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1 In tro duction

The water vapor channels on the United States' GOES 10 and GOES 8, the European
METEOSAT, and the JapaneseGMS geostationary satellites measurelong-wave radiation
of wavelength 5.7{7.1 � m. Imagesat these wavelengths do not show any surface features
of the Earth, since the radiation emitted by the surfaceat 5.7{7.1 � m is entirely absorbed
by low-level atmospheric water vapor. Rather, they reveal planetary and synoptic scale
variations of water vapor in the middle and upper troposphere.

In regionsof subsidence,where the large-scalevertical motion is downward, the tropo-
spherebecomes�lled with dry air from the upper troposphere,and the 5.7{7.1 � m radiation
received by the satellite comesprimarily from the relatively warm lower troposphere.When
the large-scalevertical motion is upward, the cold upper tropospherebecomessaturated (or
nearly so) with humid air from the surface,and the 5.7{7.1 � m radiation seenby the satel-
lites is the cold water vapor in the upper troposphere. In this way the \equivalent black
body temperature" of the 5.7{7.1 � m radiation is a proxy for the vertical motion �eld. An
empirical connection betweenwater vapor and vertical motion is con�rmed in [9] and [11],
in which a correlation is found between convergenceof the mean circulation of the upper
troposphere(implying subsidence,by continuit y) and dry regions in the satellite images.

In the absenceof tropical storms, water vapor imagesof the low latitude East Paci�c are
often dominated by two features, the moisture rich Intertropical ConvergenceZone (ITCZ)
and \black holes," vast regions of low humidit y. As shown in Figures 1-3, images taken
during the northern hemispheresummer, the ITCZ forms a band of convection acrossthe
thermal equator in the East Paci�c, centered at approximately 80 N. North and south of
the ITCZ are the arid regions, centered, in Figure 1, at 1450 W, 160 N and 1300 W, 80 S.
The black hole in the southern (winter) hemisphereis comparablein sizeto the continental
United States. In the far west we seea secondregion of deep convection over Indonesia,
associated with the warm La Nina West Paci�c.

We seekto explain the shape, particularly the north-south and east-west asymmetries,
the intensity, and the time evolution of these East Paci�c water vapor black holes as a
product of the circulation driven by deep convection in the ITCZ. In the spirit of this
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Figure 1: GOES 10 Water Vapor Image, July 27, 20011800z. The longitude and latitude
interval is 150. The center meridian is 1350 W, and crossesthe equator at the center of the
image. Green,yellow, and red indicate areaswherethe upper troposphereis rich in moisture
(increasing from green to red). Blue, purple, and black colors indicate an increasingly dry
upper troposphere.

summer's GFD program, we have built a conceptual model of the tropical atmosphereto
aid us.

1.1 The Basic Mo del

We begin with strati�ed � -plane atmosphere extending to in�nit y in both x and y. We
next linearize about a basic state at rest and perform a vertical mode transformation, as
in [1]. This separatesthe motion of the atmosphereinto baroclinic modes,each obeying an
independent set of equationsequivalent to the linearized shallow water system.

We next assumethat the latent heat releaseexcitesonly the �rst baroclinic mode. The
vertical pro�le of the �rst mode takes a form similar to a cosinewave from 0 to � . Fluid
on the bottom 
o ws opposite that on top, connectedby a smooth pro�le with no motion at
a node near the midpoint of the atmosphere. We can view the shallow water equations as
prescribing 
o w at the baseof the atmosphere,and then use the sinusoidal vertical pro�le
to completethe picture. Deepconvection in this simple systemhasthe e�ect of transferring
massfrom the lower layer to the upper layer. We thus prescribe a masssink in our lower
layer to model the e�ect of the ITCZ, or any other regions of deepconvection. Given our
forcing, we solve for the resulting subsidence�eld, and hencethe water vapor �eld, to �nd
the black holes.
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Figure 2: GOES 10 Water Vapor Image, July 28, 20011800z

Figure 3: GOES 10 Water Vapor Image, July 29, 20011800z
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We are following in the footsteps of A. E. Gill, who with others studied this model
extensively in the 1980's in [2], [5], and [8]. We do not, however, make the long wave
approximation, following rather the original eigenvalue formulation of Matsuno [7] in 1966,
later developed in [12], wherethe time dependent evolution of tropical circulation around the
amazonbasin was studied. In contrast to [12], however, we attempt to include dissipation
and Newtonian cooling in our model. We are thus applying a tried and true theory, seeking
to focus a new application; the formation of water vapor black holes.

2 Theory

2.1 The Linearized Equatorial � -Plane

Consider the motions of an incompressible, forced, shallow water 
uid on the equatorial
� -plane. In our model, this shallow water layer corresponds to the lower layer in the �rst
baroclinic mode. The governing equations, linearized about a resting basic state, are
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where u and v are velocity components in the x- and y-directions, respectively, h is the
deviation of the 
uid depth from the constant mean depth �h, � y is the Coriolis parameter,
� is the constant Rayleigh friction and Newtonian damping coe�cien t, and S(x; y; t) is
the lower layer mass sink. Before solving (1){(3) it is convenient to put the problem in
nondimensional form. We de�ne c = (g�h)

1
2 as the constant gravit y wave speed basedon

the mean depth �h. As a horizontal length scale let us chooseL = (c=� )
1
2 . Similarly, let

us chooseas a unit of time T = (� c) � 1
2 . Data from the ITCZ in the Paci�c (speci�cally

the Marshall Islands) and in the Atlantic [1] suggeststhat, for the �rst baroclinic mode,
c � 7:5 � 101 m=s and �h � 5:7 � 102 m, so that L � 1:8 � 103km and T � 0:28day. For
now, we choosec as the unit of speedand �h as the unit of depth, so that (1){(3) reduceto
the nondimensional form
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whereall the independent variablesx, y, t, all the dependent variablesu, v, h, the parameter
� and the function S(x; y; t) arenow nondimensional. The system(4){(5) canalsobewritten
in the more compact form

@w
@t

+ Lw = � � w � S; (7)

166



where
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The potential vorticit y (PV) principle associated with (4){(6) is
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is the potential vorticit y anomaly. The total energyprinciple associated with (4){(6) is
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or, in integral form
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The energyprinciple suggestsan inner product,
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wherewe usethe � symbol to denotethe complexconjugate,anticipating work with complex
numbers. We have de�ned our inner product with respect to y in preparation for a Fourier
transform of our equations in x. We may now write our energy principle in more compact
form,
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2.2 The Matsuno Eigen value Problem

Our goal is to solve (7) for w(x; y; t) subject to a speci�ed initial condition w(x; y; 0) and
masssink S(x; y; t). By �rst solving the inviscid, unforced system,

@w
@t

+ Lw = 0; (16)
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our goal becomeseasier. Let us search for solutions of the form u(x; y; t) = U(k; y)ei (kx� ! t ) ,
v(x; y; t) = V(k; y)ei (kx� ! t ) , and h(x; y; t) = H(k; y)ei (kx� ! t ) , where k is the zonal wave
number and ! the frequency. Hencein our vector notation, we make the substitution

w(x; y; t) = K (k; y)ei (kx� ! t ) ; (17)

where

K (k; y) =

0

@
U(k; y)
V(k; y)
H(k; y)

1

A ; (18)

into (16). The substitution results in the eigenvalue problem,

� i! K + L̂K = 0; (19)

where

L̂ =

0

@
0 � y ik
y 0 d=dy
ik d=dy 0

1

A : (20)

The adjoint of L̂ with respect to the inner product (13) is the operator L̂ y which satis�es

(L̂ f ; g) = (f ; L̂ yg) (21)

for all f (y) and g(y) satisfying the boundary conditions, that is (f ; g) < 1 . Our operator
L̂ is skew-Hermitian, as L̂ y = � L̂ , so that (21) becomes

(L̂ f ; g) = � (f ; L̂ g): (22)

The skew-Hermitian property dictates that the eigenvalues of L̂ are purely imaginary, so
that we have a mathematical basis for looking for wave-like solutions (solutions where ! is
purely real). In addition, the eigenfunctionsform a complete orthogonal set. Hencethere
exist a set of eigenfunctionsK i that span all functions f satisfying (f ; f ) < 1 with

(K i ; K j ) = 0 (23)

if i 6= j .
The eigenvalueproblem wassolved in [7], which revealedthat (19) hasboundedsolutions

as y ! �1 , only if ! 2 � k2 � k=! is an odd integer, that is, only if

! 2 � k2 � k=! = 2n + 1; (24)

with n = 0; 1; 2; : : : We shall denote the solutions of this cubic equation by ! n;r , since the
frequencywill depend on the particular odd integer 2n + 1 chosen,and where the subscript
r = 0; 1; 2 indicates which of the three roots of the frequencyequation we are discussing.

For n > 0 our dispersion relation (24) separatesnicely into three modes: low frequency
Rossby waveswhich always propagate to the west (! has the opposite sign of k) and high
frequency westward and eastward propagating inertial gravit y waves. We have given the
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modes the subscripts 0, 1, and 2, respectively. Approximate values for the frequenciesare
given below. They are more accurate for large n.

! n;0 �
� k

k2 + 2n + 1
(25)

! n;1 � � (k2 + 2n + 1)
1
2 (26)

! n;2 � (k2 + 2n + 1)
1
2 (27)

For n = 0, (24) factors to (! 0;r + k)( ! 2
0;r � k! 0;r � 1) = 0, yielding two mixed modesand one

forbidden mode ! 0;1 = � k that cannot be normalized. The allowable waves have Rossby
and gravit y wave character.

! 0;0 =
k � (k2 + 4)

2
(28)

! 0;2 =
k + (k2 + 4)

2
(29)

Let K n;r denote the eigenfunction corresponding to r th root of (24) given n.

K n;r = An;r e� 1
2 y2

0

@
� 1

2(! n;r + k)Hn+1 (y) � n(! n;r � k)Hn� 1(y)
i (! 2
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A ; (30)

where
An;r = � � 1

4 f 2nn![(n + 1)(! n;r + k)2 + n(! n;r � k)2 + (! 2
n;r � k2)2]g� 1

2 (31)

is a normalization constant which assuresthat

(K n;r ; K n;r ) = 1 (32)

The Hermite polynomials Hn (y) are given by H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 � 2,
H3(y) = 8y3 � 12y, � � � , with recurrencerelation H n+1 (y) = 2yHn (y) � 2nH n� 1(y).

We have not quite found all the solutions of (19), becauseit is possible to have the
trivial solution V = 0, but nontrivial U and H. If we expand (19) with V = 0 we �nd that

� ! U + kH = 0 (33)

yU +
dH
dy

= 0 (34)

� ! H + kU = 0: (35)

The �rst and third of thesecanbeconsideredastwo linear, homogeneousalgebraicequations
for U and H. Requiring the determinant of the coe�cien ts to vanish gives ! 2 = k2, with
solutions ! = � k. When ! = � k, H = �U and (34) becomesdU=dy = yU, with solution
U � e

1
2 y2

. This solution must be discarded since it is not bounded as y ! �1 . When
! = k, H = U and (34) becomesdU=dy = � yU, with solution U � e� 1

2 y2
. This solution is

acceptable. Thus, we have found the additional (Kelvin wave) eigenfunction

K � 1 = A � 1e� 1
2 y2

0

@
1
0
1

1

A ; (36)

with corresponding eigenvalue (dispersion relation) ! � 1 = k. The subscript � 1 is chosen
becausethe dispersion relation ! = k is a solution of ! 2 � k2 � k=! = 2n + 1 when n = � 1.
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2.3 The Normal Mo de Transformation

We may now useour eigenfunctionsto decomposethe forced, damped problem into normal
modes. First, we intro duce the Fourier transform pair in x,

u(x; y; t) = (2� ) � 1
2

1Z

�1

û(k; y; t)eik xdk; (37)

û(k; y; t) = (2� ) � 1
2

1Z

�1

u(x; y; t)e� ik xdx; (38)

where k is the zonal wavenumber. Similar transform pairs exist for v(x; y; t) and v̂(k; y; t),
for h(x; y; t) and ĥ(k; y; t), and for S(x; y; t) and Ŝ(k; y; t). We can now write (7) as

@̂w
@t

+ L̂ ŵ = � � ŵ � Ŝ; (39)

where
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1

A ; (40)

and L̂ is de�ned as in (20).
Our secondtask is to transform (39) in y. As our eigenfunctionsK n;r (k; y) satisfy the

orthonormalit y condition

�
K n;r (k; y); K n0;r 0(k; y)

�
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(
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we can set up a transform pair
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+ i! n;r (ŵ (k; y; t); K n;r (k; y)) = � � ŵn;r (k; t) � Ŝn;r (k; t)
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so that
dŵn;r (k; t)

dt
+ (� + i! n;r )ŵn;r (k; t) = � Ŝn;r (k; t): (44)

Equation (44) is the transformation to spectral spaceof the original system (7) and has
solution

ŵn;r (k; t) = ŵn;r (k; 0)e� (� + i! n;r )t �
Z t

0
Ŝn;r (k; t0)e� (� + i! n;r )( t � t0)dt0: (45)

When this spectral spacesolution is inserted into (43), we obtain the vector equation

ŵ (k; y; t) =
X

n;r

ŵn;r (k)K n;r (k; y); (46)

Taking the inverseFourier transform of (46) and breaking back into component form, we
obtain our �nal physical spacesolutions

u(x; y; t) = (2� ) � 1
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�1

X
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ŵn;r (k)Un;r (k; y)eik xdk; (47)

v(x; y; t) = (2� ) � 1
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X

n;r

ŵn;r (k)Vn;r (k; y)eik xdk; (48)

h(x; y; t) = (2� ) � 1
2

1Z
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X

n;r

ŵn;r (k)H n;r (k; y)eik xdk: (49)

According to (47) { (49) the general solution of our initial value problem consistsof a
superposition of normal modes. The superposition involvesall zonal wavenumbers (integral
over k), all meridional wavenumbers (sum over n), and all wave types(sum over r ).

It should be noted that typical superpositions of many normal modes result in spatial
patterns which di�er greatly from individual normal modes. We found that the wn;r decay
exponentially with n for all choicesof k. Thus, given a speci�ed degreeof accuracy, we can
selectan N so that the partial sum of all modesn < N meetsthe requirement. In general,
we found that N = 200 gave very good results.

It was also necessaryto perform the InverseFourier Transform via a numeric approxi-
mation to the integral. A simple mid-point rule numeric integration was su�cien t.

2.4 Forcing

We consider caseswhere the time evolution of the forcing is separable from its spatial
dependence.

S(x; y; t) = (� ab) � 1e� x2=a2
e� (y� y0 )2=b2 ~S(t); (50)

where y0 is the center of the Gaussianshaped masssink and a and b control the spatial
extent in x and y. The factor (� ab) � 1 has beenincluded so that

1Z

�1

1Z

�1

S(x; y; t)dxdy = ~S(t); (51)
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i.e., the rate of total massremoval is independent of the choicesof a and b.
The Fourier transform of this forcing is

Ŝ(k; y; t) = (� ab) � 1(2� ) � 1
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for 0 < b < 2
1
2 . (For b > 2

1
2 , there exists a recursion formula to solve the integral, but the

modulus of the forcing term will increasewith n, making for poor convergence.) Utilizing
(54), we �nally obtain
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for all modes with the exception of the Kelvin wave, which takes a similar (and simpler)
form.

To focus on the time dependence,(55) can be viewed as a function �Sn;r of n, r , k, a,
and b multiplying the time dependent part,

Ŝn;r (k; t) = �Sn;r (k) ~S(t): (56)

If we separateŵn;r (k; t) = �wn;r (k) ~wn;r (t) also, (44) yields,

�wn;r (k)
�

d ~wn;r (t)
dt

+ (� + i! n;r ) ~wn;r (t)
�

= � �Sn;r (k) ~S(t) (57)
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Figure 4: ~S(t)

We can now take �wn;r (k) = � �Sn;r (k), leaving

d ~wn;r (t)
dt

+ (� + i! n;r ) ~wn;r (t) = ~S(t); (58)

which has solution, following (45),

~wn;r (t) = e� (� + i! )t

0

@
tZ

0

e(� + i! )t0 ~S(t0)dt0+ ~wn;r (0)

1

A : (59)

If ~S(t) convergesto a steadyvalue, ~S, the solution will convergeto the steadystate solution,
where

~wn;r (t) =
~S

(� + i! )
: (60)

We experimented with four di�eren t forcing functions, shown in Table 1 (and in Fig-
ure 4), hoping to model the onset and termination of convection. Forcing F1 is the Rossby
adjustment problem, in which an atmosphereat rest adjust to a sudden, steady releaseof

173



Type ~S(t) ~wn;r (0) ~wn;r (t)
F1 S0 0 S0(1 � e� (� + i! )t ) 1

� + i!
F2 0 S0

(� + i! ) S0e� (� + i! )t 1
� + i!

F3 S0(1 � e� 
 t ) 0 see(61)
F4 S0

2 (1 � cos(
 t)) 0 see(63)

Table 1: Forcing Functions

latent heat. Such forcing has been modeled before, but with the long wave approxima-
tion [5]. F2 is the adjustment problem in reverse, in which we shut o� the heating in an
atmospherein equilibrium with a steady forcing. F3 was chosenas a simple, more realistic
way to model the onset of convection. F4 attempts to capture the response to both the
onset and termination of heating.

Forcing F3 yielded the following solution,

~wn;r (t) = S0

 
1

(� + i! n;r )
�

e� 
 t

(� � 
 + i! n;r )
+


 e� (� + i! n;r )t

(� 2 � � � ! 2
n;r ) + i! n;r (2� � 
 )

!

: (61)

In the the limit 
 � � , that is, when the rate at which the forcing turns on is fast relative
to the rate of dissipation, (61) approachesthe solution to forcing F1. In the other extreme,
� � 
 , (61) reducesto

~wn;r (t) =
S0

(� + i! n;r )
� (1 � e� 
 t ): (62)

in which the atmospheric response is always in equilibrium with the forcing. Forcing F4
results in

~wn;r (t) =
S0

2

 
1 � e� (� + i! n;r )t

(� + i! n;r )
+

(� + i! n;r )
�
e� (� + i! n;r )t � cos(
 t)

�
� 
 sin (
 t)

(� + i! n;r )2 + 
 2

!

: (63)

In the limit � � 
 (slow forcing) it reducesto a form similar to (62) in which the response
is in equilibrium with the forcing at all times. In the opposite extreme, 
 � � , we �nd

~wn;r (t) = S0

 
1 � e� (� + i! n;r )t

2(� + i! n;r )
�

sin (
 t)
2


!

: (64)

The �rst term on the left hand sidecorrespondsto a systemadjusting as in forcing function
F1 to the averagevalue of the forcing, S0=2, while the secondterm corresponds to a small
out of phaseresponseto the forcing.

2.5 Subsidence

wnd , the nondimensionalupward velocity, can be calculated directly from our shallow water
solutions. Shallow water continuit y implies that

wnd =
@h
@t

= �
�

@u
@x

+
@v
@y

�
: (65)
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For the �rst baroclinic mode, w is zero at the top and bottom of the atmosphere,reaching
a maximum near the center. The complete vertical velocity pro�le takeson a form similar
to a sine wave from 0 to � . wnd , once properly dimensionalized,tells us the amplitude of
the z-velocity in the �rst baroclinic mode, and hencecorresponds to the maximum velocity
found at the center of the vertical pro�le.

In spectral space,

W =
@H
@t

= � i! H (66)

for each mode. This enablesus to calculate w analytically, the only error coming from the
fact that we truncate our sum at the N th mode.

2.6 Comparison with Gill

The long wave approximation is made in the linearized equatorial � -plane model �rst pro-
posedby Gill in 1980 [2], and later developed further in [5, 8]. The only di�erence from
our model is that the @v

@t and � �v terms are dropped from (2), basedon scaling analysis,
leaving the modi�ed y-momentum equation

� yu + g
@h
@y

= 0: (67)

The y-momentum equation hencereducesto simple geostrophic balance, and adjustment
in v becomesinstantaneous. (1) and (3) remain the same. While Gill conciselysolves this
systemwith the useof parabolic cylinder functions, analysiswith Matsuno's eigenfunctions
provides insight into the coupling between the inertial gravit y and Rossby waves resulting
from the long wave approximation. (Note that, asv = 0 in the Kelvin wave, it is una�ected
by the long wave approximation.)

We proceedwith the sameanalysisasbefore,applying a Fourier transform in x to reach
the Gill equivalent of (39)

@
@t

0

@
û(k; y; t)

0
ĥ(k; y; t)

1

A + L̂ ŵ = � �

0

@
û(k; y; t)

0
ĥ(k; y; t)

1

A � Ŝ; (68)

where w, L̂ and S are de�ned as before in (20) and (40). We intro duce the matrix

F =

0

@
0 0 0
0 1 0
0 0 0

1

A (69)

so that we may write (68) in a form more similar to (39), having now just two corrections
to account for the long wave approximation

@̂w
@t

�
@Fŵ

@t
+ L̂ ŵ = � � ŵ + � Fŵ � Ŝ: (70)

175



We now expressw a sum of the K n;r as in (43) and take the inner product of (70) with a
particular K n0;r 0,

 
@
@t

X

n;r

ŵn;r K n;r ; K n0;r 0

!

�

 
@
@t

F
X

n;r

ŵn;r K n;r ; K n0;r 0

!

+

 

L̂
X

n;r

ŵn;r K n;r ; K n0;r 0

!

=

� �

 
X

n;r

ŵn;r K n;r ; K n0;r 0

!

+ �

 

F
X

n;r

ŵn;r K n;r ; K n0;r 0

!

�
�

Ŝ; K n0;r 0

�
: (71)

Applying the orthonormalit y condition of the K n;r cleansup most of the terms, yielding
a result comparableto (44), modulo our correction.

dŵn0;r 0

dt
+ (� + i! n0;r 0)ŵn0;r 0 = � Ŝn0;r 0 +

X

n;r

 
^dwn;r

dt
+ �w n;r

!
�
FK n;r ; K n0;r 0

�
: (72)

Looking closerat our correction term, we have

�
FK n;r ; K n0;r 0

�
=

1Z

�1

Vn;r ; Vn0;r 0dy

= An;r An0;r 0(! 2
n;r � k2)( ! 2

n0;r 0 � k2)

1Z

�1

HnHn0e� y2
dy: (73)

All is not lost, as the Hermite Polynomials have the property that
1Z

�1

HnHn0e� y2
dy =

(
�

1
2 n!2n n = n0

0 n 6= n0
; (74)

so that, and making useof the de�nition of An;r , (31),

�
FK n;r ; K n0;r 0

�
=

(
an0;r ;r 0 n = n0

0 n 6= n0
(75)

with

an;r ;r 0 =
Y

q= r ;r 0

(! 2
n;q � k2)

�
(n + 1)(! n;q + k)2 + n(! n;q � k)2 + (! 2

n;q � k2)2
� 1

2

: (76)

In light of these results the summation of n and r in (72) reducesto a sum over just r ,
yielding

dŵn0;r 0

dt
+ (� + i! n0;r 0)ŵn0;r 0 = � Ŝn0;r 0 +

X

r

an0;r ;r 0

 
^dwn;r

dt
+ �w n;r

!

: (77)

The long waveapproximation ties the evolution of the gravit y and Rossby wavestogether
by coupling ŵn;0, ŵn;1, and ŵn;0. For each n, (77) givesus three coupledODE's, which can
be combined into one matrix di�eren tial equation,

A
dŵn

dt
+ B ŵn = Ŝn (78)
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where

A =

0

@
1 � an;0;0 � an;0;1 � an;0;2

� an;0;1 1 � an;1;1 � an;1;2

� an;0;2 � an;1;2 1 � an;1;1

1

A ;

B =

0

@
� + i! n;0 � �a n;0;0 � �a n;0;1 � �a n;0;2

� �a n;0;1 � + i! n;1 � �a n;1;1 � �a n;1;2

� �a n;0;2 � �a n;1;2 � + i! n;2 � �a n;2;2

1

A ;

and

ŵn =

0

@
ŵn;0

ŵn;1

ŵn;2

1

A ; Ŝn =

0

@
Ŝn;0

Ŝn;1

Ŝn;2

1

A : (79)

We must make an exception when n = 0, for there is no K 0;1 eigenfunction. In this case
we have just two coupled ODE's, which can be represented by an otherwise similar two-
dimensional matrix equation.

The steady state solution to (78) is simply

ŵn = B � 1Ŝn ; (80)

provided of coursethat B is invertible. This is a fair assumption,asthe the an;r ;r 0 corrections
are relatively small, so that B (and A , for that matter) are diagonally dominant. This
assumption is not necessarilyaccurate for the mixed modescorresponding to n = 0, and I
am not sure we can solve this equation for all forcing functions.

We must make a few more assumptionson the properties of A and B to solve the time
dependent version of (78). We �rst multiply by A � 1 to obtain

dŵn

dt
+ A � 1B ŵn = A � 1Ŝn : (81)

Next assumethat A � 1B is diagonizable, so that there exist a constant, invertible matrix
P such that,

PA � 1BP � 1 = D ; (82)

with D diagonal. We then multiply (81) by P, in preparation for de�ning a new time
dependent vector qn (t) = Pŵn (t) so that

dPŵn

dt
+ PA � 1BP � 1Pŵn = PA � 1Ŝn (83)

dqn

dt
+ Dq n = PA � 1Ŝn : (84)

In (84) we have decoupledthe ODE's, so that each component of qn may be solved individ-
ually with the sametechniquesusedto solve (44), or, more elegantly , solved with a matrix
exponential,

qn = e� Dt qn (0) + e� Dt

tZ

0

eDt 0
PA � 1Ŝn dt0: (85)
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Note that as D is diagonal,

eDt =

0

@
ed1 t 0 0
0 ed2 t 0
0 0 ed3 t

1

A : (86)

Lastly, we obtain our coe�cien ts

ŵn (t) = P � 1qn (t): (87)

3 Results

3.1 The East Paci�c, July 27-29, 2001

Figures 1, 2, and 3 reveal two large water vapor black holesevolving over the East Paci�c.
In the �rst image, taken on July 27 at 1800z,we seethe East Paci�c ITCZ spanning over
6000km, from 1500 W to Central America. The convection beginsat 50 N in the west and
risesto 150 N in the east, its meridional extent varying from 500 to 1000km. This position
of the ITCZ is typical during the northern hemispheresummer,as the ITCZ tends to follow
the thermal equator. Another large region of deepconvection is visible at the western edge
of the image, centered over Papua New Guinea and Indonesia. Convection in this area is
especially strong during La Nina years. To the eastwe seea bit of seasonalconvection over
the Amazon basin, and in the south, the South Paci�c ConvergenceZone (SPCZ) stretches
northwest to southeast from 1650 W, 150 S to 1200 W, 400 S.

A large, arid black hole centered at 1300 W, 70 S has already formed to south of the
East Paci�c ITCZ, spanning nearly 80 degreesof longitude. At is widest point it spans
nearly 300 of latitude, over 3000km. A smaller dry region has formed northwest of the the
East Paci�c ITCZ, centered near 1450 W, 160 N.

The large black hole in the south reaches its apex 24 hours later on the 28th, Figure
2. The East Paci�c ITCZ has extended further to the west, now stretching past 1550 W.
The broader convection in the east is still present. The southern black hole has intensi�ed,
especially in the center, where we now seea \black hole" in the image. The northern black
hole has also increasedin size, its easternboundary now 500 km further west at 1650 W.

The broad convection in the easternhalf of the ITCZ, especially between120 and 1050

W, weakensby the 29th, asshown in Figure 3. Unfortunately for our linear theory, advection
seemsto be playing a large role now. Intense convection in the ITCZ is now only in the
west, where it begins to merge into the West Paci�c convection. The southern black hole
hasbeencontorted, and hasshrunk slightly . The northern black hole is lessa�ected, though
it has beenpushedslightly north by a new burst of convection.

3.2 Setting up the Mo del

We must model this complicated system with Gaussianregions of convection, as given by
(50). To simulate the East Paci�c ITCZ, we selectedparameters a and b to create an
elongatedconvection region with Gaussianfolding distancesin x and y of 2700and 450km,
respectively. y0 was selectedso that the convection would be centered at 10:50 N.
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The parameter � determinesboth the momentum damping and Newtonian cooling rates
in our model. Following Gill, we basedour value on the momentum damping rate, taking
� = 1

3days [2]. (� = 1
10days would bemore appropriate for the Newtonian cooling rate. Seethe

Fellow's report by Takamitsu Ito for a simulation in which this problem hasbeenremedied.)
S0, the dimensionalheating rate for the �rst baroclinic mode, is 57 m=day [1]. This value is
basedon measurements taken over the Marshall Islands in the Paci�c and from the GATE
survey of the Atlantic.

Note that we used a partial summation of normal modes truncated at N = 200 in all
the data we present. We approximated the Inverse Fourier Transform, an integral over
wavenumber k from �1 to 1 , as a numeric integral from � 10 to 10 with 128point resolu-
tion. The truncation of the integral is basedon the fact that the Fourier transform decays

as e
� a2k 2

4 . We projected our � -plane solutions, which span to in�nit y in all directions, onto
maps by ignoring the sphericity of the globe in the tropics. The maps are included to
provide a better senseof scaleand positioning.

The steady state subsidence�eld for the East Paci�c ITCZ (labeled region A) is shown
in the top half of Figure 5. We show only contours of downward velocity, in units m=day.
This is the velocity at the center of the atmospheric column, where it is largest for the �rst
baroclinic mode. While the greatest subsidencerate is not even 2 m=day, the maximum
upward motion exceeds50m=day. If weequatedrier air with greater subsidence,we already
seethe basic features of Figures 1 - 3; two large subsidenceregions with signi�cant zonal
and meridional asymmetrieswith respect to the ITCZ.

To better compare our simulation with observations, we also included a �rst approx-
imation to the convection over the West Paci�c. Convection in the region appears much
more stable, in bulk, through our observational period. We thus included a steady state
convection cell over Papua New Guinea as a backdrop for our time dependent simulation.
(A linear theory allows oneto pastesolutions together!) We centered this convection region
on the equator at 1600 E, with Gaussianfolding distance of 900 km in both x and y. The
complete steady state subsidence�eld is shown in the lower half of Figure 5. Again, we
show only contours of downward velocity. A comparison with the upper half of the �gure
revealsthat the West Paci�c Convection (labeled region B) increasesthe sizeand intensity
of the southern black hole. This brings our model yet closer to the observations.

As is demonstratedin Takamitsu Ito's paper, the convection in the SPCZ doesnot a�ect
the tropical black holes very much, serving mostly to trim o� the southwest corner of the
southern black hole. Convection in the South Paci�c is generally lessstable and more prone
to advection. We found (and will describe later) that the responseof the subsidence�eld
to forcing becomesslower, smaller, and concentrated to the west as one moves poleward
from the equator, so that the 
uctuating SPCZ doesnot have much of an e�ect on the East
Paci�c subsidence�elds.

As we observe a rather gentle evolution of the ITCZ convection in Figures 1 - 3, forcing
function F4 is the most appropriate. 
 was selectedso that the period of forcing is 5 days.
We are particularly interested in days 2-4, in which the convection reachesa maximum and
then begins to decay. S0 was set so that the averageintensity of the forcing is consistent
with the experiment measurements.
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Figure 5: Subsidence(m=day) in Steady State Solutions

180



3.3 The Time Dep endent Simulation

Figures 6 through 11 show the subsidence�elds in increments of oneday. The small cartoon
in the bottom left hand corner of each �gure illustrates the path of the forcing function, the
marker showing the current intensity. Subsidencein each �gure is given in m=day. It should
be noted that our analytic technique givesus an exact solution for any time we choose,so
that each �eld is equally accurate. For the discussionin this section, we will equate low
humidit y in the upper tropospherewith subsidence.

We begin in Figure 6 with the steady state response of the West Paci�c convection.
When the East Paci�c convection begins, there is initially very little east-west or north-
south asymmetry in the subsidence�eld. (This will be further illustrated in the next
section.) After one day, Figure 7, someasymmetry has developed, but the solution is more
balanced than in the steady state. Note that the initial response is predominantly north
and south of the ITCZ.

By day 2, Figure 8, the responsehasspreadfurther eastand west, and the characteristics
of the steady state solution have developed. As we saw in Figures 1 and 2, the subsidence
region to south of the ITCZ is much larger, and centered east of the small northern black
hole.

When the convection begins to decline, as in Figure 9, we seethe fastest response in
the south east. The peak subsidencein the southern black hole has pushed from 1200 to
1450 W. A secondpeak region of subsidencehas moved east over South America, and will
propagate further east over the next few days of the simulation. This is a Kelvin wave
packet! It may be di�cult to observe this movement in the real atmosphere, as there is
signi�cant convection over the Amazon Basin.

By day 4, Figure 10, subsidencehas ceasedover much of the East Paci�c, but held
strong in the west. It is remarkably consistent with Figure 3, in which the eastern half of
the southern black hole decays when the convection ceases.The northwestern subsidence
regions slowly propagates further westward, as seen in Figure 11, again consistent with
the movement of the actual northwestern black hole. Here we have a Rossby wave packet.
We also note that the subsidencelingers in the north much longer than in the south; the
asymmetry of the steady state has reversed.

3.4 Subsidence and Humidit y?

In the steady state, the link between subsidenceand humidit y in the upper troposphere
has beenestablishedempirically. In our time dependent simulation, we tread upon shakier
ground in making comparisons.Our model only tells us the subsidencerate. In the future
we must study the time dependencebetween subsidenceand the drying of the upper tro-
posphere.How long doesit take the upper troposphereto dry out after subsidencebegins,
or moisten after it ceases?We may needto look at the full vertical motion �eld to obtain
sound results.

3.5 Comp onent Analysis

The Matsuno formulation of the equatorial � -plane responseallows one to separatethe at-
mosphericresponseinto components, speci�cally the e�ect of Kelvin, Rossby, and westward
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Figure 6: Full Solution, Time = 0
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Figure 7: Full Solution, Time = 1 day
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Figure 8: Full Solution, Time = 2 days
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Figure 9: Full Solution, Time = 3 days
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Figure 10: Full Solution, Time = 4 days
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Figure 11: Full Solution, Time = 5 days
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Westward I. G. Response
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Figure 12: Components, Time = 1 day

and eastward propagating inertial gravit y waves. In Figures 12 to 15 we present the total
responseto each type of wave. Note that the total subsidence�elds is not necessarilythe
sum of these�elds, as we have not shown the regions in which air is rising.

The east-west asymmetriesin the responseare the result of di�erences betweenKelvin
and Rossby waves. The Kelvin responsegrows much faster than the Rossby response,asone
would expect basedon the group velocities at which they propagate. The group velocity of
nearly nondispersive long Rossby wavesof order n is dwarfed by the Kelvin group velocity
by a factor of 1=(2n + 1) for n > 0. As the forcing decays, we seethe Kelvin response
propagating o� to the east in a coherent packet.

The Rossby responsefocusedsouth of the forcing is due to contribution from the n =
0; r = 0 mixed mode wave, and hencebehaves in part like an inertial gravit y wave. It dies
faster than the other Rossby waves in the end when the forcing decays. The two pronged
Rossby responsewest of the forcing, seenbest in Figure 15, is due to the low frequency
Rossby waves of order n = 1 and above. It becomesthe dominant feature at the end of
the simulations, explaining the enhancedstabilit y of the western half of a black holes. The
northern half of the Rossby packet is the slowest to grow and decay. Higher order Rossby
waves,with their low group velocities, generatethe responseaway from the equator.

The relative intensity at which the di�eren t wave typesare excited is highly dependent
on the spatial extent and latitude of the forcing. For instance, Kelvin waves are excited
to a larger extent when the forcing is near the equator. Lower order waves are favored in
generalwhen the responseis broad and near the equator.

As the forcing is moved further poleward, the black hole associated with it will decline
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Figure 13: Components, Time = 2 days
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Figure 14: Components, Time = 3 day
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Figure 15: Components, Time = 4 days

in size, gain in local intensity, and move west of the forcing. The shift to the west comes
from the fact that Kelvin wavescan only be excited near the equator. The declinein spatial
extent, which is coupled with an increasein intensity necessaryto maintain continuit y, can
be attributed to the shrinking Rossby radius of deformation. Away from the equator the
deformation radius is inversely proportional to the local Coriolis parameter, � y, on our
� -plane. At high latitudes the Rossby waves tend to dominate over inertial gravit y waves,
too. The gravit y wave responsedecreaseswith the Rossby number, which is also inversely
proportional to the Coriolis parameter. Once the forcing is 1 or 2 Rossby radii poleward of
the equator, the quasi-geostrophicequations becomea good approximation to our system
provided that our forcing is broad, and we can neglect inertial gravit y wavesall together.

3.6 The Time Dep endence of the Hadley and Walk er Circulations

Flow in the �rst baroclinic modetakesplacein two layers. Air is sucked in from all directions
toward the convection region in the lower half of the troposphere,and propelled upward by
the convection. It then 
o ws back in the upper half of the atmosphere,subsidinggently into
the lower 
o w over broad regions to complete the cell. The Walker Circulation describes
the east-west part of this 
o w (or perhaps I should say, the east-west 
o w \is" the Walker
Circulation), and the Hadley Circulation is the north-south 
o w. We de�ne the magnitude
of the Walker circulation to be the maximum zonal masstransport toward the convection
region in the lower layer, or equivalently , away from the convection in the upper layer.
Similarly, we measurethe Hadley circulation by the maximum meridional transport.
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We can further divide the Walker circulation into western and eastern branches. The
western branch is the maximum zonal transport to the convection coming from the west,
and hence is due primarily to the Rossby response. The eastern branch tracks the 
o w
from the east, and is generatedby the Kelvin response. The Hadley circulation divides into
northern (summer) and southern (winter) cells. These cells are established, to the most
part, by the interaction of inertial gravit y wavesand the the mixed Rossby-inertial gravit y
modes.

As subsidencecompletes the Walker and Hadley circulations, the asymmetries of the
meridional and zonal 
o ws are the sameas those we seein the formation of black holes.
Calculating the 
o ws thus givesa quantitativ e measureof the black hole asymmetries. For
each forcing function we plotted the intensity of the four cells as a function of time relative
to their steady state values. The total transports east-west and north-south at steady state
are roughly equivalent so that the units in both diagrams are e�ectiv ely the same.

For example, in the plots of the northern and southern branches of the meridional
circulation, 1 unit on the y-axis corresponds to the total mass transport at steady state.
The total is the sum of the absolute values of both cells, and hence corresponds to the
total massdrawn into the convection region. The sign for transport in the northern cell is
negative becausemassis moving southward toward the convection region in the lower layer.
The zonal masstransports are alsoplotted relative to the total steady state transport. The
easternbranch is negative, as massis moving to the west.

Forcing function F1 presents the unrealistic adjustment problem. As shown in Figure
16, the meridional transport is initially quite unstable. The inertial gravit y waves slosh
the circulation back and forth as they adjust to the sudden shock. While the meridional
circulation reaches values comparable to the steady solution almost instantaneously, the
zonal transport lags behind, and has not reached the steady state values after 2.5 days of
simulation.

In the lower half of Figure 16, we comparethe dissipation limited growth to the growth
of the zonal masstransport. If the frequency ! is small relative to � , our forcing function
reducesto

~S(t) = S0
1 � e� (� + i! )t

� + i!
!

1 � e� �t

�
; (88)

and growth is controlled by the friction. This will only hold for the full solution if it holds
for all modes. Clearly it is not the case,for the friction dominated curve should match that
of the total transport.

The responseto forcing function F2, as pictured in Figure 17, is also quite unrealistic.
The meridional responseis not quite as instantaneous,but still sloshesback and forth. We
compareboth the meridional and zonal decay rates to the dissipation dominated spin down,

~S(t) = S0e� (� + i! )t 1
� + i!

!
e� �t

�
: (89)

While the curve doesnot match for the Hadley circulations, it givesa prett y sound �t for
the decay of the Walker cells. This indicates that the the bulk of the Rossby and Kelvin
responseat steady state is controlled by low frequencywaves. As indicated by the poor �t
in Figure 16, higher frequencymodeswere important at the onset of forcing.
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Figure 16: Hadley and Walker Circulations, Forcing Function F1
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Figure 17: Hadley and Walker Circulations, Forcing Function F2
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Forcing function F3 presents a more realistic rise to steady state convection. In the
upper half of Figure 18 we �nd the meridional circulation nearly perfectly in step with the
forcing. There are still some oscillations due to the abrupt start. These oscillations are
absent with the smooth forcing F4, as shown in Figure 20. As shown in the bottom half of
18, the Walker circulation lags behind the forcing by 1-2 days.

A close look at Figure 19 reveals that northern and southern cells of the Hadley cir-
culation are nearly symmetric at the onset of convection. Figure 19 better illustrates this
phenomenon. We present the ratio between the two branches of the Hadley and Walker
circulations as a function of time. The horizontal lines indicate the steady state ratios.
For instance, at steady state, the southern branch of the Hadley circulation is nearly 3
times stronger than the northern half. In the beginning, however, the north and south cells
are nearly equal. The n = 0 mixed mode responseaccounts for much of the steady state
asymmetry, and takes longer to establish itself.

The west-east asymmetry also evolves with time. It begins close to its steady state
value, and then drops to a point where the easterncell is �v e times larger than its western
counterpart. This can be attributed to the larger group velocity of Kelvin waves, which
givesthe easternbranch a quicker start. The initial surgeby the Rossby wave is due to the
mixed mode. It is slower than the other gravit y waves,but faster than Rossby and Kelvin
waves!

Lastly we look at response to the smooth forcing F4, shown in Figures 20 and 21.
While the total meridional circulation is nearly in perfect step with the forcing, the zonal
circulations lag, the Eastern cell by 1/2 a day, the western cell by over a day. In this trial
in took 1.5 days to establish the north-south asymmetry - the acceleration of the forcing
function seemsto promote a symmetric response. Note that the drop in the north-south
ratio at the left of Figure 21 is due to a problem in how we calculated the ratio, and is not
at all physical. The west-eastratio curve appearssimilar to that in Figure 19.

4 Limits of our Theory

4.1 The Nonlinear Terms

We have neglected the advective terms in the shallow water equations throughout our
analysis. We must ask what di�erences we should expect in a solution of the complete
equations,

@u
@t

� yv +
@h
@x

= � �u � (u
@u
@x

+ v
@u
@y

) (90)

@v
@t

+ yu +
@h
@y

= � �v � (u
@v
@x

+ v
@v
@y

) (91)

@h
@t

+
@u
@x

+
@v
@y

= � �h � S � (u
@h
@x

+ v
@h
@y

): (92)

As a �rst line of inquiry, we calculate the magnitude of the nonlinear terms given our
�nal solution. They must be much relatively small for our solutions to be at least self-
consistent. Table 4.1 lists the worst caseratio of the magnitude of the nonlinear terms to
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Figure 18: Hadley and Walker Circulations, Forcing Function F3

Ratio nonl inear
l inear

x-momentum 30%
y-momentum 7%

massconservation 4%

Table 2: Relative Sizeof the Nonlinear Terms
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Figure 19: Asymmetries in the Circulation, Forcing Function F3

the combined magnitude of the linear terms for each of (90) - (92), as calculated by �nite
di�erencing the linear, steady state solutions.

With the exception of (90), the nonlinear terms are small enough to justify neglecting
them. In (90), the nonlinear terms are the most problematic on the equator where subsi-
denceis strongest in the southern black hole, as illustrated in Figure 22. The loss of the
Coriolis force on the equator makesthis region particularly susceptibleto nonlinearities. In
addition, the upward velocity, given by (65), is large in regionswherepartial derivativesux

and vy are strong. As such partials are present in the nonlinear terms, we should expect
them to be strong in regionsof subsidence.

4.2 Susceptibilit y to Barotropic Instabilit y

As friction plays a small role in our system of equations, we can anaylze them in the
inviscid limit. We then expect the 
o w to becomesusceptibleto barotropic instabilit y when
there exists a reversal in the potential vorticit y gradient. The linear (nondimensional) PV
principle in our model was given in (9), with the PV anomaly q de�ned by (10). q can be
calculated in spectral space,as PV is conserved by each unforced mode. (It is important
the note that the forcing and dissipation terms serve only to tell us the magnitude of each
mode, and do not e�ect the velocity �elds, or the PV!) First, we have that

dq
dt

+ v = 0 (93)
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Figure 20: Hadley and Walker Circulations, Forcing Function F4
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Figure 21: Asymmetries in the Circulation, Forcing Function F4

in the inviscid, unforced problem. Move to Fourier spaceand write q̂ as a sum of the
contributions from each normal mode,

q̂ =
X

n;r

ŵn;r (k; t)Qn;r ; (94)

to obtain the transform of (93),

� i! n;r Qn;r + Vn;r = 0: (95)

Qn;r is the PV contained in the nth, r th normal mode. A quick rearrangement yields

Qn;r =
Vn;r

i! n;r
: (96)

Likewise,

dQn;r

dy
=

dVn;r
dy

i! n;r
: (97)

We can then calculate q and @q=@y as u, v, h, and w before.

The nondimensional PV anomaly q has units c
L =

�
�
c

� 1
2 , while @q=@y has units of � .

Hence, the criterion for a reversal of the total PV gradient in y is that nondimensional
@q=@y < � 1.

The PV �eld and gradient in y are shown in Figure 23, which indicates that the �rst
baroclinic mode is linearly stable. The top half of the diagram illustrates the PV �eld. Note
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mode c (m/s) �h (m) Sd (m/da y) Snd

1 77 610 57 0.026
2 47 220 55 0.086
3 31 98 5.6 0.025
4 23 56 3.2 0.053

Table 3: Marshall Island Data

that it is biased heavily to the west and, to a lesserextent, to the north. The east-west
asymmetry is more easily explained: Kelvin wavescarry no PV, whereasRossby wavesdo.
The north-south asymmetry can be explained in view of PV stretching. The yS term in our
PV principle, (9), corresponds to the stretching of the planetary potential vorticit y. The
e�ect becomesmore pronouncedas the Coriolis force grows with latitude.

4.3 Higher Baro clinic Mo des

A study of the atmosphereover the the Marshall Islands givesus a measureof the intensity
at which each baroclinic mode is excited by the releaseof latent heat [1]. The relevant data,
shown in Table 4.3, indicates that the bulk of the latent heat releaseexcites the �rst two
baroclinic modes; Sd, the dimensional forcing, indicates the strength of the excitation for
each mode.

Recall that the physical scalesof the systemare determined by c. As c becomessmaller,
the length scalesshrink and the time scaleslengthen. The magnitude of the nonlinear
terms and intensity of the PV gradient involve spatial derivatives, and thus are enhanced
as the length scalesshrink. They are proportional to the nondimensional forcing Snd =
Sd g� � 1

2 c� 5
2 . Hence for the secondbaroclinic mode the relative intensity of the nonlinear

terms is 3.3 times larger than for the �rst mode, as is the PV gradient! We should then
expect the secondbaroclinic mode to be nonlinear and potentially unstable, were it to
exist by itself. Nonlinearities ruin our abilit y to paste modes atop each other, making it
di�cult to say whether the full solution (taking into account the nonlinear terms and all
baroclinic modes) would be unstable. Note, however, that w is proportional to Sd, so that
the subsidence�eld is determined by just the �rst two baroclinic modes.

5 Conclusions

Linear theory has performed remarkably well in revealing the gross features of the time
evolution of water vapor black holes. The asymmetriesin the growth and decay of the dry
regionsare readily seenas a ballet of Kelvin, Rossby, and inertial gravit y waves.

A better �t to observations could be made by including more baroclinic modes. I am
not sure, however, how much more such activit y would teach us about the physics of the
system. It may, however, prove very instructiv e to follow further in the footsteps of Gill
and linearize about a mean zonal wind, as in [8]. It is di�cult to tell if the movement of
the real black holesin Figures 1-3 was due to the propagation of wave packets or advection
by the easterly Trade Winds. Linearizing about a meanwind may help settle this question.
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The responseof the Hadley circulation to forcing is much faster than that of the Walker
Circulation. In addition, the western branch of the Walker circulation responds slower to
forcing that the Eastern branch. While theseproperties were known before, it is fruitful to
extend theseinsights to the study of black hole formation. Black holesare often associated
with the formation and movement of tropical storms [10], which can be viewed as massive
centers of convection. The initial subsidenceresponseis driven by inertial gravit y waves,
and appears north and south of the system, especially in the winter hemisphere. As the
storm moves poleward, the e�ect of gravit y waves and Kelvin waves decrease,and we see
primarily a Rossby responseto the west of the storm.

As a �rst attempt to apply these insights to a real storm, we tracked the response
generated by Typhoon Pabuk over the west Paci�c in August, 2001. When the storm
formed over the tropics we observe a massive Black hole extending down over northern
Australia. As the storm moved north, we then observed the formation of a intense black
hole west of the storm, which appeared to be advected around the storm by anticyclonic
winds in the upper troposphere. This interaction between tropical storms and black holes
presents an exciting area for future study.
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