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1 Introduction

Gravity currents are the flow of one fluid through another as a result of a density contrast
between the two fluids. The density contrast between the fluids can be caused by different
mechanisms, for example, salinity contrasts, temperature differences, and sediment load
differences. Gravity currents are common in geophysical fluid dynamics and occur on a large
range of spatial and temporal scales. In the atmosphere, downslope (katabatic) winds, sea
breeze fronts, and thunderstorm downdrafts are all gravity currents that are attributed to
temperature differences between ambient air and cooler intruding air. Atmospheric gravity
currents are also driven by differences in sediment load: avalanches and volcanic surges are
both gravity currents driven by the presence of suspended particles[1].

In the ocean, gravity currents play an important role in the large-scale circulation by
acting as a conduit for deep water formation. In this case, water in a marginal sea (an
area of the ocean that is isolated from the rest of the ocean by topography) is subjected to
sustained cooling or evaporation, and the resulting cold, dense water sinks to the bottom of
the marginal sea. Once at the bottom, the dense water flows out (as a so-called “outflow”)
of the marginal sea, continuing down the continental slope into the deep ocean[2].

Several models have been put forth to explain the path of oceanic outflows as they
propagate down continental slopes. The simplest of these models treat outflows as fric-
tionless, non-entraining, and steady flows. Under these conditions, geostrophic balance and
the conservation of both potential vorticity and mass dictate that the current flow along
a path of constant topography[3]. In this simplified model, the path and velocity of the
flow are determined by the density difference between the two fluids, the slope of the in-
cline, the Coriolis parameter, and the mass flux of the current. More complicated models of
outflows, such as the streamtube models devised by Smith[4], and later extended by Price
and Baringer[2], include parameterizations of bottom drag and entrainment of the ambient
fluid. When friction is included in the model, the path of the current is no longer restricted
to following lines of constant depth; instead, with friction present, a steady current is free
to cross lines of constant depth.

Although streamtube models can be tuned to give good agreement with observations, it
is clear that these models are missing some important aspects of outflows. First, streamtube
models assume that the ambient fluid is quiescent, eliminating potentially important inter-
actions between the gravity current and the surrounding fluid. Second, streamtube models
are a measure of the bulk properties of the flow; no cross-stream variations are considered
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in a streamtube model. Third, and most relevant to this study, streamtube models assume
that the flow is steady; in a streamtube model the flux in the outflow is assumed to be
constant in time.

More complicated numerical models of oceanic outflows have recently been applied to
address some of the shortcomings of streamtube models. Jungclaus and Backhaus[5] devel-
oped a hydrostatic, reduced gravity, two-dimensional primitive equation model and applied
it to a study of the Denmark Strait outflow. They demonstrated that the presence of
bottom topography can cause complicated cross-stream variations in the flow. Subsequent
numerical studies by Jiang and Garwood[6, 7] considered outflows in the context of a three
dimensional ocean model. Their results revealed that the three dimensional aspects play
an important role in the dynamics of the outflow. Specifically, they showed that the out-
flow plume can separate into smaller sub-plumes, and that as the plume propagates it can
manifest itself as coherent vortices in the ambient fluid. This behavior was later observed
and explored in laboratory experiments[8, 9].

In contrast with outflows, turbidity currents are an example of a transient oceanic grav-
ity current. Turbidity currents arise when sediment on the continental slope is dislodged,
often by an underwater earthquake. Once dislodged, the sediment is brought into suspen-
sion, increasing the density of the fluid in the immediate vicinity of the earthquake. This
dense fluid then flows down the continental slope, entraining more sediment as it travels.
The turbidity current eventually encounters a decreasing slope, slowing the current and
allowing the suspended particles to settle. Large-scale turbidity currents have not been
directly observed. There is, however, one turbidity current that gives a unique set of data
for analysis. In 1929, an underwater earthquake occurred under the Grand Banks of New-
foundland, causing a large turbidity current that flowed down the continental slope. As
this current traveled, it broke a succession of telegraph cables, each of which had a known
location. The time of each breakage was also well known, giving a measure of the current’s
speed[10]. Subsequent investigation determined the extent of the turbidite (the material
deposited by the current), providing data about the path that the turbidity current traveled
down the continental slope. The turbidite indicates that the turbidity current veered to the
right as it flowed, possibly under the influence of the Coriolis force.

The outflow models discussed above all model oceanic gravity currents as steady flows.
While steady flow is a reasonable assumption for outflows, it is not a reasonable assumption
for turbidity currents, which are a much more transient event. The only work that we are
aware of that studies the effect of rotation on turbidity currents is a study by Nof[10]
(hereafter referred to as Nof), which proposes a simple model (discussed more in section
4.1) of the turbidity current that resulted from the 1929 Grand Banks earthquake. Nof’s
model was intended to explain a slowing down of the current that was seen in the cable
breakage data. As the turbidity current propagated down the continental slope, its downhill
velocity decreased. Previous work attributed this slowing to a combination of three causes.
First, as the current propagated, it experienced a decrease in slope which acted to slow
the current. Second, as the current slowed, sediment settled out of solution and decreased
the density contrast between the plume and the ambient fluid. Third, bottom friction
between the slope and the plume acted to slow the plume. Nof proposed that in addition
to the reasons listed above, the influence of the Coriolis force could have contributed to the
decrease in downhill velocity by causing the current to veer to its right. To determine the
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effect of the Coriolis force on the turbidity current, Nof modeled the turbidity current as a
frictionless “blob” of fluid on a parabolic bottom. The solution to Nof’s model is a cycloid
with a mean path parallel to the slope, showing qualitatively that the Coriolis force may
have played a substantial role in reducing the current’s downhill speed.

This work has two goals. First, it is designed as a modeling complement to Nof’s analytic
study on the role of rotation in the path of turbidity currents. Second, we wish to address
the question, “If, as predicted by streamtube models, an inviscid and geostrophic gravity
current propagates along contours of constant topography, under what conditions will a
gravity current flow downhill?”

An outline of this paper is as follows: In section two, we outline the approach that we
use to address the question raised above. In section three, we discuss a simple outflow model
that is based on Smith’s streamtube model. Section three also includes comparisons of our
model results with the streamtube theory. In section four, we review the model proposed
by Nof[10] to explain the path of the 1929 Grand Banks turbidity current and discuss the
results of our model of a turbidity current. Section five summarizes our results and answers
the question raised above about the paths of oceanic gravity currents.

2 Approach

To address the question of when gravity currents flow downhill, we start by considering the
horizontal momentum equation in natural coordinates (t is the unit vector parallel to the
flow, n is the unit vector normal to the flow). When the flow is in steady state, it is parallel
to height contours and the velocity statisfies[11]:

V 2

R
+ fV +

∂Φ

∂n
=

Cd

H
V 2 (1)

where V is the horizontal velocity, R is the radius of curvature of the flow, f is the Coriolis
parameter, H is the height of the Ekman layer (assumed to have a maximum value of 10 m),
Cd is a dimensionless bottom friction parameter, and Φ is the geopotential. The term on
the right represents a height dependent boundary layer friction, so that equation (1) can
be thought of as representing the momentum balance in an inviscid layer of fluid with a
frictional bottom boundary layer of height H, where H has a maximum value of 10 m. For
large scale flows, the term in the momentum equation representing the centrifugal force
(V 2

R
) is relatively small and can be neglected. When the centrifugal term is neglected and

boundary layer friction is ignored, the motion is a balance between the Coriolis force and
the pressure gradient force, so that the motion is geostrophic:

Vg = −
R

f

∂Φ

∂n
(2)

where Vg is the geostrophic velocity. Although the geostrophic approximation is appro-
priate for most large-scale flows, there are regimes in which the centrifugal force cannot
be neglected. In these cases, the full momentum equation (1) must be considered. The
Rossby number, the ratio of the centrifugal term to the Coriolis term, gives the degree of
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appropriateness of the geostrophic approximation:

Ro =
V

fL
(3)

Flows with a low (� 1) Rossby number can be considered geostrophic; flows with a Rossby
number near 1 must consider the full momentum equations. Another important dimension-
less number is the Ekman number, which measures the relative importance of the friction
term against the Coriolis term. In this case, the Ekman number is given by:

Ek =
CdV

fH
(4)

The Ekman number indicates the extent to which friction plays a role in the flow.
As mentioned in the introduction, a gravity current that is both inviscid and geostrophic

will travel along a path that follows bottom topography. If a gravity current is to flow
downhill, then one of these conditions must be relaxed. In this study, we use a simplified
version of an ocean general circulation model to investigate situations under which these
two approximations–inviscid flow and geostrophy–are no longer applicable.

We consider two flow regimes. First, a regime in which the flow is approximately in
geostrophic balance, but is modified by bottom boundary friction. This describes the con-
ditions associated with a midlatitude (f = 10−4 s−1) outflow, since the velocities of an
outflow are relatively small (≈40 cm s−1) and the length scales are large (≈40 km), giving
a Rossby number on the order of 0.1. The same scales, together with a layer height of 10
m and Cd = 0.005, give an Ekman number of approximately 0.5, indicating that friction
will play a substantial role in the motion of the plume. We also consider the behavior of
an overflow at lower latitudes (f = 5× 10−5 s−1, f = 10−5 s−1 and f = 0 s−1), so that we
have flows with Rossby numbers from Ro =∞ to Ro = 0.1.

The second regime that we study is a regime in which the full equation (1) must be
considered. This regime describes our model of a turbidity current, since the velocities are
large (≈10 m s−1), the height H is 10 m, and the length scales are on the order of 200 km.
These scalings give a Rossby number of 0.5 and an Ekman number of 50, indicating that
all of the terms in (1) will play a significant role in the motion of the current.

2.1 Methods

To consider the two regimes described above, we use the Miami Isopycnal Coordinate Ocean
Model (MICOM) to simulate some basic aspects of oceanic gravity currents. A full de-
scription of MICOM is beyond the scope of this work; a complete discussion of MICOM
can be found in Haidvogel and Beckmann[12] and references therein. MICOM is a three-
dimensional ocean model with potential density as the vertical coordinate. To study gravity
currents, we run the model in a two-layer configuration: one layer representing the upper
ambient fluid and a heavier layer representing the intruding gravity current. We run the
model without entrainment, so that the mass in each layer remains constant.

To isolate fundamental processes in the dynamics of gravity currents, we consider two
simple model configurations, one configuration designed to study outflows, and the other
designed to study turbidity currents. In both configurations, we consider the motion of a
plume on an f -plane.
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To study outflows, we set up the model in a configuration similar to Jungclaus and
Backhaus, i.e. a 320 × 320 km model domain with a 2 km horizontal resolution. Heavy
fluid (∆ρ/ρ = 2.9×10−4) is released at the top of the slope, and the model is integrated for
five model days. To test the dependence of the solution on the initial conditions, we release
the fluid in two different manners: a “dambreak” configuration in which the heavy fluid
starts as a bay (horizontal size of 30 × 30 km, 100 m height) of fluid at the top of the slope
and is allowed to evolve with no subsequent addition of fluid. In addition to the dambreak
release, we also release fluid as a constant flux at the top of the slope. There is little
qualitative difference in the behavior of the plume in between the two cases; accordingly,
only the results from the constant flux configuration are discussed here.

Our second configuration is designed to test Nof’s model of turbidity currents (discussed
in section 4.1). Because the spatial scales of turbidity currents are large, we consider a 1000
× 1000 km model domain, with a 5 km horizontal resolution. Rather than release dense fluid
at the top of the slope as we did in the outflow configuration, we initialize the model with a
Gaussian blob (radius≈100 km, maximum height of 15 m) of dense fluid (∆ρ/ρ = 0.03) near
the top of the slope. Initializing the model in this manner is based on the approach taken by
Nof. To make the study of turbidity currents mathematically tractable, Nof assumes that
the early behavior of the turbidity current is not important to its path. Accordingly, Nof
considers the fate of a geostrophically adjusted “blob” of fluid on a slope, which is taken
to represent the turbidity current after the complex initial stages. To facilitate comparison
with Nof’s theory, we take the same approach, although we also considered the behavior
of a turbidity current starting from a dambreak configuration. We found little difference
between the two initial configurations and therefore report only the results obtained with
the Gaussian blob configuration.

3 Outflow regime

3.1 Limiting case of Smith’s streamtube model

In the streamtube model formulated by Smith[13, 4], the outflow is treated as a steady flow
on a simple linear slope. The streamtube model starts with the hydrostatic, incompressible
Navier-Stokes equations and considers the cross-stream properties of a “tube” of fluid1.
With the simplifying assumptions made by Smith, and by neglecting entrainment into the
plume and stratification of the ambient fluid, the motion of the flow can be reduced to a
set of two ordinary differential equations:

V (f + V
dβ

dξ
) = g′α cos β (5)

d(AV 2)

dξ
= g′αA sin β − CdWV 2 (6)

where ξ is a coordinate that is along the path of the flow, α is the slope of the topography,
β is the angle that the streamtube makes with a line running parallel to topography, V is
the mean velocity of the flow, A = HW is the cross-sectional area of the flow, where H

1The details and derivation of the streamtube model can be found in [13]
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and W are the height and width of the streamtube, respectively, and Cd is a parameter
taken to represent friction from bottom drag. Note that Cd has the same meaning as it has
in equation (1), and that it has been multiplied by the width of the plume because of the
cross-stream integration performed as part of the streamtube analysis.

When the full streamtube equations are integrated numerically, the motion of the plume
is initially a cycloid with a mean path along the slope. Far downstream, friction damps out
any cyclic component of the flow, and the flow settles into a steady state such that d

dξ
= 0.

At this limit, equations (5) and (6) can be combined to give:

tan β =
CdV

fH
(7)

(

Cd

Hf

)2

V 4 + V 2 =

(

g′α

f

)2

(8)

Note that the above expression for tan β is similar to the expression for the Ekman num-
ber (4). The only difference between the two expressions is that in the definition of the
Ekman number, H corresponds to the height of the mixed layer and therefore has a maxi-
mum value of 10 m. In equation (7), H is the height of the streamtube, with no maximum
value (although the height of the flow is generally less than 100 m). In spite of this differ-
ence, we refer to the right hand side of equation (7) as the Ekman number (Ek). As defined
above, β is the angle that the streamtube makes with a line running along the topography.
The expression for tan β is therefore the ratio of the velocity across the topography to the
velocity along the topography, or

tan β = Ek =
Vacross

Valong

(9)

The solution to equations (7) and (8) is most useful when it is written in terms of
external variables so that the path and velocity of the streamtube can be predicted. As
in Price and Baringer[2], we assume that the width of the plume is constant so that the
volume flux per unit width, Q, is written as Q = V H. Substituting this expression into
equations (7) and (8) gives:

tan β =
CdV

2

fQ
(10)

(

Cd

Qf

)2

V 6 + V 2 =

(

g′α

f

)2

(11)

3.2 Comparison with model results

We consider two methods of solving equations (10) and (11), which we designate Method 1
and Method 2. Each method has an associated velocity (which we denote as V1 and V2),
and an associated β (β1 and β2).

The first method, Method 1, considers the simultaneous solution to equations (10)
and (11). The solution to equation (11) has only one positive real root (V1), which is
substituted in (10) to obtain β1.
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The second method of solving equations (10) and (11)–the approach taken by Price and
Baringer[2]–is to assume that the flow is in geostrophic balance. Method 2 does not make
use of the predictive expression for the velocity, equation (11); instead, it assumes that
the velocity, V2, is given by geostrophic velocity, U . The geostrophic velocity for flow on a
constant linear slope is given by

V2 = U =
g′α

f
(12)

When (12) is substituted into (10), the following expression results:

tan β2 =
Cd(αg′)2

Qf3
(13)

To test the predictive capabilities of the two methods of solving the streamtube equations
and to observe the sensitivity of the outflow path to different parameters, we integrated the
model with different rotation rates and different values of bottom friction. The path of the
outflow for different rotation rates is seen in Fig. 1, which shows the height (thin contours)
of the plume2 on day five of the integration, for four different rotation rates. Each panel in
Fig. 1 also shows the path predicted by the two different methods of solving the streamtube
equations. Method 1, which is the simultaneous solution to equations (10) and (11), is
shown as a heavy solid line. Method 2, which assumes that the plume is in geostrophic
balance, is shown as a heavy dashed line. Dense fluid is released at a constant flux (per
unit width) of 20 m2 s−1 near the top right corner of each panel between 210 km and
240 km. To avoid the complications associated with flow near a boundary, the fluid is
released on the slope 20 km from the top edge of the domain. The topography starts at
the top of each panel with a value of -500 m and declines linearly towards the bottom of
each panel. In each case, the slope of the topography is 0.008 and bottom friction (Cd)
is 0.01. The rotation rate has values of 0 s−1 (upper left panel), 10−5 s−1 (upper right
panel), 5×10−5 s−1 (lower left panel), and 10−4 s−1 (lower right panel). As a complement
to Fig. 1, Table 1 shows the values of velocity3and Ekman number (tan β) obtained by the
two different solution methods for the integrations shown in Fig. 1. Table 1 also shows the
measured average velocity of the plume, where we define the average velocity of the plume
as the instantaneous average velocity of all points that have a thickness of 10 m or more.

The effect of rotation is seen clearly in Fig. 1: as the rotation rate is increased, the path
of the outflow is increasingly to the right (northern hemisphere configuration). For the case
without rotation, the path is directly downhill. When the rotation rate is 10−4 s−1, which
corresponds to a latitude of approximately 45◦, the path is substantially deflected.

With some notable exceptions, the predictions given by the streamtube theory are in
good agreement with the model results. Without rotation, the behavior of the streamtube
equations is pathological because of the presence of f in the denominator in equations (10)
and (11). In the limit of very small f , however, the simultaneous solution to equations (10)
and (11) (Method 1) gives a velocity of approximately 42.4 cm s−1 and a very large tan β.
These values are in accord with the measured velocity, 40.1 cm s−1, and an infinite tan β.
Method 2 is not applicable without rotation, since the geostrophic velocity approaches
infinity as f approaches 0.

2We define the plume as the dense fluid with a height of 10 m or greater.
3Note that the table entry for f = 0 s−1 is the solution to (10) and (11) as f → 0
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Method 1 Method 2 Observed
V1 (cm s−1) tan β1 V2 (cm s−1) tan β2 V (cm s−1)

f=0 s−1 42.4 ∞ ∞ ∞ 40.1
f=10−5 s−1 42.3 9.0 381.6 728.2 40.0

f=5×10−5 s−1 40.2 1.61 76.3 5.83 37.5
f=10−4 s−1 33.4 0.56 38.2 0.73 32.7

Table 1: Velocity and tan β for the experiments in Fig. 1 for the two different methods of
solving the streamtube equations.

Method 1 Method 2 Observed
V1 (cm s−1) tan β1 V2 (cm s−1) tan β2 V (cm s−1)

Cd=0.001 38.1 0.07 38.2 0.07 43.1
Cd=0.005 36.3 0.32 38.2 0.36 37.5
Cd=0.01 33.4 0.56 38.2 0.73 32.7
Cd=0.05 23.0 1.32 38.2 3.64 19.1

Table 2: Velocity and tan β for the experiments in Fig. 2 for the two different methods of
solving the streamtube equations.

In all cases with rotation, the path predicted by Method 1 agrees well with the modeled
plume. For f = 5 × 10−5 s−1, for example, the angle predicted by Method 1 is close to
the angle of center of the plume, and the predicted velocity, 40.2 cm s−1, is close to the
measured value of 37.5 cm s−1. Similar agreement is found in all cases with rotation.

In contrast with the predictions by Method 1, the agreement between the path predicted
with Method 2 and the modeled plume depends on the rotation rate. The path predicted
by Method 2 agrees well at the highest rotation rate, f = 10−4 s−1, but diverges from the
model at lower rotation rates. This discrepancy exists because the flow is not in geostrophic
balance. Method 2 assumes that the flow is in geostrophic balance; consequently, considering
the Rossby number of the flow will give an indication of the appropriateness of Method 2.
Using the same scalings as used in section 2 (length≈40 km, velocity≈40 cm s−1), for
f = 10−5 s−1, f = 5 × 10−5 s−1, and f = 10−4 s−1, the Rossby number is 5, 1, and 0.1,
respectively. These values of the Rossby number indicate that Method 2 is not appropriate
for f = 10−5 s−1 and f = 5 × 10−5 s−1. This is also apparent in a comparison between
the geostrophic velocity and the observed velocity. For the case of f = 5 × 10−5 s−1, for
example, the measured velocity of the plume is 37.5 cm s−1, while the geostrophic velocity
is 76.3 cm s−1.

We also examined the impact of bottom friction on the outflow’s path. Figure 2 shows
the height of the intruding current and the path predicted by the streamtube model for the
two different solution methods, on day five of the integration, for four different values of
bottom friction. The experimental setup is identical to that used to produce Fig. 1, except
that in this case, the rotation rate is held constant at 10−4 s−1 and the bottom friction
coefficient is varied. The panels in Fig. 2 show the outflow path that results with bottom
friction values of 0.001 (upper left panel), 0.005 (upper right panel), 0.01 (lower left panel),
and 0.05 (lower right panel). For comparison, typical values of bottom friction used in ocean
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Figure 1: Plume height (thin contours) and path predicted by streamtube theory with
Method 1 (thick solid line) and Method 2 (thick dashed line), on day 5 for different rotation
rates: 0.0 s−1, 10−5 s−1 (top right), 5×10−5 s−1(bottom left), 10−4 s−1 (bottom right) for
a slope of 0.008 and a bottom drag (Cd) of 0.01. Contour interval is 10 m.
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Figure 2: Plume height (thin contours) and path predicted by streamtube theory with
Method 1 (thick solid line) and Method 2 (thick dashed line), on day 5 for different values
of bottom drag (Cd): 0.001 (top left), 0.005 (top right), 0.01 (bottom left), 0.05 (bottom
right) for a slope of 0.008 and a rotation rate of 10−4 s−1. Contour interval is 10 m.
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modeling are around 0.003. It is clear from Fig. 2 that as bottom friction is increased, the
gravity plume is able to cross lines of constant depth with an increasingly steep angle. For
the smallest value of bottom friction, 0.001, the flow is almost parallel to topography. This
is consistent with the simplest (i.e. inviscid) models of outflows that predict alongslope
flow.

In all cases, there is reasonably good agreement between the path of the model and the
path predicted by the two methods of solving the streamtube equations. For lower values
of bottom friction, Cd=0.001 and Cd=0.005, the two methods give very similar predictions.
This is seen in Table 2, which shows the velocity and Ekman number predicted by the two
solution methods and the observed velocity of the plume for the cases shown in Fig. 2. For
example, the velocities predicted by Method 1 and Method 2 for the case when bottom
friction is 0.005 are 36.3 cm s−1 and 37.5 cm s−1, respectively.

At higher values of bottom friction (Cd=0.01 and Cd=0.05), the path predicted by
Method 2 is more downhill than the path predicted by Method 1. This is due to the
decelerating influence of friction, which prevents the plume from achieving geostrophic
balance. At higher values of friction, the measured velocity is substantially less than the
geostrophic velocity. For example, when bottom friction is 0.05, the measured velocity of
the plume is approximately 19.0 cm s−1, while the geostrophic velocity is 38.2 cm s−1. The
velocity predicted by Method 1 adjusts to the higher value of friction, resulting in a more
accurate prediction of the plume’s path.

One can also apply the streamtube model in a local sense by considering each point in
the domain as an individual streamtube with its own mass flux. In this case, the velocity
and height of the flow are diagnosed at each grid point, and these fields are substituted into
equation (7). The resulting field gives information about the path that is preferred locally,
in contrast with the bulk streamtube which gives the preferred path of the bulk plume.
Figure 3 shows the ’local streamtube’ field (arrows)4 for the case when bottom friction is
0.005 (the same case shown in the upper right panel of Fig. 2). Also shown in Fig. 3 are
the predictions by the two different methods of solving the streamtube equations. Near the
center of the plume, the local streamtube field is oriented in a direction nearly parallel to the
bulk streamtube approximation. Away from the center of the plume, however, the height
of the plume tends to decrease, resulting in a corresponding decrease in the local mass flux.
The decrease in the local mass flux causes the local streamtube field to diverge from the
direction predicted for the bulk plume. Price and Baringer[2] suggest that bottom friction
might play a role in the spreading of outflows. Figure 3 suggests a mechanism through
which this spreading might occur: as fluid moves away from the center of the plume, the
local Ekman number of the flow rises, indicating an increase in the relative importance of
friction. The increase facilitates the downhill motion of the fluid, leading to a spreading of
the outflow.

4Note that the field plotted in Fig. 3 is normalized so that the length of each arrow is 1; the length of
the arrows does not indicate the magnitude of the local Ekman number, only the direction that the local
Ekman number predicts for the flow
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Figure 3: Thickness (thin contours–interval 10 m), bulk streamtube model (Method 1–
thick solid line; Method 2–thick dashed line), and local streamtube (arrows), on day 5 of
integration for a bottom drag value of 0.005
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4 Turbidity current

4.1 Nof’s (1996) turbidity current theory

Nof proposes a simple analytic model to explain the path of the turbidity current associated
with the 1929 Grand Banks earthquake. Rather than consider the complex processes that
lead to the formation of the turbidity current, Nof simplifies the problem by treating the
turbidity current as a geostrophically adjusted “blob” of fluid on parabolic slope. Nof
makes further simplifications by treating the shape of the blob as constant in time and by
neglecting the effect of viscosity and bottom drag. For brevity, we only present the solution;
for the derivation of Nof’s model, see Nof (1996).

With the simplifications discussed above, the motion of the blob of fluid is given by the
following two components:

X(t) =
−g′T1f

(f2 + 2g′T2)
3

2

([f2 + 2g′T2]
1

2 t− sin[(f2 + 2g′T2)
1

2 t]) (14)

Y (t) =
−g′T1

(f2 + 2g′T2)
(1− cos[(f2 + 2g′T2)

1

2 t]) (15)

where X and Y are position of the center of the blob as a function of time, t, g ′ = g∆ρ
ρ

is
the reduced gravity, f is the Coriolis parameter, and the constants T1 and T2 describe the
parabolic topography, such that the topographical height can be written as z = T1y + T2y

2

(in all cases considered below, T2 = 0).

4.2 Comparison between Nof’s theory and model results

To test Nof’s theory of the 1929 Grand Banks earthquake and to investigate flow with a rel-
atively high Rossby number, we integrated the model in the turbidity current configuration
described in section 2. We considered the evolution of a Gaussian “blob” of fluid with a
radius of approximately 100 km and a maximum height of 150 m on linear topography with
a slope of 0.006 (similar values to those considered in Nof) over a two day period. Figure 4
shows the height of the blob every 6 hours (thin contours) over the first day of integration
and the path predicted by Nof’s theory (thick line) for the center of the blob. Figure 4 also
shows, as a heavy red contour (stippled in black and white), the regions where the Rossby
number5 is larger than 1. The beginning Nof’s theory (around X = 600 km, Y = 180 km)
marks the center of the blob at t = 0. For the first 6 hours (upper left panel in Fig. 4), the
blob roughly follows the path predicted by Nof’s theory, deflecting to the blob’s right under
the influence of the Coriolis force. After the first 6 hours, however, the blob’s path diverges
substantially from Nof’s theory. Note that in contrast with Nof’s theory, which assumes
that the blob maintains its shape, the blob has deformed substantially during this interval.

At 12 hours (upper right panel in Fig. 4), the fluid that was initially in the blob begins
to collect in a region (around X = 400 km, Y = 550 km) that is characterized by high
velocities (∼6-10 m s−1). This rapidly moving region, which we call “the drip” region,
grows throughout the rest of the simulation, such that by the end of the first day (lower

5To calculate the Rossby number, we define the length scale as 75 km, approximately the radius of the
initial Gaussian plume
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right panel in Fig. 4), most of the fluid that was present in the initial Gaussian blob is
in the drip region. The velocities in the drip region are large enough that the nonlinear
terms in equation (1) become important. The importance of the nonlinear terms can be
seen by looking at the local Rossby number. At 6 hours into the simulation (upper left
panel), the Rossby number is larger than 1 (maximum value of approximately 1.6) towards
the bottom right-hand side (towards x=0, y=1000) of the blob. As the simulation proceeds,
the drip region forms in the area where the Rossby number is greater than 1, indicating the
importance of non-linear terms in the formation of the drip region.

Figure 5 shows the height of the blob (thin contours) and the path predicted by Nof’s
theory (thick line) for a case that is identical to the case shown in Fig. 4, but with to-
pographical slope of 0.003, half of the value used in the simulation shown in Fig. 4. In
this case, a drip region does not form. In addition, the blob of heavy fluid follows Nof’s
theory for a longer time; the blob’s path agrees reasonably well with the theory for approx-
imately 12 hours. In this case, the Rossby number of the flow (not visible), calculated in
the same manner as in Fig. 4, never exceeds 1. Instead, the Rossby number of the flow has
a maximum value of approximately 0.75. Is is interesting to note that if this same case is
considered with a smaller value of bottom friction, shown in Fig. 6, the Rossby number of
the flow does exceed 1, and, on day one, the flow begins to develop a drip region similar to
that shown in Fig. 4.

5 Conclusion

In an effort to understand the processes that allow an oceanic gravity current to flow down-
hill, we have modeled gravity currents in two different flow regimes. First, we considered the
motion of outflows, which in the midlatitudes are approximately in geostrophic balance but
are modified by the presence of friction. The simplest available model–the bulk streamtube
model–predicts that the presence of friction will allow the outflow to propagate downhill.
Our dynamical model of an outflow is consistent with the simple streamtube model: as
we increase bottom friction, the motion of the outflow is increasingly downhill. We also
extended the streamtube model so that it can be applied in a local sense. Applying the
streamtube model in this manner gives information about how an outflow plume spreads
as it travels.

The second flow regime that we considered is the flow of a turbidity current. In this
case, the velocities associated with the motion are high enough (∼10 m s−1) that the
motion cannot be described by the geostrophic approximation. We compared the motion
of a Gaussian blob of fluid, taken to represent a turbidity current after the initial formation
stages, with the motion predicted by Nof’s theory of turbidity currents. We found that for
an initial period, around 6 hours, the motion of the blob was close to the Nof’s theory. After
this initial period, however, the blob of fluid diverged from the cycloid motion predicted
by Nof. The difference between Nof’s theory and the model is likely due to two factors.
First, Nof’s theory assumes that the blob does not change shape as it propagates. This is
a severe restriction, imposed to simplify the mathematics. Our model does not impose any
restrictions on the evolution of the blob’s shape; indeed, as shown in the Fig. 4, the shape
of the plume changes dramatically in time. Second, Nof’s model assumes that there is no
bottom friction and that the flow is inviscid. For reasons of numerical stability, we are not
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Figure 4: Thickness (contours) and Nof theory (heavy blue line) for day 0.25 (top left), day
0.5 (top right), day 0.75 (bottom left), and day 1.00 (bottom right) of turbidity current
simulation with slope 0.006 and f=10−4 s−1. Areas with Rossby number greater than 1 are
shown with a heavy red contour (stippled in black and white). Height contour interval is
10 m.
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Figure 5: Thickness (contours) and Nof theory (heavy blue line) for day 0.25 (top left), day
0.5 (top right), day 0.75 (bottom left), and day 1.00 (bottom right) of turbidity current
simulation with slope 0.003 and f=10−4 s−1. Contour interval is 10 m.
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Figure 6: Thickness (contours) and Nof theory (heavy blue line) for day 0.25 (top left), day
0.5 (top right), day 0.75 (bottom left), and day 1.00 (bottom right). Areas with Rossby
number greater than 1 are shown with a heavy red contour (stippled in black and white).
Same case as Fig. 5, except with bottom friction of 0.001. Contour interval is 10 m.
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able to duplicate these assumptions, although we did investigate the effect of viscosity and
bottom drag on the solution.

We also found that in some cases, the turbidity current collects into a small, rapidly
moving area. The formation of this area is dependent on the Rossby number of the flow.
Flows with a large (>1) Rossby number develop this rapidly moving area, while flows
with a smaller Rossby number do not. This feature is intriguing, and further study of its
development is planned.

5.1 Future work

There are several issues related to the flow of turbidity currents that warrant further explo-
ration. Specifically, several questions remain regarding the formation of the drip region:

1. What is the dependence on model resolution?
To date, we have only run the turbidity current simulations with a horizontal resolu-
tion of 5 km. The small scales seen in the drip region indicate that a higher resolution
may be necessary to fully resolve the details of the flow in this region.

2. Does the drip appear when other–more appropriate–models are used?

MICOM is intended to model the ocean circulation on the scale of an ocean basin. The
extreme conditions (i.e. high velocities and steep height gradients) in the drip region
may make the use of MICOM inappropriate for such a simulation. In the simulations
shown in Fig. 4, the Froude number of the flow reached a minimum of about 1.8 in the
drip region, indicating that the flow is close to a shock wave. Verifying the MICOM
results with a shock resolving (i.e. energy and momentum conserving) model would
lend credence to the results obtained using MICOM.

3. How does the upper layer influence the dynamics of the current?
Recent papers[8, 9] have shown that the ambient fluid can influence the dynamics of
the intruding gravity current. We briefly investigated the role of the depth of the
ambient fluid and found little influence on the dynamics of the gravity current. More
investigation in this area–including the role of ambient stratification–is warranted.

4. How does entrainment/detrainment affect the dynamics of the turbidity current?
Entrainment and detrainment are major factors in the dynamics of gravity currents[5].
A full study of the dynamics of turbidity currents must include an investigation of the
role of entrainment.
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