Competition for 1-2 new coastal marine LTER's

(marine or estuarine, currently N=8 sites of 24)

A.O. expected in 2015

<u>Open meeting:</u> LTER **All-Scientists Meeting** Estes Park, CO 30 Aug. – 2 Sept. 2015 <u>http://asm2015.lternet.edu/</u>

> U.S. LTER Network <u>www.lternet.edu</u>

Integration of measurement methods in the California Current Ecosystem

Mark D. Ohman

Scripps Institution of Oceanography

California Current Ecosystem LTER site

CCLE

Southern Sector of the California Current System

- CCE-LTER (Long-Term Ecological Research site)
- CalCOFI (a *space-resolving* time series)
- pCO₂ (C. Sabine, D. Feely)
- Spray gliders (D. Rudnick)
- CCE moorings (U. Send, M. Ohman)
- Satellite remote sensing (M. Kahru)
- Modeling (P. Franks, A. Miller, E. DiLorenzo, C. Edwards)

Santa Barbara Basin sediment traps (C. Benitez-Nelson)

Berkeley

- - Sta. M abyssal benthic time series (K. Smith)
 - C explorer (J. Bishop)

Brief vignettes, illustrating the importance of integration of:

Autonomous

Semi-autonomous

Attended Shipboard measurements

Katherine Zaba and Dan Rudnick, SIO Pacific Anomalies Workshop, SIO, May 2015

Interannual Anomalies

Santa Cruz

Line 90.0

Califòrnia

Diego

Spray gliders

10 m Temperature (^o C)

Line 80.0

Line 66.7

Ralf Goericke, SIO Pacific Anomalies Workshop, SIO, May 2015

CalCOFI

Extending autonomous (and semi-autonomous) measurement capabilites using proxy relationships

Resolving Interannual Variability

CCE2 mooring-based measurements combined with Alin et al. proxy

Aragonite Saturation at CCE2, 76m

U. Send, M. Ohman (unpubl.), SIO

Combining Gliders and Moorings resolve both Space and Time

Independent Validation in situ measurements compared w/ proxies

Use of autonomous and semi-autonomous measurements to situate process studies in the CCE-LTER/CalCOFI region

The power of sustained observations/replication Spray glider time series

Covariability of Physical and Biological Fronts

at sub(mesoscale) 22,942 glider dives over 6 years N = 154 fronts

Changes in Zooplankton Diel Vertical Migration (DVM) across fronts

Amplitude of Zooplankton Diel Vertical Migration varies with Euphotic Zone Depth

24-year record Carbon demand by Deep Sea Benthos 4,000 m Sta. M (Ken Smith)

Smith et al. (2014) *L&O*

Benthic Rover Ken Smith, MBARI

SCOC Sediment fluorescence Acoustic Scanners

Semi-autonomous shipboard measurements

<u>Summary</u>

- Power of integration of autonomous (e.g., gliders, moorings, floats, remote sensing), semi-autonomous (e.g., MVP, ALF, SeaSoar, u/w pCO₂), and attended shipboard measurements (e.g., CalCOFI)
- Importance of independent validation of autonomous instrumentation
- New model? Research vessels for more sophisticated attended measurements, w/ larger teams; autonomous instruments for survey activities
- ⇒ Need for global class, technologically advanced vessels

