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1 Introduction

The stability of the interface between two layers of immiscible, incompressible fluids is
studied. Since the fluids may have distinct physical properties, the interface is susceptible
to instabilities due to density stratification, shear-flow instabilities or interfacial ones, arising
from discontinuities in longitudinal stresses at the boundary between the two media ([14],
[15], [4], [13]).

The motivation of this analysis is the study of a particular kind of fast flowing glacier,
found in the Antartica and in Greenland and known with the name of ice stream. An
ice stream can be generically identified, as a part of an inland ice sheet that flows rapidly
through the surrounding ice ([10]). Ice streams appear as long, shallow tongues, extended
in the two horizontal directions and may end as outlet glaciers, bordered by rocks, or as ice
shelves, floating over water. Altough they represent only a low percentage of the Antarctic
coastline, they may drain out of the polar regions a substancial part of the accumulation in
the interior.

Since ice stream motion provides a process for rapid dispersal and disintegration of
ice sheets, an understanding of the underlying physical mechanism of ice streaming flow is,
other than intriguing by itself, relevant in attempting to evaluate the dynamics of continental
expanses.

In order to explain the basic mechanisms of the instability is necessary to explore the
physical properties of the till, the layer at the bottom of these fast moving streams. The till
is a complex material consisting of a liquid, deformable, inhomogeneous, anisotropic mixture
of water and unconsolidated sediments ([5]). As a consequence of the high pressures, the
base of the stream is often melted rather than frozen.

All the existing quantitative models of ice stream dynamic thus relate the characteristics
of the flow to the complex nature of the basal layer and to the interactions between the
latter and the thick overlying frozen one.

In general, four different kind of explanations of ice-stream behaviour are usually found
in literature:

• sliding of the thick ice layer over the thin till, acting as a lubricant ([8], [9]);

• shear deformation of the water-saturated till underlying the ice ([1]);
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• thermomechanical feedback, arising from the dependence of viscosity on temperature
of ice ([11], [12]);

• superplasticity of the till ([7]).

What follows will be concerned with the first two mechanical interpretations of ice
stream dynamic. The aim of this work is the investigation of the peculiar properties of such
a kind of flow, considered as a mechanism resulting from the combination of glacier-like
sliding and ice-shelf slipping.

Figure 1: Landsat image of Rutford Ice Stream B, West Antartica, flowing from left to
right between the solid rock wall on one side and low lying ice-covered promontory on the
other. Image courtesy of D. D. Blankenship et al., Geophysical and Polar research Center,
University of Wisconsin-Madison.

In the past, several models of fast sliding glaciers have been applied to ice-streams, most
of them having included semiempirical laws to express the stress at the bottom of the mass
of ice. This trick allows to simplify the mathematics, since an explicit formulation of the
basal dynamic is not required, but in some way it introduces arbitrary assumptions in the
formulations.

In the commonly accepted interpretation, the glacier is sliding on a deforming bed,
usually a frozen one, absorbing most or all of the differential motion between the ice and
the bedrock. On the other hand an ice-shelf spreading is due to longitudinal, rather than
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shear stresses, which its floating base cannot support. Given these, there is a deep dynamic
difference between a fast moving glacier and an ice-shelf.

To the discussion about the governing equations, the derivations of the glacier and ice-
shelf models and a preliminary stability analysis will follow. Finally, a one-dimensional
ice-stream model will be introduced.

2 Mathematical Formulation

Since the key ingredient in the fast stream dynamic is the interaction between the till and
the ice over it, in order to limit as much as possible the amount of assumptions on the
structure of the stresses regarding the till, all the models presented hereafter will be two
layer ones.

2.1 Basic equations

The evolution of a flow with longitudinal and transversal structure is described by a set of
three dimensional, non steady, isothermal equations.
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Figure 2: The coordinate system and the configuration for the two fluids

In the continuum hypothesis, having decoupled the dynamic problem from the ther-
modynamic one, the governing equations for the two fluids reduce to the incompressible
continuity equation and to the conservation of momentum. Defined an orthogonal coordi-
nate system as in figure (2), z being the vertical coordinate and S = tan(φ) the slope of
the fixed bottom, the equations representing the two layers are:

u1x + v1y + w1z = 0

u1t + uu1x + vu1y + wu1z = −
1

ρ1
p1x +

1

ρ1
(∂xτxx + ∂yτxy + ∂τxz) + gsin(φ)
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v1t + uv1x + vv1y + wv1z = −
1

ρ1
p1y +

1

ρ1
(∂xτxy + ∂yτyy + ∂zτyz)

w1t + uw1x + vw1y + ww1z = −
1

ρ1
p1z +

1

ρ1
(∂xτxz + ∂yτyz + ∂zτzz) − gcos(φ) (1)

and:

u2x + v2y + w2z = 0

u2t + uu2x + vu2y + wu2z = −
1

ρ2
p2x +

1

ρ2
(∂xσxx + ∂yσxy + ∂σxz) + gsin(φ)

v2t + uv2x + vv2y + wv2z = −
1

ρ2
p2y +

1

ρ2
(∂xσxy + ∂yσyy + ∂zσyz)

w2t + uw2x + vw2y + ww2z = −
1

ρ2
p2z +

1

ρ2
(∂xσxz + ∂yσyz + ∂zσzz) − gcos(φ) (2)

where the subscripts (x,y,z) denote partial derivatives, (1) and (2) refer to the upper and
lower fluid, u = (u, v, w) is the velocity field, g = (gsin(φ), 0,−gcos(φ)) is the gravity force,
τij and σij the anisotropic parts of the stress tensors, the total deviatoric tensors being
respectively:

T = τ − p1I

S = σ − p2I (3)

2.2 Boundary conditions

The problem needs, to be defined, the specification of the associated boundary conditions.
At the base of the stream a no-slip condition is required. Since the base is kept fixed,

this imposes on z=0:
u2 = v2 = w2 = 0 (4)

At the interface z = ζ between the two media the physical request of matching of the
stresses has to be satisfied:

T · nζ = S · nζ (5)

having defined nζ = (−nx,−ny, 1)/(n
2
x + n2

y + 1) as the unit normal pointing out of the
surface z = ζ.

The last one at the free surface imposes a zero stress at the elevation z = h:

T · nh = 0 (6)

and expresses the continuity of stresses between the upper layer and a medium (air) much
less dense overlying it.

2.3 Rheology of the problem

The system is then closed specifying the functional relation between the stress tensors T

and S and the properties of the two fluids. This defines the analogous of the Newtonian
constant viscosity in the case of a nonlinear relationship between strain rate and stress.
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A fairly general model is a power law contitutive relation of the kind:

τij = Kγ̇n−1
· γ̇ij (7)

where K is the consistency, dependent on temperature, pressure, composition of the mate-
rial, n > 0 a fixed real exponent (n = 1 for a Newtonian fluid) and γ̇ the second invariant
of the strain rate, expressed by:

γ̇ =

√

1

2
γ̇jk · γ̇jk (8)

According to the previous notation, the strain rate tensor becomes:

γ̇ij =





2ux uy + vx uz + wx

uy + vx 2vy vz + wy

uz + wx vz + wy 2wz



 (9)

In the till-ice system, none of the two components has a simple behaviour. Nonetheless,
a proper discussion of the rheological properties of the till goes beyond the aim of this work
and could eventually follow to a first understanding of the primary instability mechanism.

In the model presented further on, the till will be considered like a Newtonian fluid,
with constant viscosity, while for ice the constitutive relation will be a power law one of the
kind discussed above (7). Ice is a shear thinning fluid, in the sense that an increased strain
rate produces a decrease in the effective viscosity. In fact, for ice:

n ∼
1

3
(10)

The equation (7) is in this case (and for all values of n < 1), not well behaved for some
particular flow configuration, predicting in fact an infinite effective viscosity for values of
the strain rate approaching zero.

3 The Glacier Theory

In a glacier the slab deformation at a generic depth is moslty due to shear stress, the bottom
attached to the rock being commonly frozen.

Thus the minimum model for such a kind of system is represented by the superposition
of two Newtonian fluids with different densities and viscosities, described at leading order
by an hydrostatic balance in the vertical and by a balance between pressure gradient force
and shear stress in the horizontal direction x.

3.1 Non-dimensional equations

Focusing the attention on the one-dimensional case, the relevant balance in the x-momentum
equation is expressed for both fluids by:

p1x ∼ ∂zτxz (11)

p2x ∼ ∂zσxz (12)
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Continuity and momentum conservation equation reduce, in a one-dimensional frame-
work, to:

u1x + w1z = 0

u1t + u1u1x + wu1z = −
1

ρ1
∂xp1 −

1

ρ1
(∂xτxx + ∂zτxz) + gsinφ

w1t + u1w1x + ww1z = −
1

ρ1
∂zp1 −

1

ρ1
(∂xτxz + ∂zτzz) − gcosφ (13)

u2x + w2z = 0

u2t + u2u2x + wu2z = −
1

ρ2
∂xp2 −

1

ρ2
(∂xσxx + ∂zσxz) + gsinφ

w2t + u2w2x + ww2z = −
1

ρ2
∂zp2 −

1

ρ2
(∂xσxz + ∂zσzz) − gcosφ (14)

where the subscripts 1 and 2 refer to the upper and lower fluid respectively.
The set of equations above is then non dimensionalized by choosing the following scales:

x = Lx̃, z = Hz̃, u = Uũ, w =
UH

L
w̃, t =

L

U
t̃ (15)

For pressure:
p = ρ1gHp̃ (16)

and strain rate:

γ̇ij =
U

H
˜̇γij (17)

The leading order balance defines then the scale for horizontal velocity U = ρ1gH3

ν1L
. With

this restriction, defining as ε = H
L

the aspect ratio for the two thin layers and indicating

with Re = ρ1UL
ν1

the small Reynolds number of the flow, the inertial terms in the governing

equations become negligible at leading orders, being proportional to ε2Re.
The simplified non dimensional form of the governing equations, dropping the tilde

superscript, is then:

0 = u1x + w1z

0 = −p1x + ε∂xτxx + ∂zτxz + S

0 = −p1z + ε2∂xτxz + ε∂zτzz − 1 (18)

0 = u2x + w2z

0 = −p2x + ε∂xσxx + ∂zσxz + SD

0 = −p2z + ε2∂xσxz + ε∂zσzz − D (19)

where S = tanφL
H

is the non dimensional slope and D = ρ2

ρ1
is the density ratio. The

components of the strain rate tensor, in the new rescaled variables are:

γ̇(i)
xx = 2εuix γ̇(i)

xz = uiz + ε2wix γ̇(i)
zz = 2εwiz (20)
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where i=1,2.
The system is finally defined by the boundary conditions at the rigid bottom boundary

z = 0:
u2 = w2 = 0 (21)

at the interface z = ζ between the two fluids:

−ε(τxx − p1)ζx + τxz = −ε(σxx − p2)ζx + σxz (22)

−ετxzζx + (τzz − p1) = −εσxzζx + (σzz − p2) (23)

(24)

and at the free surface z = h:

−ε(τxx − p1)ζx + τxz = 0 (25)

−ετxzζx + (τzz − p1) = 0 (26)

3.2 The 1-D thin glacier theory

The derivation of a thin layer model ([2], [3]) describing the evolution of the system at the
boundaries, follows directly from the assumption of a shallow layer for both ice and till.

The smallness of the aspect ratio ε allows to perform an asymptotic expansion of the
governing equations, reducing the complexity of the initial formulation to a simplified set
of equations that incorporate the basic physical aspects of the phenomenon.

This is done by expanding all the variables in power series of ε:

ui = u
(0)
i + εu

(1)
i + O(ε2), wi = w

(0)
i + εw

(1)
i + O(ε2), pi = p

(0)
i + εp

(1)
i + O(ε2) · · · (27)

and so on. Collecting terms of the same order in ε one obtain a set of governing equations
that solves the problem at the different orders.

At leading order, according to the previous definition (20) of the strain rate tensor:

τ (0)
zz = −τ (0)

xx = 0 (28)

and seemingly:
σ(0)

zz = −σ(0)
xx = 0 (29)

indicating a basic flow independent on z in the upper layer.
The interior flow is thus completely determined specifying the velocity field (u, w) at

the boudaries and solving the two evolution equations for ζ and h:

ζt + u(ζ)ζx = w(ζ) (30)

ht + u(h)hx = w(h) (31)

The pressure field, hydrostatic at leading order, is given by:

p
(0)
1 = h − z (32)

and
p
(0)
2 = h − ζ + D(ζ − z) (33)
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(the (0) superscript at the right end side of the equations have been dropped for conve-
nience).

Then, integrating the second of (18) along the vertical and given the upper boundary

condition τ
(0)
xz (h) = 0:

σxz(ζ) = (S − hx)(h − ζ) (34)

Here, the stress component σxz is evaluated from an integration in the lower layer:

σ(0)
xz (ζ) = (ζ − z)(hx − ζx + Dζx − SD) + σxz(z) (35)

The velocity at the boundary z = ζ, equating (34) and (35) is:

u =
1

ν2
[(S − hx)(h − ζ)ζ − (hx − ζx + Dζx − SD)

ζ2

2
] (36)

Since at leading order the flow is independent on z:

u(h) = u(ζ) (37)

while for the vertical component of velocity (integration of continuity equation):

w(h) = w(ζ) −

∫

h

ζ

uxdz = w(ζ) − ux(ζ)(h − ζ) (38)

The final set of equations, defining θ = h − ζ to be the thickness of the upper layer is
then:

ζt + ∂x[(S − hx)
θζ2

2
+ (θx + Dζx − DS)

ζ3

3
] = 0 (39)

Rθt + ∂x[(S − hx)
θ3

3
+ θu] = 0 (40)

u = R[
ζ2

2
(DS − Dζx − θx) + (S − hx)θζ] (41)

where the new relevant parameter R is a viscosity ratio of the form ν1

ν2
.

3.3 The 2-D extension

It’s straightforward the generalization in presence of a bidimensional horizontal structure:

u − R[(S − hx)θζ +
ζ2

2
(DS − Dζx − θx)] = 0

v + R[hyθζ +
ζ2

2
(Dζy + θy)] = 0

Rθt + ∂x[(S − hx)
θ3

3
+ θu] + ∂y[−hy

θ3

3
+ θv] = 0

ζt + ∂x(S − hx)
θζ2

2
− (θx + Dζx − DS)

ζ3

3
] − ∂y[hy

θζ2

2
+ (θy + Dζy)

ζ3

3
] = 0 (42)

here (u,v) indicate the velocity components in the directions (x,y).
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4 The Ice-Shelf Theory

In a ice-shelf, floating on the sea, the lower layer is liquid water, much less viscous than the
ice moving on it. In this case, considering pretty uniform the thickness of the shallow layer
of ice, the vertical shear is zero and the big mass of ice behaves like a uniform slab, subject
to zero fricton at its upper and lower surfaces.

4.1 Non-dimensional equations

In the 1-D model, the essential balances for the two fluids are expressed by:

p1x ∼ ∂xτxx (43)

p2x ∼ ∂xτxz (44)

From equation (43) it’s clear the relevance of the longitudinal stresses in the ice layer.
The set of equations (13), (14) is again non-dimensionalized using the same scales as for

the glacier case, getting:

0 = u1x + w1z

0 = −εp1x + ε∂xτxx + ∂zτxz + S

0 = −p1z + ε∂xτxz + ∂zτzz − 1 (45)

and:

0 = u2x + w2z

0 = −p2x + ε∂xσxx + ∂zσxz + SD

0 = −p2z + ε2∂xσxz + ε∂zσzz − D (46)

where the components of the strain rate tensors are respectively:

γ̇(1)
xx = 2u1x γ̇(1)

xz =
1

ε
u1z + εw1x γ̇(1)

zz = 2w1z (47)

and:
γ̇(2)

xx = 2εu2x γ̇(2)
xz = u2z + ε2w2x γ̇(2)

zz = 2εw2z (48)

It’s worth noting how the stress components are defined and scaled differently in the
two layers. In fact, for the upper fluid:

[p1] = [p] = [τij ] (49)

while for the lower one:

[p2] = [p] =
1

ε
[σij ] (50)

and from the continuity of pressures at the boundary z = ζ between the two media:

[σij ] = ε[τij ] (51)
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In the case of two Newtonian fluids, remembering the definitions given above for the
components of the strain rate:

[τij ]

[σij ]
=

ν1

ν2
= R = ε−2 (52)

The boundary conditions at the rigid bottom z=0:

u2 = w2 = 0 (53)

at level z = ζ:

−εζx(τxx − p1) + τxz = −εζx(εσxx − p2) + εσxz (54)

−εζxτxz + τzz − p1 = −εζxεσxz + εσzz − p2 (55)

and at the free surface z = h:

−εhx(τxx − p1) + τxz = 0 (56)

−εhxτxz + τzz − p1 = 0 (57)

finally close the problem.

4.2 The thin ice-shelf theory

With a procedure completely similar to the one followed in section (3.2) one can obtain the
evolution equations for the two boundaries z = ζ, θ = h − ζ and for the velocity u in a
1-dimensional framework:

R[θ(2τxx)]x − (θx + ζx − S)θ −
u

ζ
−

ζ

2
(θx + Dζx − DS) = 0

θt + (uθ)x = 0

ζt + (
uζ

2
)
x
−

1

12
[ζ3(θx + Dζx − DS)]x = 0 (58)

and in the 2-dimensional one:

R([θ(2τxx + τyy)]x + [θτxy]y) − (θx + ζx − S)θ −
u

ζ
−

ζ

2
(θx + Dζx − DS) = 0

R([θ(τxx + 2τyy)]y + [θτxy]x) − (θy + ζy)θ −
v

ζ
−

ζ

2
(θy + Dζy) = 0

θt + (uθ)x + (vθ)y = 0

ζt + (
uζ

2
)
x

+ (
vζ

2
)
y
−

1

12
[ζ3(θx + Dζx − DS)]x −

1

12
[ζ3(θy + Dζy)]y = 0 (59)

with the usual meaning of the parameters R, D and S involved.
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5 Stability analysis

5.1 Linear stability

The first step in the understanding of the instability mechanism is to perform a linear
stability analysis of the two systems presented, in a drastically simplified configuration
of two Newtonian superposed fluids, perturbing around a basic state independent on the
transversal coordinate y and uniform along the longitudinal x-direction.

One of the aims of this kind of study is to look for the occurrence of fingering instabilities
in the horizontal plane.

The parameters determining the stability properties are:

• the non-dimensional slope S;

• the density ratio D (=ρ2/ρ1);

• the viscosity ratio R (=ν1/ν2);

• the scale of the upper layer thickness Θ.

It’s not a restrictive choice to fix the slope (S=1) and to analyse the behaviour of the
two bidimensional models already described in presence of a stable density stratification
(D=1.1). This is in fact the configuration relevant in practise when dealing with ice flowing
on a lower denser layer, represented by frozen compressed till or by liquid water.

The definition of the two basic states follows directly from the sets of equations (42)
and (59) previously derived, being for both models:

θ(x, y, t) = Θ, ζ(x, y, t) = Z = 1 − Θ, h(x, y, t) = Θ + Z = 1 (60)

and:
v(x, y, t) = 0 (61)

The longitudinal velocity component is then expressed for the glacier case by:

u(x, y, t) = U = RΘ(Z + D
Z

2
) (62)

while for the ice-shelf one:

u(x, y, t) = U = Θ(Z + D
Z

2
) (63)

Now, since the geometry is unbounded in the y direction and supposed periodic along x,
is possible to expand the perturbations from the uniform state for all the variables concerned
in the following form:

a = A + ã(z)exp(ikx + ily + σt) (64)

indicating with k and l the longitudinal and trasversal wave numbers of the disturbances
and with σ the associated complex eigenvalue. In particular, Re(σ) being the growth rate
and Im(σ) the celerity of the correspondent waves.

Stability conditions are found solving analitically a quadratic algebraic expression in σ
and are simply determined by the sign of the real part of the eigenvalue.
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The range of unstable wave numbers depends obviously on the choice of the parameters.
By fixing Θ = 0.5 (S=1 and D=1.1), it’s interesting to note Fig (3) that the sensitivity of
the interval of unstable wave numbers on the variations of R appears evident for the glacier
model and not for the ice-shelf one.
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Figure 3: Growth rates as a function of k and l wave numbers, evaluated for increasing
values of the parameter R. Curves (a) and (b) show the growth rates for R=1, 2, 5, 10, 100
for the glacier model, while (c) and (d) correspond to R=0.1, 0.2, 0.5, 1 for the ice-shelf
approximation.

Two representative solutions of the linear problem are then plotted in Figures (4) and
(5).
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Figure 4: Growth rate Re(σ) and phase speed Im(σ) in the wave number plane [k,l] for the
glacier case, choosen R = 2, Θ = 0.5 and D = 1.1. The black line in the first plot is the
marginal stability curve.

In both cases one can observe the appearance of an instability region in a limited part
of the [k,l] plane. The celerities (c = Imσ) are almost constant along l and show a quite
clear linear dependence on k, indicating that all the waves in the plane are moving with the
same phase speed ω (ω = c/k).
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Figure 5: Growth rate Re(σ) and phase speed Im(σ) in the wave number plane [k,l] in the
ice-shelf model with R = 5, Θ = 0.5, D = 1.1.
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Figure 6: Growth rates and Celerities for a glacier configuration (the upper one, R=2,
D=1.1, Θ = 0.5) and for an ice-shelf one (the lower one, R=5, D=1.1, Θ = 0.5) evaluated
by the linear theory (solid lines) and by a numerical experiment (circles), running a spectral
code with respectively N=128 (Time=500, dt=0.01, Computational domain=20) and N=64
(Time=500, dt=0.002, Computational domain=100) modes.

Figure (6) shows a comparison between the linear theory predictions and numerical
experiments performed with the use of a spectral code, displaying a pretty good agreement
among theory and simulations.
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Figure 7: Stability region in the parameter plane [R, Θ] for S=1, D=1.1 in the glacier case.
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Figure 8: Stability region in the parameter plane [R, Θ] for S=1, D=1.1 in the ice-shelf
case.

Plotting the maximum growth rate in the plane of the parameters R and Θ, is then
evident the existence, for the glacier model, of two distinct instability regions (Fig. 7). The
first comes out for R > 1, no matter the value of Θ, and it’s enhanced for increased value
of R. The second corresponds to a pretty curious situation with R � 1 and Θ � 1.

In the other model the instability region (Fig.8) covers the whole parameter plane [Θ, R]
and this is in accordance with the interpretation of the ice-shelf approximation as a limit
situation for R = O(ε−2) � 1.
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Figure (9) reports then the purely two dimensional instability occurring for values of
R = 0.1, Θ = 0.2 in the shear dominated, glacier-like model. A clear explanation of this
unespected (at least to the author knowledge) unstable configuration is not available.
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Figure 9: Growth rate Re(σ) and phase speed Im(σ) in the wave number plane [k,l] for the
glacier case, choosen R = 0.2, Θ = 0.1 and D = 1.1. The black line in the first plot is the
marginal stability curve.

The results of such a kind of investigation are interesting, but discouraging to some
extent, showing no possibility for fingering to occur.

5.2 Nonlinear dynamic

The governing equations of the two models contain up to fourth order nonlinearities. As a
consequence, the evolution of the two interfaces z = ζ and z = h far away in the future is
completely dominated by the nonlinear terms.

The integration in time of the one-dimensional glacier-equations, in a fixed system of
reference, is shown in figures (10) and (11).

The initial bump entering the domain at time t=0 moves downstream, growing and
evolving as time passes. It’s interesting to note the tendence of the system, as time goes
on, to sharpen an initially smooth disturbance developing sharp shocks.

The two thicknesses ζ and θ are strongly coupled, oscillating out of phase in time with
almost the same amplitude. This means, remembering the physical interpretations of the
two, that in a realistic setting one should observe no evolution in time of the free surface.

The same result comes out computing the equilibrium shapes for wave-like solutions
of the kind θ = θ(x − ct), ζ = ζ(x − ct) starting from an initial condition periodic in the
spatial domain. Figure (12) displays two equilibrium configurations and a regime diagram
indicating the supercritical nature of the bifurcation.
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6 The Ice-Stream Model

The models described so far have to do with two furthermost and completely uncorrelated
situations, that solely take into account the effects or of the shear stresses (glacier approx-
imation) or of the longitudinal ones (ice-shelf model).

But, to some extent, the behaviour of ice-streams is something in between that ones
of glaciers or of ice-shelves. In fact, it becomes rather hazy also in practice to locate the
geometric limits of a fast moving ice-stream bounded by an outlet glacier or entering an
ice-shelf.

An intermediate model is thus built taking the 1-D non-dimensional set of equations (18)
and (19) of the glacier, but without discarding the adjustment produced by the longitudinal
stresses on the velocity profile.

The starting point are the followings, describing the system at leading order:

0 = u1x + w1z

0 = −p1x + ε∂xτxx + ∂zτxz + S

0 = −p1z − 1 (65)

0 = u2x + w2z

0 = −p2x + ∂zσxz + SD

0 = −p2z − D (66)

With the usual meaning for the parameters involved, these equations are closed by the
set of conditions at the boundaries previously stated.

The longitudinal stresses are expressed by the term ε∂xτxx in the second of equations
(65). It’s clear, modeling again the upper fluid as a Newtonian one (and in this case
τxx = 2εν1ux), that this term becomes relevant whenever:

ε2ν1 ∼ O(1) (67)

This condition is satisfied if R = ν1

ν2
� 1 and describes a situation in which a much more

viscous fluid, characterized by a nearly uniform velocity profile, slides over a less viscous
one, with a velocity profile that is parabolic at leading order.

This model is valid for ice-streams since it incorporates the corrections due to longitu-
dinal stresses to a velocity that is not yet completely independent on x.

The next step is the derivation of a consistent and more general thin layer theory,
following a procedure analogous to that one described for the glacier. The ice-stream thin
layer theory is then expressed by:

ζt + ∂x[
1

2
uζ −

1

12
(DS − θx − Dζx)ζ3] = 0

θt + ∂x[θu + (S − hx)
θ3

3R
] = 0

ζ2

2
(DS − Dζx − θx) + (S − hx)θζ + 2ε2Rζ∂x(θτxx) = u (68)

These equations incorporate two different approximations, reducing to:
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• the glacier ones for R ∼ O(1);

• the ice-shelf ones for R ∼ O(ε−2).

7 Conclusions

The purpose of this work was the investigation of two of the mechanisms considered relevant
in ice-stream dynamics.

In particular, the extremely simplified models described, were formulated in order to
understand the effects on the flow of the different stresses conditions found at the boundary
between the flowing ice and its bottom. The explicit treatment of the basal layer, altough
complicating the formulation, had the advantage of avoiding strong unphysically grounded
assumptions about the structure of the stresses. A second task was, possibly, to relate the
action of the stresses to the instability patterns effectively observed in nature.

In this context the glacier and the ice-shelf approximations (the first dominated by shear
and the second by longitudinal stresses) were derived and studied. The linear stability
analysis revealed the presence of instabilities at the boundaries between the two fluids in
both of the models, but showed also the lack of an effective mechanism generating fingers.

Combining the sliding and the slipping properties of the glacier and of the ice-shelf
motion, a one-dimensional ice-stream model was then formulated.

These results are far from being relevant for ice, but the analysis can in principle be
extended to the consideration of a non Newtonian fluid in motion over a bottom layer,
including in the governing equations a different constitutive law.

It could finally be intriguing, for the future, to analyse in more detail the non-linear
properties of the models presented, in order to better define their effective capability (or
inability) in explaining ice-stream dynamic.
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