?
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Very strong wind forcing, 75-100 m deep mixed layer. What is
the distribution of turbulence?
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A tew thoughts about stratified turbulence and blooms

Density Dissipation of TKE

Rapid drop with depth

Low levels in mixed layer
below near-surface

Elevated turbulence at the
pycnocline
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DIMES data courtesy of Lou St. Laurent and Sophia Merrifield, WHOI
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A few thoughts about mixing and the NAB

Deep mixed layers (>100m) in mid/high latitudes are formed
by convection.

o After cessation of convection, interior ML is remanent i.e.
‘mixed’ but not ‘mixing.’

. Thus homogenous distribution of mlxmg/phytoplankton S
allenine
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Sampling strategies for measuring turbulence in situ

Really modern

Modern
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= Sampling strategies for measuring @ -
w2 turbulence plus biological variability in situ

@,

Wirewalker protiler

1) Wave-powered profiling (wave down,
buoyancy up).

2) Fast profiling relative to floats and gliders.

3) Flexible payload (CTD, currents, optics, DO,
turbulences, nitrate).



Sampling strategies for measuring @
el turbulence plus biological variability in situ

Ocean Carbon and Biogeochemistry Workshop. July 22, 2015

Wirewalker wave-powered profiler
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Insights from prolonged in situ turbulence measurements

North Atlantic

Mixing on the Tasman shelf
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Turbulence is: unsteady, log-normally distributed,
positively skewed (many small values, few large ones).
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iNn a nitrate-limited system: the Tasman Shelf
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High-frequency internal waves and subsurface blooms
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A plea for more (quantity and kinds of) data

Back to Weather Ship “M”
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Figure 2, Results of observations at Weather Ship “M” t:6°N., 2°E. Gr.). The symbols
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are explained in the graph, where the followin reviations have been used:—
Dia, Diatomaceae; Coc, Coccolithophoridae; Dit, Dinoflagellatae; Nau, Nauplii;
and Cop, Copepods.

* Small spatial scales of gradients in

MLD, turbulent layer depth, properly
assessing gradients in the mixed layer.

In situ time-series observations™ of
fluxes, irradiance, and anything
biological that isn't just fluorescence
are direly needed.

Density gradients are often associated
with strong current shear and mixing.

High-frequency variability probably
matters to both predator/prey
interactions and productivity/
community structure of phytoplankton
during blooms.

*a relevant time-scale of observation >> than doubling time, loss rate
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Take home: this is a tractable problem. Still, 60 years after Sverdrup,
depends on gathering concurrent, high-frequency, in situ obs. of
physical, chemical, and biological variability.

Thank you OCB!
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Embedded dynamics: high frequency modulation of
blooms due to low-frequency forcing
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e CTD, Chla F, currents, dissolved oxygen. Wind from nearby station. Biological and
biogeochemical measurements made by DAFF, South Africa.

e 2 Year total: 5 WW moorings, ~100K profiles, >4000 km profiled distance. >200
profiles per inertial period.

Lucas et al. DSR Il 2014
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Embedded dynamics: high frequency modulation of
low-frequency forcing
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Embedded dynamics: high frequency modulation of
low-frequency forcing
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Embedded dynamics: high frequency modulation of
low-frequency forcing
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Embedded dynamics: high frequency modulation of
Iow—frequency forcing
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Submesoscale variability in the open ocean: fronts,
filaments, and phytoplankton

The Bay of Bengal

24°N e — ———

Surface salinity

78°E  81°E  84°E 87°E  90°E
Longitude

Latitude
>
Latitutde

Longitude

Longitude

An array of wave-powered profiling vehicles, positioned across a
submesoscale front.

Optical instrumentation, DO, density, currents, turbulence.

Profiles repeat rates <10min Wirewalker Profiling vehicle

(Lucas et al. 2014 Eos; From mixing to monsoons. Ongoing ONR Air-Sea Interactions DRI) ~ (Ocean Physics Group, SIO)
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Submesoscale variability in the open ocean: fronts,
filaments, and phytoplankton
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Submesoscale variability in the open ocean: fronts,
filaments, and phytoplankton
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Submesoscale variability in the open ocean: fronts,
filaments, and phytoplankton
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Submesoscale variability in the open ocean: fronts,
filaments, and phytoplankton

Dissipation of TKE (turbulence) (W/kg)
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Submesoscale variability in the open ocean: fronts,
filaments, and phytoplankton

Chlorophyll fluorescence (RFU) Salinty
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The internal surf: biological variability in the context of
breaklﬂg Interﬂa| waves (Lucas, Pinkel, MacKinnon, Nash, Shroyer, Fine, in prep).
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The internal surf: biological variability in the context of
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The internal surt: biological variability in the context of
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What (else) do we need to measure?

Mixed layer depth evolution in a frame of reterence relative
to mixed layer.

Evolution of MLD characteristics (physical, biological,
chemical) in a reference frame relative to mixed layer.

« CTD, DO, optics, irradiance, turbulence, currents or
shear.

Mesoscale is small, inertial period is short, demands rapid
measurements.

Robust guenching estimates. Robust parameterizations.

Process studies and long term
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The influence of near-inertial waves on the biological
response to coastal upwelling (ucas et a. 2014 bsri

Patterns of global diurnal wind amplitude

180" -150" -120° -90°

0.00 0.25 0.40 0.63 1.00 1.60 2.50 4.00 0 200 400 600 10‘00150035007000
diurnal amplitude (m/s) elevation

Southwestern Africa diurnal wind amplitude
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Hyder et al. 2011. CSR 31: 1526-1591
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The influence of near-inertial waves on the biological
response to coastal upwelling (ucas et a. 2014 bsri

Patterns of global diurnal wind amplitude

St. Helena
Bay ™
Cape __
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Cape . \ L S
Penisula ~~ Southem Africa
17 18 19°E Lambert's Bay Nortier
WW/ADCP ® Meterological Station
X =201
® - 2010

180" -150° -120° -90° -60° -30°

BN 22 [

0.00 0.25 0.40 0.63 1.00 1.60 2.50 4.00 0 200 400 600 1000 150035007000
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32.65°S = Elands Bay

We deployed an array of Wirewalker (SIO)
profiling moorings and current meters.

Q: Coastal upwelling at the critical
latitude: physical mechanisms and
biological effects? (NSF International
Postdoctoral Fellowship)

Hyder et al. 2011. CSR 31: 1526-1591
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The influence of near-inertial waves on the biological
response to coastal upwelling (ucas et a. 2014 bsri

~2 months of Wirewalker profiles, 50m mooring
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The influence of near-inertial waves on the biological
response to coastal upwelling (ucas et a. 2014 bsri

~2 months of Wirewalker profiles, 50m mooring
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The influence of near-inertial waves on the biological
response to coastal upwelling (ucas et a. 2014 bsri

upwelling favorable)

E (onshore)
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» Clear signature of inertial shear-driven 0 iongshire veldbity B
diapycnal mixing. 50, J
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Date (month/day 2011)

« Rapidly weakening stratification

* ‘Nitrate’ mixed upwards, heat mixed
downwards.

* “Connecting” upwelling pulses.
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The influence of near-inertial waves on the biological
response to coastal upwelling (ucas et a. 2014 bsri
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The internal surf: biological variability in the context of

bl’eakl ﬂg Iﬂtel’ﬂa| WaveS (Lucas, Pinkel, MacKinnon, Nash, Shroyer, Fine, in prep).

Fiber Optic bottom Nitrate and Wirewalker Nitrate (based on N/T Fit, ;:M/L)
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Submesoscale variability in the open ocean: fronts, \
fl|ameﬂt8, aﬂd phyt0p|aﬂkt0ﬂ (Lucas et al. 2014 Eos, Ongoing ONR Air-Sea Interactions DRI)

. #
Sence & Techxm“’v"i

Temperature (°C) Salinty

1 1
15.96 . 15.96
< 15.94 ; 15.94
86.95 15.92 86.95 15.92

, 15.9 : 15.9
Longitude Latitude Longitude Latitude

Dissipation of TKE (turbulence) (W/kg)

1
15.96 : 15.96
- 15.94 ) - 15.94
86.95 15.92 86.95 15.92

, 9 : 9
Longitude Latitude 0. Longitude Latitude




