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1 In tro duction

Climate variabilit y on interannual time scalesis exempli�ed by the El Ni~no -Southern Os-
cillation (ENSO). An El Ni~no event is marked by anomalously warm SST's in the eastern
portion of the equatorial Paci�c and the weakening of the trade winds over much of the
equatorial Paci�c, the opposite event is called La Ni~na. In addition to locally a�ecting the
climate near the equator, El Ni~no and La Ni~na signi�cantly a�ect the weather throughout
the Americas. A standard ENSO index is the anomaloussurfaceatmospheric pressuredif-
ferencebetweenTahiti and Darwin, Australia. As a time series,this index shows signi�cant
variabilit y around the 1/4 yr � 1 frequency. Although much research has been devoted to
the study of ENSO, there are still someopen issuesregarding: what starts El Ni~no, what
sustains its quasi-periodic behavior, etc. Two complementary conceptual models of ENSO
have beensuccessfulin exposing someof the main dynamics of ENSO.

Prior to the development of these conceptual models an intermediate model of ENSO
was developed by Zebiac and Cane [1]. This model (henceforth ZCM) is a coupled ocean-
atmosphere model that usesa steady state linearized atmosphere, and long-wave linear
momentum equations for the ocean. The atmospheric model is essentially a Gill type
equatorial model [2]. The oceanand atmosphereare coupledthrough the atmospherebeing
forced by anomalousSST's, and the oceanbeing forced by anomalouswind stresses.This
model was shown to have variabilit y similar to ENSO. However, it was di�cult to show
exactly what mechanismsresulted in ENSO variabilit y becauseof the model's complexity.

In an e�ort to understand the basicmechanismsthat result in ENSO variabilit y, Battisti
(1988) and Schopf & Suarez (1988) showed that the ZCM can be reduced to a delayed
oscillator model that contains ENSO-like variabilit y ([3] and [4]). The delayed oscillator
model of ENSO emphasizesthe role of equatorially trapped wavesand the di�eren t crossing
times of Kelvin and Rossby waves as the source of ENSO-like variabilit y. Speci�cally ,
by integrating along characteristics of Kelvin and Rossby waves, and after making some
simplifying assumptions,the delayed oscillator equation, dT=dt = aT � bT(t � � ) + N , was
derived. The aT term represents the positive El Ni~no feedback and the � bT(t � � ) term
represents the delay e�ect of the Rossby waves which e�ectiv ely carry temperature of the
opposite sign to the easternequatorial region at a time � later. It is this delay that is crucial
to ENSO variabilit y.

In 1997a di�eren t conceptual model of ENSO was developed by Jin ([5] and [6]). This
model is a rechargeoscillator model and it deemphasizesthe role of wavesasthe mechanism
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of variabilit y and emphasizesthe role of masstransport as the mechanism responsible for
ENSO variabilit y. Speci�cally , this model shows that it is the di�eren t adjustment times
that is responsible for ENSO variabilit y: the thermocline slope adjusts almost instantly
to wind stresschanges,and the mass(volume) of the equatorial strip takes more time to
adjust to wind stresschanges. In this model it is crucial for the equatorial strips volume to
oscillate in time; anomalousmassmust be transported into the equatorial strip in order for
an El Ni~no event to occur.

The purposeof this work is to seeif the conceptualmodelsare in agreement with idealize
El Ni~no to La Ni~na transitions as producedby a shallow water model forced by periodic El
Ni~no - La Ni~na wind stresses.Speci�cally , the following questionswereaddressed.One, are
the delayed oscillator and the rechargeoscillator complementary viewsof ENSO variabilit y?
Two, from the rechargeoscillator perspective what are the speci�c mechanismsin spaceand
time that charge and discharge the equatorial strip? To answer thesequestions,numerical
simulations of the oceanadjustment processto periodic El Ni~no to La Ni~na wind stresses
wereperformed. Additionally , a passive tracer wasusedto help diagnosethe massexchange
processthat occurs in El Ni~no - La Ni~na transitions.

2 The Equatorial � -Plane

The governing equations used to study El Ni~no are the reduced-gravit y shallow-water � -
planeequations. The scalesof interest in this particular problem aresuch that the linearized
version of theseequations is adequate. The familiar equationsare

ut � v� y = � g0hx + Du + X

vt + u� y = � g0hy + Dv + Y

ht + H0(ux + vy) = 0:

(1)

These equations have been studied extensively and a review can be found in [7]. These
particular equations represent a one and a half layer model; a dynamic upper-layer and
a denserstatic lower layer. The reduced gravit y, g0, is de�ned as g0 = g(1 � � 1=� 2), and
dissipation and forcing are symbolically represented. The appropriate scalingsfor this set
of equationsare

(x; y) = ae(x̂; ŷ) ; (u; v) = c(û; v̂) ; h = H 0ĥ ; and t = t0t̂ (2)

where the length scale ae is the equatorial Rossby deformation radius, c is the shallow
water wave speed,H0 is the meanthermocline depth around which the equationshave been
linearized, and t0 is the time it takes a shallow gravit y water wave to crossa deformation
radius. For this particular problem we used

c =
p

g0H0 ! 2:89m/s

ae =
p

c=� ! 380km

H0 ! 150m

t0 = ae=c ! 1:52days;
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consistent with the previous models of ENSO. For ENSO, the x scaleof interest is much
larger than 380km, and time scalesof interest are much larger than 1.52days. If we instead
scaleby

(u; v) ! (1; ae=Lx ) c (1; 0:022)c

(x; y) ! (L x ; ae) (17Mm; 380km)

t ! t0 = L x=c (70days)

h ! H0 (150m)

we arrive at the long-wave equations which are the sameas (1) except the terms vt and Y
both go to zero. Without the long-waveapproximation, (1) represent equatorially trapped
wave modes. To obtain the modes, �rst (1) is nondimensionalizedby (2) to obtain

ut � vy = � hx + Du + X

vt + uy = � hy + Dv + Y

ht + ux + vy = 0

(3)

where all variables are now nondimensional and the terms representing dissipation and
forcing are scaledappropriately. The modes of this system are found by �rst making the
changeof variables

q = h + u and r = h � u : (4)

The equationsgiven by (3) in terms of q; r and v are

qt + qx + vy � vy = X

r t � r x + vy + vy = � X

2vt + qy + qy + r y � r y = Y ;

(5)

where dissipation has been neglected. The normal modes of the unforced non-dissipative
equationsare found by assuming

0

@
q(x; y; t)
r (x; y; t)
v(x; y; t)

1

A =
1X

n=0

0

@
q(y)
r (y)
v(y)

1

A exp[i (kx � � t)] : (6)

The resulting equationsare reducedto a single parabolic cylinder equation for v

vyy +
�

� 2 � k2 �
k
�

� y2
�

v = 0: (7)

The physically relevant boundary condition is that lim jyj!1 jvj = 0. With this boundary
condition � must satisfy

� 2 � k2 �
k
�

= 2n + 1; (8)

where n 2 f 0; 1; : : :g. Additionally , there is a mode for n = � 1 and it is called the Kelvin
mode. This mode is derived from the momentum equationsassumingv = 0. The mode for
n = 0 is called the mixed-mode, and there are two modes for n � 1, inertia-gravit y modes
(high frequency) and Rossby modes (low frequency). The Kelvin and Rossby modes are

258



-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

k(b/c)1/2

w(
bc

)1/
2

Equatorial Dispersion Relation

Gravity Modes 

Kelvin Mode 

Mixed Mode 

Rossby Modes 

Figure 1: The dispersion relation for equatorial waves. The �rst three Rossby and gravit y wave
modesare included. The frequencyof Rossby modesdecreasewith mode number and the frequency
of gravit y wave modes increasewith mode number.

crucial to ENSO as we shall seelater. The familiar dispersion relationship is plotted in Fig
1.

The ENSO adjustment processwas our primary concern. In order to understand the
role of equatorial waves in this adjustment processit is necessaryto project the evolution
of the systemon to the systemsmodes. Following [2] and subsequently [3], but not making
the long-wave approximation, we can arrive at amplitude equations for the modes of the
system. Instead of assumingoscillatory solutions in x and t, we solve (5) by expanding the
y component of theseequations in \normalized" parabolic cylinder functions

0

@
q(x; y; t)
r (x; y; t)
v(x; y; t)

1

A =
1X

n=0

0

@
qn (x; t)
rn (x; t)
vn (x; t)

1

A Dn (y) ; (9)

where

Dn (y) =
(� 1)n

p
2nn!

p
�

exp(y2=2)
dn

dyn exp(� y2) : (10)

Dn is considerednormalized because
Z 1

�1
Dm Dn dy = � mn

where n is the set of whole numbers. This results in equations for the mode amplitudes

2vnt +
p

2(n + 1)qn+1 �
p

2nr n� 1 = 2Yn

qnt + qnx �
p

2nvn� 1 = Xn (11)

rnt � rnx +
p

2(n + 1)vn+1 = � Xn ;
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with Xn denoting the x forcing projected on the nth parabolic cylindric function

Xn =
Z 1

�1
X(y)Dn (y) dy ;

similarly for Yn . This may appear complicated but the evolution equation for the equatorial
wavescan be found all in terms of qn , the �rst two are

q0t + q0x = X0 (12)
p

2q1t = 2Y0 � v0t (13)

and for n � 1

(2n + 1)q(n+1) t � q(n+1) x = nXn+1 �
p

2(n + 1)Xn� 1 +
p

2(n + 1)[
@
@t

�
@

@x
](Yn � vnt )

where

vnt =
@
@t

(q(n+1) t + q(n+1) x � Xn+1 )

for all n � 0. The advantage of this notation is that the di�eren t wave modeshave di�eren t
y dependence. The amplitude of the Kelvin wave is given by q0, the mixed wave by q1,
and the Rossby and inertia-gravit y waves by qm , m � 2. Note that the equation for vnt

is displayed separately to emphasizethat if the long wave approximation had been made
this term would be zero becausethe terms vnt = 0, and Yn = 0. With this approximation
the mixed mode and the gravit y modesare not present, hence,the only modesthat would
survive are the Kelvin (q0) and the Rossby modes (qn 's). If the long-wave approximation
is not made, the Rossby modesand gravit y modeshave the samey dependence,therefore
the modal amplitude q2(x; t) corresponds to the amplitude of the gravest gravit y mode
in addition to the the amplitude of the gravest Rossby mode. Thankfully , the scalesof
interest in this problem are such that the long-wave approximation is certainly valid and
the amplitude of qn with n � 1 corresponds to the amplitude of the n � 1 Rossby mode.

3 The Mo del Setup

The transition betweenLa Ni~na and El Ni~no wasdiagnosednumerically by spinning up the
shallow water model to a periodic El Ni~no to La Ni~na forcing. Speci�cally , (1) was solved
numerically (seeAppendix for details) using a standard shallow water model forcedby wind
stress�elds obtained from a run of the ZCM. These�elds can be seenin Figure 2.

The time dependenceof the wind stressforcing was given by the function

~� (t) =
1
2

h
~� E l + ~� La + tanh

�
� (t � 1)

��
~� E l � ~� La

� i

� H
�
2 � 4mod(t=4)

�

+
1
2

h
~� E L + ~� La + tanh

�
� (t � 3)

� �
~� La � ~� E l

� i

� H
�
4mod(t=4) � 2

�
;

(14)
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Figure 2: The mean wind stressand the El Ni~no anomaly. The La Ni~na anomaly is omitted since
it is just the opposite of the El Ni~no anomaly becausethe time dependenceof the winds is a linear
combination of two �elds. The total El Ni~no and La Ni~na wind stressesare usedto force the shallow
water model. Contour lines are magnitudes of wind stressin 0.25 dynes/cm2.

where H is the heavy-side step function and t is measuredin years. Figure 3 shows one
period (4 years) of the oscillating wind stress. The parameter � is used to adjust how
quickly the winds transition from La Ni~na to El Ni~no and we set � = 3 for all results
reported. It is acknowledgedthat this simple linear interpolation betweentwo wind stress
states is a simpli�cation of the true transition process,which includes spatial propagation
signals,however, this interpolation is usedbecauseit is simple yet physically revealing.

After the model spins up under periodic wind stress forcing, four years of data repre-
senting the transition from maximum La Ni~na winds to maximum El Ni~no winds and back
to La Ni~na wassaved and analyzed. In order to diagnosetheseidealizedLa Ni~na to El Ni~no
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Figure 3: The time dependenceof the periodic forcing usedin the linear shallow water model used
to diagnosethe transitions betweenEl Ni~no and La Ni~na .
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Figure 4: A time-longitude plot of the anomalousheight at the equator. The shadedareais positive
and the contour level is 5 m.

transitions the �elds are split into climatologies and anomalies

h(x; y; t) = h0(x; y) + h0(x; y; t)

u(x; y; t) = u0(x; y) + u0(x; y; t)

v(x; y; t) = v0(x; y) + v0(x; y; t) :

(15)

4 The Role of Waves

The �rst question to answer is whether theseidealizedEl Ni~no - La Ni~na transitions exhibit
characteristics implied by the idea of the delayed oscillator. Namely, to what extent are
wave dynamics responsible for the time evolution of the anomalous �elds? A Hovm•oller
diagram of h0 at the equator is an appropriate place to start, seeFigure 4.

From Figure 4 is it possibleto seethe role of waves in El Ni~no to La Ni~na transitions.
Betweentime zero and one we can seea positive depth anomaly encountering the western
boundary, this depth anomaly is then reected and rapidly moves east acrossthe equator
between time 0.75 and 1.5. From Figure 4 it is not clear what occurs when this anomaly
reachesthe easternboundary at time 1.5. Due to the symmetry of the forcing the negative
depth anomaly evolves in the samemanner starting at about time 2.5.

However, projecting q = h0+ u0 on the normal modesof the system can clarify the role
of wavesin the transition processby explicitly indicating which equatorial wavesare excited
in the transition process.The evolution of q projected on the Kelvin and �rst Rossby mode
can be seenin Figure 5.
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Figure 5: A time-longitude plot of the projection of q(x; y; t) on to the Kelvin mode and the �rst
Rossby mode. The shadedarea is positive and the maximum value of the nondimensionalprojection
is displayed.

From Figure 5 the role of the Kelvin and Rossby wave in the transition processis
evident. We shall now analyzethe positive depth anomaly or warm anomaly in somedetail.
At t = 0:5 the �rst mode Rossby wave hasmaximum amplitude near 200� East. This mode
propagatesalong the equator at 1/3 the Kelvin wave speedand then encounters the eastern
boundary at t = :9.1 The Rossby wave is then reected as a Kelvin wave but initially ,
for t < 1, the Kelvin wave losesintensity becausethe stressanomaly is negative. This is
clear from the Kelvin modal amplitude equation (12) where X is the stressanomaly which
is negative at the equator for � 1 < t < 1. It is negative becauseduring this time there
are La Ni~na winds, hence the Kelvin wave amplitude q0 decreases. At t = 1 the stress
anomaly changessign and the Kelvin wave intensi�es. It is this intensi�cation which brings
El Ni~no to its maturit y. The idea that an equatorial Rossby wave reects from the western
boundary as a Kelvin wave that is later intensi�ed is the principle of the delayed oscillator.
In the delayed oscillator model the equatorial Rossby wave is assumedto be excited by the
anomalouswind stressin the central part of the basin from the previousEl Ni~no. Is this the
casehere? SeeFigure 6 for the projection of q on the third and �fth Rossby modes. From
this �gure we seethat the projection on the slower equatorial Rossby waves is weaker and
occurs at the sametime and place, t = 0 and x =200� East. We ask, what is responsible
for the excitation of thesemodes?

Figure 7 shows the evolution of h0(x; y; t) through the maximum La Ni~na wind stress

1These times denote the approximate time when the maximum amplitude encounters the eastern bound-
ary, etc.
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Figure 6: A time-longitude plot of the projection of q(x; y; t) on to the third and �fth Rossby mode.
The shadedarea is positive and the maximum value of the nondimensionalprojection is displayed.

anomaly, notice especially the o�-equatorial wave near 15� North. It is possible to show
that this is a long-QG-Rossby wave at 15� North, i.e. � a� 2 t + �  x = 0, with a speedof
about � a2 � 38� /yr.

Beginning in panel 2 of Figure 7 this o� equatorial long Rossby wave \leaks" into the
equatorial region west of 200� E. This is rather unexpected becausethe delayed oscillator
model of El Ni~no doesnot addresso� equatorial dynamics aspart of the ENSO mechanism.
However, this o� equatorial Rossby does eventually \leak" into the equatorial region and
excites equatorial Rossby waves that are crucial to ENSO mechanism according to the
delayedoscillator mechanism. Wewill now show that it is the background potential vorticit y
that allows the o� equatorial Rossby wave to leak into the equatorial region. Rossby waves
propagate along lines of constant background potential vorticit y

� = f =H0 : (16)

Figure 8 shows lines of constant background potential vorticit y superimposed on fourth
panel of Figure 7.

We seea ridge of high potential vorticit y that forcesthe o� equatorial Rossby wave to
travel north of 10� . This Rossby wave then \leaks" through the gap in the ridge of potential
vorticit y at about 170 E Longitude. Again, it is interesting to seeo� equatorial dynamics
playing a role in ENSO transitions, not somethingusually associated with ENSO, nor is o�
equatorial dynamicsapart of conceptualENSO models. However, o� equatorial dynamics is
discussedin the context of El Ni~no in Philander (1997), where it is discussedin the context
of decadalmodulations of ENSO variabilit y.
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Figure 7: Six frames in the transition through the La Ni~na wind stress. Maximum La Ni~na stress
anomaliesoccur at t = 0. An o� equatorial positive anomaly Rossby wave is clearly seenmoving
west at around 15� N. Additionally , this Rossby wave can be seento \leak" into the equatorial region
beginning in the secondpanel. The contour interval is 20 m.
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Figure 8: One frame in the transition through the La Ni~na wind stress with the background
potential vorticit y contours at a time when the o� equatorial Rossby wave is \leaking" into the
equator. The contour level for the anomalousheight �eld is 20 m and the potential vorticit y �eld is
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5 Recharging and Sverdrup Flo w

In the Section 4 it was demonstrated that the wave dynamics view of ENSO is indeed
captured in the idealized ENSO transitions we simulated. Can we also seethe recharge
oscillator perspective in thesesimulations? If ENSO canbedescribedasa rechargeoscillator
the total mass(volume) of the equatorial region must oscillate, i.e. the equatorial strip must
chargeand discharge. According to [5], the recharging takesplaceprior to an El Ni~no event,
and in the caseof our model ENSO transitions this recharging occurs during La Ni~na wind
stresses.Figure 9 shows the zonal mean thermocline depth anomaliesand from this Figure
we seethat the equatorial region has maximum volume prior to the onset of the El Ni~no,
in other words prior to the El Ni~no wind stressanomaly.

It is obvious from Figure 9 that the equatorial region, between-10� S and 10� , exchanges
massperiodically with the o� equatorial region, thus theseENSO transitions can be viewed
in terms of a recharge oscillator. Can we be more speci�c about the recharging of the
equatorial region? Speci�cally , what is the mechanism that allows the equatorial region to
recharge, and where is the massresponsible for the recharging coming from? It is possible
to answer these questions from our idealized El Ni~no - La Ni~na transitions. To do so, we
will start with the anomalouscontinuit y equation

h0
t + H0(u0

x + v0
y) = � r h0: (17)

We can now integrate the anomalouscontinuit y equation to obtain the anomaloustransport
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Figure 9: The zonal meanof the thermocline depth anomaly. Notice the recharging and discharging
of the equatorial region. The contour interval is 5 m.

into the region east of x,

dV
dt

(x; t) �
Z 10�

� 10�

Z X e

x

dh0

dt
(~x; y; t) dy d~x =

� r
Z 10�

� 10�

Z X e

x
h0(~x; y; t) dy d~x

� H0

Z X e

x
[v0(~x; 10� ; t) � v0(~x; � 10� ; t) d~x

+ H0

Z 10�

� 10�
u0(x; y; t) dy :

(18)

The total transport into this region, dV
dt , has contributions from the relaxation term, � r h,

meridional velocity at � 10� , v, and from the zonal velocity u at longitude x. A schematic
of this idea is seenin Figure 10. If we let x = X w in (18) we get the total transport into
the equatorial region. This is displayed in Figure 11. This �gure clearly shows that the
equatorial region is charging during the La Ni~na phase, t < 1 and t > 3, and discharging
during the El Ni~no phase,1 < t < 3.

From (18) we can deducewhere the anomaloustransport is taking place such that the
equatorial region chargesand discharges. Figure 12 is a plot of dV=dt as a function of x
for certain times during the recharging phase. This Figure shows where the anomalousve-
locities, more importantly the anomalousmeridional velocities, are transporting anomalous
massinto the equatorial region during this phase. In the �rst panel it is a negative v0(10� )
eastof 200E is transporting anomalousmassinto the equatorial region. West of 200E v0 is
positive but small and is not helping to rechargethe equatorial region. We can alsoseethat
u0 is transporting anomalousmasswest in the region where v0 is transporting anomalous
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massinto the equator. Note that the anomaloustransport due to the boundary current is
contributing a small amount to the recharging at this time. In the secondpanel a negative
v0 is evident everywhereeast of 180 E. This anomalousvelocity is responsible for all of the
anomalous mass transport into the equatorial region. A negative u0 in this same region
transports this anomalousmasswest. Note that the boundary current is actually helping
to expel massfrom the equator at this time. Also, the rate at which the equatorial region
is �lling with massis approximately constant for all x, i.e. the entire thermocline is �lling
with water at the samerate. We seethis from the constant slope on the ht curve of this
panel. The third panel is at a time closeto when the equatorial region beginsto discharge.
It is possible to seein this panel that the Kelvin wave is helping to transport mass into
the easternequatorial region. Becauseof the periodic nature of our linear problem and the
wind stressesbeing a linear combination of two states, the discharging processis just the
opposite of the charging process.

It wasshown that anomalousmeridional velocities at � 10� mainly in the easternportion
are responsiblefor the anomalousmasstransport that chargesand dischargesthe equatorial
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Figure 13: The curl of the mean wind stress�eld and the curl of the El Ni~no anomaly wind stress
�eld.

region. From the scalesof the problem wewould expect the velocities to bein quasi-Sverdrup
balance. We can then obtain the anomalousmeridional velocities from the anomalouswind
stressvia the Sverdrup balance

� v0 =
r � � 0

� 0H0
� k : (19)

Figure 13 shows that for El Ni~no there is a positive wind stress curl anomaly in the
eastern equatorial region at 10 N and a negative curl anomaly at 10 S. These anomalous
curls are responsible for the discharging of the equatorial region. The curl anomaly for La
Ni~na has the opposite sign as the curl anomaly for El Ni~no and is henceresponsible for the
charging of the equatorial region.

Experiments were performed where tracers were injected into the o w at time t = 0
with constant gradients in y. Thesetracers werethen advectedby the anomalousvelocities.
Theseexperiments were performed to seewhere the anomalousvelocities were present and
to show where anomalousmasswas being transported. Theseexperiments con�rmed that
anomalous equatorward meridional velocities were indeed responsible for the anomalous
mass transport. This anomalous mass enters the eastern equatorial region and is then
transported west by anomalous zonal velocities at the equator. Again, becauseof the
symmetrical nature of the forcing the opposite is true for the expulsion of massduring the
El Ni~no phase.
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Figure 14: The transport into the equatorial region east of x and the contributions from the full
velocity �elds and the full relaxation.

6 Total Mass Transp ort & No Relaxation

The previous sectionson transports have emphasizedthe role of anomalousvelocities trans-
porting anomalous mass. In these sections we have isolated what causesthe recharging
of the equatorial region. However, by using anomalous velocities we do not have a true
Lagrangian perspective on the recharging of the equatorial region. In order to determine
the origins of the water that actually rechargesthe equatorial region we must add in the
climatological transport to the analysisperformed in Section5. Doing this equation (18) is
now an equation that involvesthe total velocities and Figure 14 displays the total transport
into the equatorial region during the recharging phase.

Figure 14 clearly shows that the meridional velocities east of 240 E are transporting
mass out of the the equatorial region, between 180 E and 240 E v is transporting mass
into the region, and west of 180 E massis being transported out of the equatorial region.
This �gure also shows that if it were not for the Western Boundary Current the equatorial
region would be losing mass from v transport. We can conclude that it is anomalously
weak meridional velocities in the eastern portion of the equatorial region that allows the
western boundary current to �ll the region. From this �gure we seethat the relaxation
term (� r h) in the continuit y equation is actually doing more work than v to recharge the
equatorial region. Knowing that this term is a slightly nonphysical parameterization of
upwelling and mixing, we should ask whether the recharging of the equatorial region should
rely this heavily upon this term? Additionally , is this term necessaryfor the recharging of
the equatorial region?

Thesequestionswere answered by running the sameexperiment but without the relax-
ation term in the continuit y equation. From Figure 15 we seethat the equatorial region
still charges and discharges, hence the � r h term is not mandatory for the recharging of
the equatorial region. Additionally , the the transport analysis was performed on this ex-
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Figure 15: Zonal meananomalousthermocline depth with no relaxation in the continuit y equation.

periment and it was found that in this casethe meridional transport is solely responsible
for the recharging of the equatorial region. Speci�cally , it is the weakening of the merid-
ional transport in the out of the basin that allows the western boundary current to �ll the
equatorial region with anomalousmass,as Figure 16 clearly shows. It is interesting that in
Figure the contributions to this charging by u and v are such that the equatorial region is
uniformly charging as seenin the constant slope of dh=dt.

7 Conclusions

The purposeof this project wasto seeif both the wave perspective of ENSO, asexempli�ed
by the delayed oscillator model (Suarex & Schopt 98, Battisti 98), and the masstransport
perspective of El Ni~no , as exempli�ed by the recharge oscillator model (Jin 97), may
be diagnosedin a model simulation of ENSO transitions using a numerical model that is
capableof capturing both mechanisms. Both perspectivesof ENSO were clearly evident in
the idealizedENSO transitions that we modeled. However, asregardsto the wave dynamics
perspective of ENSO our model shows that it is o� equatorial Rossby wavesthat propagate
anomalousthermocline depths from the easternequatorial region to the west in contrast to
equatorially trapped Rossby wavesthat are emphasizedin the delayed oscillator picture of
ENSO. The o� equatorial Rossby wave does excite equatorial Rossby waves but not until
it encounters a gap in the ridge of background potential vorticit y in the western portion of
the basin whereit is able to \leak" into the equatorial region. Thus, this model indicates an
interesting interaction betweeno� equatorial dynamics and equatorial dynamics in ENSO
transitions (Galanti & Tziperman have alsonoted this phenomena,personalcommunication
2001). It is this particular interaction that is worthy of future research.

The mass transport perspective of ENSO was also evident in these idealized ENSO
transitions. Using this model we were able to speci�cally diagnosethe mechanismsrespon-
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Figure 16: The x dependenceof the total transport and the contributions from the full velocity
�elds with no relaxation in the continuit y equation during the recharging phase.

sible for the recharging and discharging of the equatorial region. We found that anomalous
wind stresscurls in quasi-Sverdrup balancewith meridional velocities are responsiblefor the
charging and discharging of the equatorial region. These anomalouswind stresscurls are
present in the easternportion of the equatorial region at � 10� . Theseanomalousmeridional
velocities allow the western boundary current to �ll the equatorial region with mass. We
also found that the � r h term included in most models of ENSO for numerical purposes,is
not necessaryfor the recharging of the equatorial region, nor doesit distort the qualitativ e
picture.
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9 App endix

9.1 Numerical Metho ds

The numerical model used was a modi�cation of the Bleck and Boudra isopycnic coordi-
nate general circulation model. This code was modi�ed to solve the linear shallow water
equations. The model usesa standard \c" grid and a leap frog time stepping scheme. The
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model solved the equations

ut � v� y = � g0hx � r u + � r 2u +
� (x)

� 0H0

vt + u� y = � g0hy � r v + � r 2v +
� (y)

� 0H0

ht + H0(ux + vy) = � r h :

(20)

The resolution of the model was 0:5� , as measuredat the equator, in both the x and y
directions. The values of most of the constants were given in Section 2. The additional
valuesusedwere:

r = 1=30mo� 1 and � = 1100m2s� 1 : (21)

9.2 The Long-w ave Appro ximation

In order to better understand the long wave approximation and why it is relevant to the
equatorial basin and ENSO, we examined the reection of equatorial Kelvin waves by the
easternboundary of a basin. Additionally , this problem wasexaminedto better understand
why in the delayed-oscillator model of ENSO eastern boundary reection is sometimes
ignored. The set up is simple, if a Kelvin wave is excited along the equator, perhaps by
an anomalouswind stress, it will propagate along the equator until it reaches the eastern
boundary of the basin at which point it must be reected2. What is the outcome of this
reection? It can not reect as a Kelvin wave or a mixed wave; they only propagateenergy
eastward. It must transmit its energyto coastally-trapped Kelvin waves(or somedeviant of
a coastally-trapped Kelvin wave3, equatorially trapped Rossby wavesor gravit y waves. The
structure of the disturbance in k spacedeterminesthe outcome of this reection. Consider
an initial value problem of the linear shallow water equations. The initial disturbance is

0

@
u(x; y; 0)
v(x; y; 0)
h(x; y; 0)

1

A =

0

@
� c
0

� H0

1

A exp
�

�
�
2c

y2
�

G(x=L) : (22)

This initial disturbance is designedto excite an equatorial Kelvin wave responsethat will
propagate to the east with speed c and amplitude � . This disturbance will not disperse
becauseKelvin wavesare not dispersive. We shall choosethe speci�c x dependenceto be

G(x=L) = exp[� (x=L)2] : (23)

Assuming that the scaleof this disturbance is small compared to the size of the basin we
can assumethat the disturbance is not a�ected by the presenceof the boundaries, and
we can analyze this initial disturbance as if x were unbounded. This disturbance excites

2Reected is perhaps not the best word here, the energy uxed into the eastern boundary of the basin
must be uxed out, and this is what is meant by reection in this particular usage.

3A true coastally-trapp ed Kelvin wave only exist on an f -plane, therefore true coastally-trapp ed Kelvin
waves can not exist at the equator since f goes to zero there [8].
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Figure 17: The energydensity at the equator, in ergs/cm2, of an equatorial Kelvin wave asit strikes
the eastern boundary of the basin for four di�eren t zonal length scalesof the disturbance. As the
zonal length scaleof the disturbance increases,is transmitted to equatorially-trapp ed gravit y waves
and more energy is transmitted to equatorial Rossby waves. There are ten equally spacedcontours
in each panel.

many plane wave Kelvin modeswhere the amplitude of theseexcited modesis given by the
Fourier transform of (23)

G(k) =
L

2
p

�
exp[� (kL=2)2] (24)

assumingthat G(x) =
R1

�1 G(k) exp(ik x) dk. We seethat small initial disturbances (small
L ) project into high wave number plane waves - obviously the width of Gaussian in k
spaceis inversely proportional to the width of the Gaussian in x space. Since these are
Kelvin waves,the frequencyis proportional to k (! = ck) and therefore a small disturbance
projects into many high frequency Kelvin modes. When this disturbance encounters the
easternboundary the energy uxed in must be radiated away by other waves. Someof this
energygoesinto coastally trappedKelvin (lik e) wavesthat propagateaway from the equator
and somemay be reected back aseither equatorial trapped gravit y wavesor Rossby waves
dependingon the frequencyof the incident waves. If the disturbance is small, the frequencies
may be large enough to reect as gravit y waves. Notice on the dispersion relation, Figure
1, that Kelvin waves with large positive k will have frequenciesin the frequency range of
the gravit y waves.

Typically, simple models of ENSO ignore easternboundary reection becausethe long
waveapproximation hasbeenassumedand Kelvin wavesexcited by anomalouswind stresses
are assumedto have spatial scaleslarge enoughsuch that thesedisturbancesdo not project
into high wave number Kelvin modes. When theselarge disturbancesencounter the eastern
boundary they will propagate away as coastally trapped Kelvin waves and equatorially
trapped Rossby waves. The above analysis showed that Kelvin waves can reect as fast
gravit y waves- how large do disturbancesneedto be such that they will not reect someof
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their energy as gravit y waves? For any disturbance the majorit y of the energy must be in
wave numbers lessthan somecritical wave number kc, where kc � (3=2)ae according to the
dispersion relation. To �nd the smallest length scaleof the disturbance, L , such that the
majorit y of the energy will be in wave numbers lessthan kc it is possibleto show that the
percentage of energy in wave numbers lessthan kc, for the Gaussiandisturbance (23), is

E =
E(k � kc)

E0
= erf

�
kcLp

2

�
: (25)

The percentage of energyin wave numbers lessthan kc must be greater than somethreshold
denoted by T . This results in a bound for L ,

L �

p
2

kc
erf� 1(T ) : (26)

For simplicit y let's assumeT = erf(1) � 0:8427sothat L �
p

2=kc. As mentioned previously
kc � 3=2ae giving an approximate bound for L ,

L �
2
p

2
3

ae � ae : (27)

Thus the zonal length scaleof disturbancesmust be larger than the equatorial deformation
radius such that little energy is reected as gravit y waves. This was veri�ed using our
shallow water equatorial � -plane model. Four separatecaseswere consideredin which the
zonal length scale of the initial disturbance was set to L = [1=4 1=2 1 2]ae, respectively.
We can clearly seein Figure 17 that as the zonal length scaleof the disturbance increases
lessenergy is reected as equatorially trapped gravit y waves. Note that most of the energy
uxed into the boundary leaves as coastally trapped Kelvin waves which can not be seen
in Figure 17 becauseFigure 17 only shows the energydensity at the equator. In the fourth
panel of Figure 17 notice that someof the incident energy is reected as an equatorially
trapped Rossby wave(s), which is inferred from the speedof this disturbance.

The reection of the Kelvin wave was also studied by projecting the solution, u =
u(x; y; t), v = v(x; y; t), and h = h(x; y; t), on the normal equatorial modes as outlined in
Section2. The projection of the solution on the �rst �v e modesof q is given in Figure 18and
Figure 19 for length scalesof the disturbance given by L = [1=42]ae, respectively. In these
�gures the magnitude of the projection is squaredand normalized by the magnitude of the
Kelvin wave projection. We can seethat before the reection the projection of q is entirely
in the equatorial Kelvin mode. For all times the projection of q on to odd numberedmodesis
very small becausethe odd numberedmodesrepresent odd structure in y which should not
exist becauseof the symmetric y structure of the initial disturbance. The small projection
on these modes is due to numerical inaccuracies. For the small disturbance there is some
projection on q2 after the disturbance has reected. The speed of this mode is consistent
with the speed of the �rst equatorial gravit y wave mode, however this mode is dispersive
and the magnitude of the projection can not remain localized in space. Also notice that
the maximum magnitude of the projection on this mode is only 6% of the projection on
the Kelvin mode. Again this is evidencethat most the energythat is in the original Kelvin
wave is transferred to coastally trapped Kelvin (lik e) waves.
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Figure 18: The magnitude squared of the projection of the Kelvin wave disturbance on the �rst
�v e modes of the equatorial region for an initial disturbance with L = 1=4ae. The number at the
top of each panel represents max(q2

i )=(max q2
0). The mode number, i , counts from zero to four, left

to right. For all panels there are ten equally spacedcontours.
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Figure 19: The magnitude squared of the projection of the Kelvin wave disturbance on the �rst
�v e modesof the equatorial region for an initial disturbance with L = 2ae. The number at the top
of each panel represents max(q2

i )=max(q2
0). The mode number counts from zero to four to the right.

Notice the strong projection into Rossby mode one as the disturbance encounters the boundary.
There are ten equally spacedcontours for each panel.
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The sameprocedure was performed with the initial disturbance with a length scaleof
L = 2ae, and the results are in Figure 19. Again we can seethat the initial disturbance
is a pure equatorial Kelvin mode prior to reection. However, after reection the solution
projects into the �rst and third Rossby modes, and these projections have speedscon-
sistent with the appropriate Rossby mode wave speeds. Again the odd numbered modes
corresponding to odd y structure are only excited becauseof numerical inaccuracies.

A discussionof incident waveson the easternboundary of an equatorial basin is found
in [8]. Philander shows that wavesof frequencycloseto

p
c� (the Kelvin and mixed modes)

transmit their energy to coastally trapped disturbancesof the form

v = A
p

y exp
�
i
�

� t �
� y
c

+
� x
2�

�
� � y

L x � x
c

�
:

We seethat eastward-propagating equatorially-trapp ed wavesdo not transfer their energy
to a coastally-trapped Kelvin waves,but rather a coastally-trapped Kelvin-lik e wave. Phi-
lander also shows that as the frequencyof the incident Kelvin wave decreasesmore energy
is reected as Rossby waves,but there is always a �nite amount of energy that is reected
as coastally trapped waves. This is shown by �xing � in the dispersion relation, (8), and
solving for all the possiblek's by letting n vary. We �nd that there is always an in�nite
number of coastally trapped waves, imaginary k's, for a given � .
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