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Abstract

A laboratory experiment has been conducted in which a small basin was heated
from below. This basin was connected to a large reservoir that was filled with a layer
of salt water at the bottom and fresh water above it, by tubes at the top, the middle
and the bottom. It was shown that different flow regimes exist in this experiment. For
low forcing temperatures, self-sustained oscillations occur, whereas the system reaches a
steady state with deep convection for higher forcing temperatures. During an oscillation
a shallow convecting layer of salty water at the bottom of the basin grows and entrains
fresh water, until the water column becomes unstable and deep convection can occur.
Inflow of salty water through the bottom tube stops the deep convection and the cycle
starts again. In a configuration in which the top and middle tubes had smaller diameters,
no oscillations were found. Instead, a regime with steady shallow convection states and
a regime with steady deep convection states were found.

1 Introduction

An important part of the ocean’s thermohaline circulation is the formation of deep water
at high latitudes. Locations of deep convection are confined to certain specific areas in
the North Atlantic Ocean and near Antarctica, including the Greenland-Norwegian Sea,
the Labrador Sea, the Weddell Sea and the Ross Sea [1]. There are two types of deep
convection in the ocean. One is convection near an ocean boundary, where dense water
reaches the bottom of the ocean by descending a continental slope. The second process is
called open-ocean convection and involves sinking of water in narrow area’s far away from
land. In both cases deep convection is a very complicated process, but general features
of the polar oceans that are important are the intense surface cooling and the very fresh
surface water [2]. In order to get deep convection an increase in salinity of the surface water
is therefore needed, for instance due to brine rejection or mixing with a saltier water mass
[3]. Due to these and other conditions, the areas in which deep-water formation occurs are
not only small compared to the total area of the ocean, but the deep convection required
for producing dense bottom water does also not occur every winter.

A good way to gain more understanding of complex processes as deep convection is the
use of simple models. Recently, Whitehead [4] analyzed a simplified box model consisting
of a small basin that is cooled from above and that is connected via three tubes to a large
isothermal basin with a fresh surface layer. This is a very schematic model of the situation
in the Arctic Ocean. For small cooling rates this model was shown to exhibit a steady state
with shallow convection, whereas for strong cooling a state with deep convection occurred.
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In the shallow state fresh and warm water enters the small basin via the upper tube, is
cooled and convects downward and leaves through the middle tube. Or, if the cooling is
stronger, water comes in through the upper tube and leaves via both the middle and the
bottom tube. In the deep convection state the warm and fresh water enters the small basin
through the upper tube, but there is also inflow of warm and salty water through the middle
tube, whereas cold water leaves the small basin through the bottom tube.

If the cooling rate depends on temperature via a relaxation condition, this model was
shown to exhibit multiple equilibria: both the shallow and the deep convection state could
exist for the same forcing temperature [4]. In this case, sudden rapid transitions between
both states can occur for only very slight changes in forcing temperature. Although obvi-
ously these results cannot be simply extended to the real ocean, these model results might
still have important implications for the ocean. Periods of deep water formation might
be followed by periods of shallow convection in which only intermediate water is formed if
forcing conditions change slightly.

The original goal for this summer project was to investigate if the multiple equilibria
predicted by the theoretical box model can also be found in the laboratory. However, the
project evolved in a different direction, so that finally it turned out to be an exploration of
the behavior of the flow in the laboratory version of this convective model. The laboratory
model was turned upside-down with respect to the case of the Arctic Ocean (heating at the
bottom and a layer of salty water at the bottom of the large basin) for practical reasons.

The theoretical model of Whitehead [4] is presented in section 2 of this report. This
section closely follows his derivation, but describes the situation for the case with heating
at the bottom instead of cooling at the top. The experimental apparatus and method
are described in section 3.1 and the results follow in section 3.2 and 3.3. In section 4
the experimental results are compared to the box model theory and a discussion and the
conclusions are given in section 5.

2 Theory

A small basin with two layers of water in a field of gravity is heated from below. This small
basin is connected to a large basin, which is called the reservoir, with three tubes, one at
the surface, one at mid-depth (D/2) and one at a depth D (Fig. 1). The reservoir contains
a layer of salty water of salinity S0 of constant thickness d with fresh water above it. Both
layers have temperature T0 (room temperature). The reservoir is taken to be so large and
so well mixed that d, T0 and S0 remain fixed, irrespective of the flow into and out of the
tubes.

In the small basin a convecting layer of thickness δ of water with temperature T0 + T
and salinity S will develop, where δ, T and S still have to be determined. This layer is
assumed to be well mixed, as it is heated from below, and its thickness will grow with
increasing heating rate. Heat losses are neglected and it is assumed that there is no mixing
of heat and salt across the interface between the warm and salty, convecting layer and the
non-convecting layer of cold and fresh water above it.

The flow through the tubes is determined by the pressure difference between the two
ends of the tubes and depends therefore on temperature and salinity in both the small basin
and the reservoir. We assume that there is a steady-state relation between the flow through
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Figure 1: Sketch of the model configuration. The reservoir contains a layer of fresh water
with temperature T0 and zero salinity overlying a layer of salty water with the same tem-
perature and salinity S0. The temperatures and salinities in this basin remain constant.
The temperature T and salinity S in the convecting layer in the small basin are determined
by the flow rates Q1, Q2 and Q3 and the heating rate H.

a tube and the pressure difference between the small basin and the reservoir at the height
of that tube. The volume flux through tube i is denoted by Qi, where i = 1, 2, 3 denotes
top, middle and bottom tube, respectively and can then be expressed as

Qi = Ci(pi,res − pi) (1)

where pi is the pressure in the small basin at the height of tube i, pi,res is the pressure in
the reservoir at that height and Ci is the hydraulic resistance of tube i. Note that flow into
the small basin is defined positive. The pressures in the small basin and the reservoir are
assumed to be hydrostatic, and furthermore a linear equation of state is used

ρ = ρ0(1 − α(T − T0) + βS) (2)

where ρ0 is the density of fresh water at room temperature. The pressures in the reservoir
are then given by

p1,res = 0 (3a)

p2,res = ρ0gD/2 (3b)

p3,res = ρ0g(D − d) + ρ0g(1 + βS0)d (3c)

Using the Boussinesq approximation by assuming that βS, βS0 and |αT | � 1 everywhere,
the pressures p1, p2 and p3 in the small basin are

p1 = ρ0gη (4a)

p2 = ρ0gη +ρ0gD/2 + ρ0g(δ − D/2)(βS − αT ) (4b)

p3 = ρ0gη +ρ0gD + ρ0gδ(βS + αT ) (4c)
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where η is the surface elevation in the small basin with respect to the water surface in the
reservoir and δ is the distance of the layer of convecting fluid in the small basin above the
second tube. The volume fluxes are then given by

Q1 = −Cρ0g η (5a)

Q2 = Cρ0g [−η + (δ − D/2)(αT − βS)] (5b)

Q3 = γCρ0g [−η + βS0d + δ(αT − βS)] (5c)

Following Whitehead [4], we assume that the hydraulic resistance of the upper two tubes
is equal to C and that the resistance of the bottom tube is C3 = γC, with γ a positive
number.

If the heating is so weak that the interface between the convecting and the non-convecting
layer in the small basin is below the middle tube, steady state solutions are not possible,
because mass cannot be conserved. For larger heating rates the interface will be between
the middle and the upper tube, so that δ < D. In this case steady state solutions can
occur, but only if there is no flow through the upper tube, again because otherwise mass
would not be conserved, so we have Q1 = 0 and η = 0. The equation for steady state mass
conservation reduces in this case to Q2 + Q3 = 0. Together with equation (5) this gives
that the depth of the convecting layer is

δ =
1

1 + γ

[

D

2
−

γβS0d

αT − βS

]

(6)

yielding for the volume fluxes

Q1 = 0 (7a)

Q2 =
γCρ0g[(βS − αT )D − 2βS0d]

2γ + 2
(7b)

Q3 = −
γCρ0g[(βS − αT )D − 2βS0d]

2γ + 2
(7c)

It can easily be shown that the case in which Q2 > 0 and Q3 < 0 is inconsistent, so we
have to have inflow through the bottom tube and outflow through the middle tube (Q2 < 0
and Q3 > 0) as long as the interface in the small basin is between the top and middle tube.
In this case the steady state heat budget is

0 = H + ρ0CpQ2(T + T0) + ρ0CpQ3T0 (8)

where H is the heat flux into the small basin due to the heating at the bottom and Cp is
the specific heat capacity. The steady state salt budget is

0 = Q2S + Q3S0 (9)

Using mass conservation, the steady state heat and salt budgets can be rewritten as

H = ρ0CpQ3T ; S = S0 (10)
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As we are considering the case for which Q2 < 0, this gives that the temperature in the
small basin has to be higher than a certain critical value Tnil in order to have steady state
solutions, with

Tnil =
βS0

α

(

1 −
2d

D

)

(11)

If the heating rate H is increased, the temperature and the height of the convecting
layer will also increase. For a certain heating rate, the interface between the convecting and
the non-convecting water will reach the upper tube. The critical temperature Tc at which
this happens follows from δ = D and is given by

Tc =
βS0

α

(

1 −
2γd

(1 + 2γ)D

)

(12)

For T > Tc there is also flow in the upper layer and the equation for mass conservation
becomes

Q1 + Q2 + Q3 = 0 (13)

The interface stays at height D for temperatures greater than Tc as we have used the
Boussinesq approximation. The height of the interface follows therefore from equations (5)
and (13) with δ = D as

η =
2γβS0d + (αT − βS)D(2γ + 1)

2(2 + γ)
(14)

so that the volume fluxes become

Q1 = Cρ0g
2+γ

[

−
1 + 2γ

2
(αT − βS)D − γβS0d

]

(15a)

Q2 = Cρ0g
2+γ

[

−
γ − 1

2
(αT − βS)D − γβS0d

]

(15b)

Q3 = γCρ0g
2+γ

[

3

2
(αT − βS)D + 2βS0d

]

(15c)

which is consistent with equation (5) for T = Tc and δ = D.
At the critical temperature Tc we have S = S0 and thus Q1 = 0, Q2 < 0 and Q3 > 0.

The positive surface elevation in the small basin causes the pressure at the height of the
upper tube in the small basin to be higher than that in the reservoir, giving flow out of the
small basin. From equations (12) and (14) we can see that if T > Tc we will always have
η > 0, which says that in order to have flow in the upper tube, the surface elevation has
to be positive. So the flow in the upper tube will either be zero if the interface is below
the upper tube or positive if the interface is at the top of the small basin. At mid-depth,
the effect of salinity on the density dominates over the effect of temperature, so that at
mid-depth there is a higher pressure in the small basin than in the reservoir. At the bottom
however, the pressure in the reservoir is higher than that in the small basin, because the
water in the reservoir is much colder than that in the small basin.

From equation (15) we see that for T > Tc Q1 becomes negative starting from zero and
Q3, which is already positive, becomes more positive, also if S 6= S0 (note that S can never
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become greater than S0). For γ ≥ 1 Q2, which is negative already, becomes more negative,
so that no fresh water can enter the small basin and the small basin stays always filled with
water of salinity S0. If γ < 1 however, Q2, which is negative, becomes less so and eventually
will become zero. So if the resistance of the bottom tube is higher than those of the middle
and upper tubes, there is a value of the heating rate for which the flow in the second tube
reverses sign, so that fresh water can enter the small basin. Note though that there will
always be inflow through the bottom tube and outflow through the top tube.

The point for which Q2 = 0 defines a second critical temperature

Tcc = −
βS0

α

[

2γd

(γ − 1)D
− 1

]

(16)

At this temperature the water is heated so much, that the effect of the temperature domi-
nates over the effect of salinity and the pressure due to the surface elevation. The pressure
in the small basin at mid-depth is now lower than the pressure in the reservoir at that height
and there will be inflow of cold and fresh water into the small basin. For Tc < T < Tcc the
heat and salt balances are still given by equation (10). For T > Tcc the steady state heat
and salt balances are

0 = H + ρ0CpQ1T (17a)

0 = Q1S + Q3S0 (17b)

As the solutions of equations (15) and (17) are complicated polynomials, we calculate
them numerically, using time-dependent heat and salt balances. The equations are made
dimensionless using

Q̃ =
Q

Qs
, Qs =

γCρ0gβS0D

2 + γ
, T̃ =

αT

βS0

, d̃ =
d

D
, S̃ =

S

S0

(18a)

t̃ =
t

AD/Qs
, H̃ =

H

ρ0cpTsQs
, Ts =

βS0

α
(18b)

where Qs is the volume flux scale, t is time and A is the horizontal area of the small basin.
The dimensionless form of equation (7) is

Q̃2 = −Q̃3 =
2 + γ

2 + 2γ

(

1 − T̃ − 2d̃
)

(19)

and equation (15) transforms to

Q̃1 = −2+1/γ
2

(T̃ − S̃) − d̃ (20a)

Q̃2 = −1−1/γ
2

(T̃ − S̃) − d̃ (20b)

Q̃3 = 3

2
(T̃ − S̃) + 2d̃ (20c)

The dimensionless time-dependent heat and salt balances are

dT̃

dt
= H̃ + T̃ [Q̃1Γ(−Q̃1) + Q̃2Γ(−Q̃2) + Q̃3Γ(−Q̃3)] (21)
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dS̃

dt
= Q̃1S̃Γ(−Q̃1) + Q̃2S̃Γ(−Q̃2) + Q̃3[S̃Γ(−Q̃3) + Γ(Q̃3)] (22)

Numerical solutions were calculated for a wide range of heating rates by integrating
equations (21) and (22), using (19) and (20), until a steady state was reached. If the
heating rate depends on the temperature in the small basin via

H̃ = K(T̃ ∗ − T̃ ) (23)

with K a constant, then Whitehead [4] shows that in the equivalent system for the Arctic-
Ocean case multiple equilibria can be found: both shallow and deep convection states
can exist for the same forcing temperature. The range of forcing temperatures T̃ ∗ for
which multiple equilibria occur, depends on the parameters d̃, γ and K. A typical plot of
temperature and salinity in the small basin as a function of forcing temperature for our case
(heating from below) is shown in Fig. 2. The shallow convection states have a relatively
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Figure 2: Dimensionless temperature and salinity as a function of (dimensionless) forcing
temperature T̃ ∗ for the case with γ = 0.05, d = 0.05 and K = 1.

high temperature, and a dimensionless salinity S̃ = 1, as only the salty water can enter
the small basin. If T ∗ is increased above T̃cc, deep convection states occur, with inflow of
fresh and relatively cold water through the middle tube. In the deep convection states the
temperature and the salinity are therefore much lower. If the forcing temperature is then
decreased slowly, the system will remain in the deep convection state.

3 Experiments

3.1 Apparatus and method

The laboratory model consisted of a box of 20×20×20 cm (the reservoir) that was connected
via three tubes to a cylindrical small basin of 20 cm high with a diameter of about 5 cm (Fig.
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3). The vertical distance between the centers of the top and bottom tubes was D = 18 cm.
The top, middle and bottom tubes had lengths of 99 mm, 98 mm and 9 mm, respectively.

Figure 3: Sketch of the laboratory model (vertical section). The small basin is heated from
below by a heat exchanger. Both fresh and salty water are pumped in at the top and
bottom, respectively, and removed by a siphon at a fixed depth, thus maintaining a sharp
interface between the salty and the fresh layer. A second heat exchanger keeps both layers
in the reservoir at room temperature.

Fresh water at room temperature (about 21 ± 2◦C) was pumped into the top of the
reservoir at a rate of about 0.1 l/min, and salt water of the same temperature was pumped
into the bottom of the reservoir at the same rate. The sum of these two fluxes was removed
by a siphon that was placed at a certain distance above the center of the bottom tube. This
maintained a sharp interface between the fresh and the salty water, at a level determined
by the height of the siphon. The salty water was made by mixing fresh and salt water and
adjusting this mixture to obtain a density of 1003.4 kgm−3 at room temperature, so that
the density difference between the two layers in the reservoir was 5.2 kgm−3. The salty
water was dyed blue to see the difference between salty and fresh water. A heat exchanger
flushed by water of 20◦C was placed in the reservoir along the side opposite to the tubes.
The reservoir was monitored routinely and both layers remained at 20◦C within a range of
±1.3◦C. The bottom of the small basin was heated by a second heat exchanger, which was
flushed by water of a desired temperature.

Experiments have been done for two configurations. In the main experiments the radii
of the top, middle and bottom tubes had their standard values r1 = r2 = 9.5 mm and
r3 = 1.5 mm, respectively and the siphon was placed at d = 0.6 cm above the center of
the bottom tube. In the second set of experiments the upper and the middle tube had
radii r1 = 4.5 mm and r2 = 3.1 mm, respectively (the radius of the bottom tube was still
1.5 mm), and the siphon was at 1.4 cm above the center of the bottom tube. The parameter
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Set 1 Set 2

d = 0.6 cm d = 1.4 cm
r1 = 9.5 mm r1 = 4.5 mm
r2 = 9.5 mm r2 = 3.1 mm
r3 = 1.5 mm r3 = 1.5 mm

Table 1: Values of parameters used in the two sets of experiments. The parameters of set
1 are the standard values.

values for the two sets of experiments are summarized in Table 1.
The temperature in the small basin was measured with three digital thermometers,

with probes at 0.5 cm, 8.5 cm and 17.5 cm above the bottom. In some experiments, two
additional temperature probes, which were connected to dataloggers, were placed at about
2 cm and 8 cm above the bottom. The dataloggers recorded the temperature once every
15 s. The experiments were also recorded on video tape. After a steady state had been
reached, samples were taken near the bottom, in the middle and just below the top of the
water column. With a densiometer the density of these samples could be measured. The
salinity of the sample can then be determined from this density (which is measured at room
temperature) and the density of fresh water at room temperature.

An experiment was started by filling both basins with fresh water, after which the salt
water pump was switched on at a high flow rate. Within less than fifteen minutes the salty
layer in the reservoir had formed. Then the fresh and salt water pumps were set at their
normal rates and the temperature of the heat exchanger at the bottom of the small basin
was set at the desired value. Then the system was left to come to equilibrium. This took
typically two or three hours for the experiments of the first set, and six or more hours for
the experiments of the second set.

Test measurements were done for different forcing temperatures. As water can contain
less dissolved gases when it is heated, air bubbles will form on the bottom and the side
walls of the small basin, and in particular around the opening of the bottom tube during
an experiment. It turned out that, if the forcing temperature was about 35◦C or higher,
the flow through the bottom tube would get blocked by air bubbles in typically one or two
hours. A situation in which this happened could be recognized visually by the fact that
the water in the small basin became completely colorless. A sample taken from this water
showed that the density was equal to that of fresh water. This is consistent with a blocked
bottom tube, as salty water can then no longer enter the small basin.

The use of distilled fresh water in combination with de-aerated salt water did not solve
the problem. Therefore we partly de-aerated the water of the salty mixture, by heating the
water up to a temperature of about 45◦C to 50◦C and keeping it at this temperature for
several hours. Then the water was left for one or two days to cool down to room temperature
again. However, even with this procedure it remained necessary to remove the air bubbles
regularly, by sticking a small metal wire into the bottom tube. This could be done with
hardly any disturbance of the flow. Usually we removed air bubbles in this way about once
every 30 minutes.
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3.2 Convective oscillations

The forcing temperature T ∗ was varied between 35◦C and 50◦C for standard values of the
parameters (Table 1). Two different flow regimes were found: for forcing temperatures
T ∗ = 42◦ and higher, the system reached a steady state within one or two hours, whereas
self-sustained oscillations occurred for lower forcing temperatures. The temperature and the
salinity contribution to the density in the small basin near the bottom and at mid-depth are
plotted against the forcing temperature T ∗ in Fig. 4 for both steady states and oscillations.
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Figure 4: (a) Average temperature in the small basin as a function of the forcing temperature
T ∗. (b) Salinity contribution to the density (a measure for the salinity) in the small basin as
a function of T ∗. The squares are values at the bottom, the circles and diamonds are values
at mid-depth. Temperature and salinity at the top are not plotted, as they were almost
equal to the values at mid-depth. Average temperatures were calculated by averaging the
temperature at 5 minute-intervals over one hour, or, in the case of oscillations with periods
greater than one hour, by averaging temperatures at 15-minute intervals over one oscillation
period. Vertical bars indicate the minimum and maximum values.

The average temperature at mid-depth lies around 22◦C or 23◦C for both the steady
states and the oscillations, whereas the temperature at the bottom is several degrees higher.
This is because the bottom temperature is measured within the thermal boundary layer that
exists in a convecting fluid, heated from below [5], whereas the mid-depth temperature is
measured in the well-mixed region. Temperatures at the top of the small basin are almost
the same as at mid-depth and are therefore not shown. In all steady states there is flow into
the small basin through the bottom and middle tube and outflow through the upper tube,
which characterizes these states as deep convection states. In the steady states, the water
in the small basin also has a very low salinity (Fig. 5b), due to the relatively strong inflow
of fresh water through the middle tube (the diameter of the middle tube is much bigger
than that of the bottom tube). The temperatures at mid-depth and near the bottom of the
small basin as a function of time for a typical oscillation are shown in Fig. 5.

247



We start the description at the arbitrarily chosen time t = 2.5 hr, when a layer of salty
water has started to form at the bottom of the small basin. This could clearly be seen as
a small layer of blue water at the bottom. The bottom temperature is at its maximum,
whereas the temperature at mid-depth is low. As time progresses, the salty, convecting
layer grows (during about one hour). The bottom temperature decreases only slightly, until
the interface between the warm, salty water and the colder, fresher water breaks up rather
rapidly and the whole water column mixes in typically several minutes (at t = 3.2 hr in
Fig. 5). At this moment, the bottom temperature decreases rapidly, as the water at the
bottom mixes with the colder water from the layer above. At the same time the temperature
in the middle of the basin increases suddenly, due to the mixing with the much warmer water
from the bottom layer. Then the whole water column is well mixed, which could be seen in
the experiment because the whole water column was colored light blue. Within about ten
minutes, during which the bottom temperature remains low, the water in the small basin
becomes almost fresh (around t = 3.4 hr). Then the cycle repeats itself. During the whole
oscillation there was inflow through the middle tube and outflow through the top tube.
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Figure 5: Temperature (a) at mid-depth and (b) at the bottom of the small basin as a
function of time for the experiment with T ∗ = 39◦.

During the experiment with T ∗ = 35◦C, the salinity was measured at several times
during an oscillation cycle (Fig. 6). While the convecting layer of salty water is growing
and the temperature near the bottom is relatively high (Fig. 6a, between about 1 hr and
4.5 hr), the salinity decreases rapidly (Fig. 6b), due to entrainment of fresh water from the
layer above. The salinity increases again when a new layer of salty water starts to form.

The oscillation mechanism can be understood by considering the vertical density profiles.
At a certain point during the oscillation the whole water column is well mixed, so that the
density is constant with depth. However, the inflow of salty water through the bottom tube
creates a salty layer at the bottom of the small basin. Because the water is also heated
from below, a well mixed salty layer will form at the bottom. This layer is heavier than the
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Figure 6: (a) Temperature at the bottom of the small basin as a function of time for the
experiment with T ∗ = 35◦. (b) Salinity contribution to the density at the bottom of the
small basin as a function of time for the experiment with T ∗ = 35◦.

fresher water above it due to its high salinity, so that the density profile will show a stable
density step. The inflow of salty water and the entrainment of fresher water from the layer
above make the salty layer grow in time, but the entrainment also decreases the salinity.
As the temperature of this layer does not change very much, the density of the lower layer
decreases. The temperature of the upper layer will increase slightly due to conduction of
heat across the interface, but this is only a small effect. Finally, the effects of temperature
and salinity on the density in the lower layer compensate so that both layers have equal
density. On a slight decrease in salinity of the lower layer the water column now becomes
unstable, causing the whole water column to overturn. The inflow of cold, fresh water
through the middle tube and the outflow of well-mixed water through the top tube will
lower the salinity and temperature and then the whole cycle starts again.

The period of the oscillation decreases with increasing forcing temperature (Fig. 7a),
as stronger convection in the salty layer causes more entrainment and therefore a faster
decrease of the density difference between the two layers, and correspondingly a shorter
period. The maximum height of the salty layer during the oscillation also decreases with
increasing forcing temperature (Fig. 7b). At higher forcing temperatures, the density dif-
ference decreases faster, so that the salty layer has not yet become very big when the water
column overturns already.

3.3 Other flow regimes

In the second set of experiments, in which the upper and middle tubes had smaller diameters
(Table 1), the forcing temperature was varied between 37◦C and 46◦C (Fig. 8). For all
forcing temperatures within this range, the system eventually reached a steady state.

For forcing temperatures of 44◦C and lower shallow convection states were found, with
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Figure 7: (a) Period of the oscillation as a function of forcing temperature T ∗. (b) Maximum
height of the salty layer during the oscillation as a function of T ∗. The vertical bars indicate
the range of maximum and minimum values of the period and the layer height, respectively.
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Figure 8: (a) Average temperature in the small basin as a function of the forcing temperature
T ∗. (b) Salinity contribution to the density in the small basin as a function of T ∗. Squares
indicate values at the bottom, circles values at mid-depth. Average temperatures were
calculated by averaging the temperature at about 15 minute-intervals over one or two hours.
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inflow through the bottom tube and outflow through the middle and top tubes. Deep
convection states, with inflow through the bottom and middle tubes and outflow through
the top tube, existed for forcing temperatures of 45◦C and 46◦C. The temperatures at mid-
depth and near the bottom of the small basin are almost the same (Fig. 8a), indicating that
the thermal boundary layer is smaller than in the first set of experiments, so that bottom
temperatures are now measured within the well-mixed layer. In the shallow convection
states, the temperature in the small basin increases from about 31.5◦C at T ∗ = 37◦C to
about 36◦C at T ∗ = 44◦C. In the deep convection states, temperatures are lower again,
due the inflow of relatively cold water through the middle tube. The salinity is relatively
high in the shallow convection states (Fig. 8b) and is lower in the deep convection states,
because the inflow through the middle tube is also fresh.

The two types of steady states could easily be distinguished, as in the shallow state the
water in the small basin was blue (salty), whereas it was almost colorless (almost fresh)
in the deep convection state. Also, the middle tube contained blue water in the shallow
convection states (as there is outflow through that tube in a shallow convection state) and
colorless water in a deep convection state (inflow through the middle tube). The flow in
the middle and top tubes could also be visualized by injecting a little bit of red dye at one
end of the tube.

Unfortunately, as the time needed to reach equilibrium was often more than six hours
and as the air bubbles had to be removed regularly to prevent the bottom tube from being
blocked, it was not possible to change the forcing temperature slightly after an equilibrium
had been reached and let the system come to equilibrium again. Therefore, we could not
investigate the possibility of multiple equilibria.

4 Comparison with theory

The experimental results can be compared to the box model theory, if the values of the
model parameters γ, K and d̃ are known. These parameters have been determined for
the first set of experiments (the standard configuration). The parameter d̃ is given by the
distance between the height of the siphon inlet and the center of the bottom tube divided
by the total height of the water column and was d̃ = 0.033. The values of γ and K can be
determined indirectly from measurements.

The ratio γ of the hydraulic resistances of the bottom and middle tube (the top and
middle tubes are equal) depends on the characteristic flow timescales τb and τm of the
bottom and middle tube, respectively. These two timescales can be determined as follows.
Consider first the situation in which the small basin is filled with a layer of salty water of
initial thickness h0 (with h0 > d) at the bottom and fresh water above it. Furthermore
the middle tube is blocked, so that salty water will flow out of the small basin through the
bottom tube (and fresh water will enter through the top tube). If the thickness of the salty
layer in the small basin is denoted by h(t), then the time evolution of h is given by

A
dh

dt
= Q3 (24)

where A is the horizontal area of the small basin. The flow rate Q3 can be determined from
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the pressure difference between both ends of the bottom tube and is given by

Q3 = γCρ0g[−η + βS0(d − h)] (25)

If changes in surface elevation with time can be neglected, we can use Q1 + Q3 = 0, which
gives

Q3 =
γCρ0gβS0(d − h)

(1 + γ)
(26)

Then equation (24) turns into
dh

dt
= −

1

τb
(h − d) (27)

with solution
h(t) = (h0 − d)e−t/τb + d (28)

where the constant τb is the characteristic timescale associated with flow in the bottom
tube, given by

τb =
A(1 + γ)

Cρ0gγβS0

(29)

An estimate of the time constant τm of the middle tube can be obtained when the same
experiment is done, but now with the bottom tube instead of the middle tube blocked. The
equation for the evolution of the layer thickness h′, defined as the height of the layer of salty
water above the center of the middle tube, is

dh′

dt
= −

h′

τm
(30)

where

τm =
2A

Cρ0gβS0

(31)

This has solution
h′ = h′

0e
−t/τm (32)

with h′

0 the initial layer thickness. From equations (29) and (31) it can easily be seen that

γ =
τm

2τb − τm
(33)

The constants τb and τm were determined by measuring h and h′ as a function of time and
fitting exponential curves to the data points. We found τb = 1080± 10 s and τm = 9± 2 s,
which gives γ = 0.004 ± 0.001.

Another experiment was done to determine K. Consider the dimensional form of equa-
tion (23), which is

H = K∗(T ∗ − T ) (34)

where the dimensional heat exchange coefficient K∗ is related to K via K∗ = ρ0CpQsK. If
a layer of area A and thickness D is heated, then equation (34) can be written as

dT

dt
=

1

τT
(T ∗ − T ) (35)
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where the thermal relaxation timescale τT is given by

τT = AD/(QsK) (36)

This has solution
T (t) = (T0 − T ∗)e−t/τT + T ∗ (37)

The volume flux scale Qs in (36) follows from (18a) and (29) and is

Qs =
AD

τb

1 + γ

2 + γ
(38)

Equations (36) and (38) can now be combined to yield

K =
τb

τT

2 + γ

1 + γ
(39)

The thermal time constant τT was measured by heating a layer of 19 cm of fresh water with
T ∗ = 41◦C. This gave τT = 2800± 300 s. When a layer of salty water of 9.5 cm (with fresh
water above it) was heated with T ∗ = 41◦C, a value τT = 1680±360 s was obtained. These
estimates of τT yielded values of K between K = 0.6 and K = 1.7. For our calculations we
chose therefore K = 1.2 ± 0.5.

The temperature and salinity data are non-dimensionalized using T̃ = αT/βS0 and
S̃ = S/S0 as in (18), with α = 3 · 10−4 K−1 and βS0 = 5.2 · 10−3, and compared to the
theoretical curves for γ = 0.004, K = 1.2 and d̃ = 0.033 (Fig. 9). The temperature and
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Figure 9: (a) Dimensionless temperature as a function of the dimensionless forcing tem-
perature T̃ ∗. (b) Dimensionless salinity as a function of T̃ ∗. Solid lines are the theoretical
curves, squares are measurements at the bottom and circles are measurements at mid-depth.
Vertical bars indicate the maximum and minimum values of the measurements.

salinity at mid-depth for the deep convection states (T̃ ∗ ≥ 1.3) agree quite well with the
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theoretical curve for the deep convection states. As was mentioned before, the bottom
temperatures are much higher, as these are measured in the thermal boundary layer and
do not represent the temperature of the well mixed layer, as the theoretical curves do. The
average mid-depth temperatures for the oscillations (T̃ ∗ < 1.3) agree also rather well with
the theoretical curve for the deep convection steady states, but the reason for that is not
yet clear.

5 Discussion and conclusions

A laboratory experiment has been conducted in which a small basin, that was connected
to a large reservoir via three tubes, was heated from below. The reservoir had a shallow
layer of salty water underneath a much bigger layer of fresh water, and both layers were
kept at room temperature. It was shown that different flow regimes exist in this laboratory
experiment.

An oscillatory regime exists for forcing temperatures below 42◦C, whereas there is a
regime of steady deep convection states for higher forcing temperatures. The deep convec-
tion states are characterized by inflow of cold and salty water through the bottom tube into
the small basin, inflow of cold and fresh water through the middle tube and outflow through
the top tube. These deep convection states are in good agreement, both qualitatively and
quantitatively, with the box model theory developed by Whitehead [4].

During an oscillation a convecting layer of salty water grows and entrains fresh water,
thereby decreasing its density, until the water column becomes unstable and convection
extends through the whole water column. The oscillation period decreases with increasing
forcing temperature, as for a higher forcing temperature an unstable stratification is reached
quicker, because there is more entrainment of fresh water. The box model theory presented
in section 2 cannot explain this oscillation, even if time-dependent heat and salt balances
are considered as in equation (21) and (22), because this theory does not take into account
processes like entrainment and mixing of the two layers, which are crucial for the oscillation
mechanism. A more quantitative theory for these oscillations still has to be developed.

It is helpful to return to the oceanic case for a moment and consider what this oscillation
might look like in a situation where the small basin is cooled from above and connected to a
reservoir with a shallow layer of fresh water overlying salty water. The inflow of fresh water
through the upper tube will then create a surface layer of fresh water, that is convecting
and extending downward as it is cooled from above. This layer will entrain salty water from
below until it is dense enough to cause the whole water column to overturn. If the inflow of
fresh water at the top is strong enough, deep convection stops and the cycle starts again.
It is interesting to note that in this oscillation the fresh surface layer has to become saltier
before deep convection can occur, similar to the fact that surface waters in the polar ocean
are very fresh and have to become locally saltier before a deep convection event can happen.
Although it is not straightforward to apply the results from such a laboratory model to the
real ocean, these results suggest that deep convection in the ocean might be related to an
internal oscillation, with deep convection occurring only during relatively short intervals.

It is not yet clear what role double diffusive processes play in this experiment. During
the slow phase of the oscillation there is cold, fresh water overlying warm and salty water,
which corresponds to the ’diffusive’ regime in double diffusive problems. However, the
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oscillation we find is different from the oscillatory instability in this diffusive regime [5], as
we are certainly in the turbulent regime.

In a configuration in which the upper and middle tubes have smaller diameters (but
still larger than that of the bottom tube), no oscillations were found. Instead, a regime
of shallow convection states exists for forcing temperatures below 45◦C, in which there is
inflow through the bottom tube and outflow through the middle and top tubes. For high
forcing temperatures (above 45◦C), deep convection states were found.

It is still unclear why oscillations do not occur in this second set of experiments. This
must have to do with the different flow rates and therefore also the different temperatures
and salinities in the small basin, due to the different tube diameters. Unfortunately, τm

has not been measured for the second set of experiments, so that the results from Fig. 8
cannot be compared with the theory. Another unanswered question is why steady shallow
convection states were not found in the standard configuration, although the box model
theory (that seems to work very well for higher forcing temperatures) predicts their existence
between T̃ ∗ = 0.9 and T̃ ∗ = 1.1. Either shallow convection states cannot occur here, because
oscillations prevent the establishment of a steady state, or steady shallow convection states
do exist, but for much lower forcing temperatures. Further study is required to understand
under what conditions the different flow regimes occur.

In future work also a new apparatus might be devised, to make the experiments faster.
The flow through the bottom tube should also no longer get blocked by air bubbles. Then
the question whether or not this laboratory experiment can also exhibit multiple equilibria
can be investigated.
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