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The Sequence-of-Bifurcation Approach
for the Transition to Turbulence
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Notes by U. Riemenschneider and S. Plasting

1 Introduction

In this lecture we will discuss ßuid systems in which there is a gradual evolution from the
basic laminar state toward a turbulent state with increasing Reynolds number. Transition
is seen to occur through a sequence of bifurcations. We consider ßuid systems with a
high degree of symmetries which in the laboratory are observed to undergo transition to
complex ßow states through supercritical bifurcations that are characterized by the breaking
of ßow symmetries. We will not consider systems such as pipe ßow or plane Couette ßow
which exhibit strongly subcritical bifurcations from the basic laminar state to a turbulent
state. Figure 1 shows some ßuid systems with maximum symmetry which undergo gradual
transtion from the basic state to ever more complex solutions. For each of these systems
the external conditions are homogeneous in two spatial dimensions and in time and since we
are dealing with systems far from thermodynamic equilibrium we must have inhomogeneity
in the third spatial dimension along which a constant energy ßux is applied, thus these
systems exhibit maximum symmetry. Although these systems do not represent all important
processes in ßuid mechanics a large number of system can be idealized or reduced to their
physically essential properties such that they conform to this high degree of symmetries.

The sequence-of-bifurcations approach discussed in this lecture has the following advan-
tages

1. In most cases the reduction of inhomogeneity to a single dimension reduces a physical
mechanism to its simplest form.

2. The homogeneity in two spatial dimensions and in time provides a maximum of sym-
metries, the breaking of which identiÞes the bifurcations in the manifold of solutions
for the ßuid ßow.

3. The relative simplicity of the physical properties is reßected in the simpliÞcations of
the numerical analysis. Symmetries can be employed to reduce the numerical effort.

4. Although physically realized systems can only approximate homogeneity in two spa-
tial dimensions, the bifurcations of the ideal system become only slightly imperfect
bifurcations in the real system as long as the typical wavelengths introduced by bi-
furcating solutions are small in comparison to the length scales associated with the
deviations from homogeneity.

5. The spatially and time periodic solutions that are obtained in the sequence-of-bifurcation
approach represent only a minute manifold of the realizable solutions of the basic
equations. Even if they are stable their basins of attraction decrease with increasing
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Figure 1: Examples of ßuid systems with maximal symmetries and the typical sequence of
bifurcations observed, starting with the basic roll solution.

control parameter and solutions describing more irregular spatio-temporal ßow struc-
tures are typically observed in experimental realizations. Nevertheless, the regular,
spatially periodic solutions usually exhibit most clearly the dynamical properties and
transport mechanisms of the ßuid system as a function of the control parameter.

2 Secondary Solutions

We now consider bifurcations which occur far from the critical point at which the laminar
ßow state becomes linearly unstable to roll patterns. We have seen in the previous lecture
that the minimizing wave-vector of the most critical disturbance is inÞnitely degenerate
when there is isotropy in the xy-plane. Here a weakly non-linear analysis is not suitable
to detect bifurcations from secondary roll solutions because the non-linear terms in the
Navier-Stokes equations play an equal role far from the linear stability point. Often isotropy
manifests itself as phase turbulence for near critical parameter values, we therefore disregard
isotropy so that we can analyze bifurcations from a roll solution with only one preferred
direction. The basic equation can be written in the following canonical form
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A translation in time ∂ϕ/∂t = 0
B translation along roll axis ∂ϕ/∂x = 0
C transverse periodicity ϕ(y + 2π/α, z) = ϕ(y, z)
D transverse reßection ϕ(−y, z) = ϕ(y, z) or a−mn = amn
E inversion about roll axis ϕ(π/α− y,−z) = −ϕ(y, z) or amn = 0 for m+ n = odd

Table 1: Symmetry properties of two-dimensional rolls

Lϕ−R Bϕ−V ∂

∂t
ϕ = Nϕϕ (1)

where L, B and V are linear functionals and N represents the non-linear terms of the
governing equations. The control parameter is now called R and homogeneity in two spatial
dimensions and in time is assumed, therefore the functionals above may only depend on z.

The stability of the basic state with respect to inÞnitesimal disturbances ϕ0 is governed
by equation (1) with vanishing right hand side. Without loss of generality a disturbance of
the form

ϕ0 ∝ exp{iq · x+ σt} (2)

can be assumed, where x is the position vector and where the wave-vector q lies in the
x, y-plane. The critical point Rc is deÞned to be the point at which the real part σr of
the growth rate of the most unstable solution vanishes. In the case of no isotropy typically
the minimizing solution is unique and the imaginary part σi of the growth rate vanishes.
Taking the y direction to be parallel to the minimizing wave-vector qc and α ≡| qc | we can
write the two dimensional solution bifurcating from the basic state as a Galerkin expansion

ϕ =
!
m,n>0

amn exp {imαy}fn(z) (3)

where fn(z) = (−1)n−1fn(−z) for symmetry about midplane.
In table 1 we list the symmetry properties of rolls. They can be divided into the Þrst

three which are obeyed by all solutions of the form (3) and the remaining fourth and Þfth
which are satisÞed in special cases. The Þfth symmetry can occur only in problems such as
Boussinesq Rayleigh-Bénard convection which have midplane symmetry.

The stability of secondary solutions can be studied through the superposition of inÞni-
tesimal disturbances of the form

�ϕ = exp {ibx+ idy + σt}
!
m,n>0

�amn exp {imαy}fn(z). (4)

When equation (1) is linearized in the disturbance �ϕ an homogeneous linear equation for
the unknowns �amn is obtained with the growth rate σ as eigenvalue. This linear eigenvalue
problem for σ is just

L �ϕ−R B �ϕ−Vσ �ϕ = N �ϕϕ+Nϕ �ϕ (5)
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Properties σi #= 0 b #= 0 d #= 0 �amn #= �a−mn �amn #= 0 for
of disturbances m+ n = odd

Symmetries translation longitudinal transverse transverse inversion
Broken in time translation periodicity reßection about axis

Eckhaus X X
Crossroll CR X X
Knot KN X X
Even Blob EB X X
Odd Blob OB X X X
Oscillatory OS X X X
Zig-Zag ZZ X X
Skewed Varicose SV X X X
Osc. Skewed Var. X X X X

Table 2: Symmetries Broken by Bifurcations from Steady Rolls

Of primary interest here are the growth rates σ with largest real part σr as a function of
the horizontal wavenumbers b and d. The growing disturbances correspond to a transition
of the roll solution to tertiary solutions which exhibit more shapes and styles and which
reßect the speciÞc physical conditions to a higher degree. Table 2 characterizes each type
of instability that can occur from steady rolls. The skewed varicose instability leads most
quickly to turbulent convection. Each of these instabilities can be observed for some values
of Pr − α. Figure 2 shows the enclosed domain of Ra− α− Pr space where roll solutions
are stable. The Eckhaus instability usually causes rolls in an unstable region to be replaced
by rolls in the stable region. Therefore the Eckhaus instability corresponds to a limitation
of the available wavenumber for rolls and does not lead to a new type of solution.

3 Tertiary Solutions

Tertiary solution are twice spatially periodic solutions bifurcating from roll patterns. They
can be described by expressions of the form

ϕ =
!
l,m,n

almn exp {ilαxx+ imαyy}fn(z) (6)

where we must have a−l−mn = a+lmn for a real solution, where ( )+ denotes complex con-
jugation. We have assumed that the instability of interest has σi = 0. When an instability
with a Þnite value of σi = 0 occurs, it typically leads to traveling waves propagating in the x
direction which can be described by the representation above if x is replaced by �x = x− ct.
A partial list of tertiary solutions is given in Table 3.

The stability of these steady three-dimensional solutions can then be studied through
the superposition of inÞnitesimal disturbances of the form

�ϕ = exp {ibx+ idy + σt}
!
l,m,n

�almn exp {ilαxx+ imαyy}fn(z), (7)
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Figure 2: Region of stable convection rolls in the Ra−α−Pr parameter space. The region
of stable rolls is bounded by surfaces corresponding to the onset of instabilities listed in
Table 2. Note that Pr corresponds to P in the Þgure and increases toward the right and R
corresponds to Ra.

Tertiary Solution Reßection Symmetries Inversion Symmetry

knot-/bimodal convection a−lmn = almn = al−mn almn = 0
for l +m+ n = odd

undulating rolls a−lmn = almn, almn = 0
al−mn = (−1)lalmn for m+ n = odd

Symmetric traveling wave almn = 0
convection or wavy rolls al−mn = (−1)lalmn for m+ n = odd
with Poiseuille ßow

Wavy rolls with Couette
ßow or wavy Taylor vortices al−mn = (−1)lalmn almn = (−1)m+na−lmn
in small gap limit

Traveling blob convection a−lmn = almn almn = 0
for l +m+ n = odd

Table 3: Examples of tertiary solutions and their symmetries listed in terms of the complex
coefficients
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where the coefficients �almn can be found by substituting ϕ into equation (1), projecting onto
the expansion functions, and solving the resulting non-linear equations using a Newton type
method for some suitable spatial truncation size. The transition from tertiary to quarternary
solutions is associated with the solution becoming time dependent. A much richer class of
dynamical mechanisms for heat transport then become possible.

4 Quarternary Solutions

After the onset of three-dimensional tertiary solutions the continuous spatial symmetries
such as the invariance with respect to the translation along the roll axis have been broken
and have been replaced by reßection symmetries and inversion symmetries such as those
shown in Table 3. The stability of the steady or traveling tertiary solutions can be investi-
gated through the superposition of arbitrary inÞnitesimal disturbances. Using the general
Floquet ansatz

�ϕ = exp {ibx+ idy + σt}
!
l,m,n

�almn exp {ilαxx+ imαyy}fn(z) (8)

we arrive at a linear homogeneous system of equations for the unknown coefficients �almn
with the growth rate σ as eigenvalue. When the maximum real part of σ as a function of d
and b is less or equal to zero the tertiary solution is stable. Otherwise it is unstable.

The most strongly growing disturbances of tertiary stationary solutions are often those
with non-vanishing imaginary part of σi. Since traveling wave type solutions are no longer
possible after the translational invariance along the axis of the rolls has been broken, the
time dependence must be taken into account explicitly. Time dependent three-dimensional
solutions can be obtained through forward integration in time of the differential equations for
the time dependent coefficients almn(t) in the representation for the quarternary solutions.

ϕ =
!
l,m,n

almn(t)exp{ilαxx+ imαyy}fn(z) (9)

The system of differential equations is obtained, just as in the case of the algebraic
equations of tertiary solutions through projections of the equations of motion onto the
space of the expansion functions. Examples of quarternary solutions, that is solutions in
three-dimensions and the fourth dimension time, include oscillatory bimodal convection,
oscillatory knot convection and pulsating traveling blob convection.

5 Bimodal Convection

5.1 Steady Bimodal Convection: An example of a tertiary solution

Steady bimodal convection is an example of a tertiary solution in Rayleigh-Bénard convec-
tion (see Figure 1). It corresponds to the superposition of a secondary roll pattern with
smaller wavelength onto the given roll pattern as shown in the sketch in Figure 3. Through
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Figure 3: Schematic sketch of bimodal convection in a ßuid heated from below. Note the
superposition of a secondary roll pattern on the already existing roll pattern.

the onset of bimodal convection the convective heat transport becomes more efficient and
the two roll patterns quickly reach comparable amplitudes as the Rayleigh number is in-
creased beyond onset.

5.2 Transition to Bimodal Convection: An heuristic argument

Figure 4: The approximate form of the temperature proÞle for steady roll patterns

In Rayleigh-Bénard convection the mean temperature Þeld for steady roll solutions has
vanishing gradient in the interior of the ßow and strong gradients near to the boundary. We
can think of this thermal boundary layer as a subconvection layer with rescaled Rayleigh
number R2 δ

3, where δ is the non-dimensional thickness of the boundary layer. This situation
is illustrated in Figure 4. The condition for convective instability in this layer is the Rayleigh
condition for instability R

2 δ
3 > Rc . If we assume that the gradient of temperature in the

subconvection layer is approximately constant then the heat transport is H ≈ R
2δ and we

can write the condition for instability of the boundary layer as

H <
R

2

"
R

2Rc

#1/3
.
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Figure 5: Isotherms at the y, z-planes x = 0, x = π/αx (from top to bottom) at the times
t = nπ/3ω for n = 0, 1, 2. y increases toward the right and z increases upward. The
parameter values Pr = 30, Ra = 105,αx = 4.5,αy = 2.5 have been used.

The most efficient conÞguration for heat transport to result from this type of instability is
for tight boundary layer convection rolls to align perpendicular to the primary convection
rolls as exempliÞed in the bimodal solution.

5.3 Oscillatory Bimodal Convection: An example of a quarternary solu-
tion

An example of these types of convection patterns in nature could be the formation of
bimodal convection patterns in clouds, which exhibit a very distinct rectangular pattern
in the sky. They are typically high in Prandtl number and have a scale of the order of
100m across. If the Prandtl number is in the range 10 " Pr " 102 the bifurcation from
rolls to bimodal cells is followed by a further bifurcation to oscillatory bimodal convection.
The thermal boundary layers periodically thicken and blobs of ßuid hotter or cooler than
average circulate through the convection cells. These oscillations are characterized to some
extent by a resonance between the circulation time of the bimodal cell and the period of
thickening and thinning of the thermal boundary layers.

There are two types of oscillatory bimodal convection, the symmetric one that does not
change the spatial symmetry of steady bimodal convection and the other, called wavy oscil-
latory bimodal convection, which is characterized by the property that the set of coefficients
almn(t) with

−a−lmn = almn = al−mn for l +m+ n = odd and almn = 0 otherwise (10)

are participating in the description of the solution in addition to those listed in Table 3
for bimodal convection. Figure 5 provides an impression of the time dependent structure
of wavy oscillatory bimodal convection taken from numerical computations of [1] and in
Figure 6 an experimental visualization is depicted. In the Þrst we see a blob of cold ßuid
descending and impinging on the bottom of the layer while in the second Þgure we distinctly
see the walls of the bimodal cells ßexing back and forward.
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Figure 6: Shadowgraph observation of wavy oscillatory bimodal convection in a layer of
silicon oil heated from below. The dark regions indicate hot rising ßuid. The Prandtl and
Rayleigh numbers are Pr = 63, Ra = 1.5 × 105 and the wave numbers in the x-direction
(toward the right) and y-direction are given by αx = 4.08, αy = 2.04. The right photograph
was taken 25 seconds after the left one which corresponds to nearly half a period. Along
the darker vertical lines small arches may be observed, pointing to the right or left, these
are due to the oscillatory behaviour of the system.

It should be kept in mind that the realization of convection ßows that are periodic in
space and in time requires controlled initial conditions such that an approximately perfect
roll pattern is realized after the onset of convection. The transition to bimodal attractors
is sufficiently strong such that pattern imperfections can be eliminated in time except close
to the sidewalls. The transition to oscillations usually occurs in a less homogeneous way
and their phases tend to exhibit large scale variations. Without controlled initial conditions
the convection ßows at onset occur already in the form of patches of rolls with different
horizontal orientations which tend to evolve in such a way that they ultimately reßect the
geometrical conÞguration at the sidewalls of the layer, see the right column of shadowgraphs
in Figure 8. As the Rayleigh number increases, the density of dislocations in the pattern
increases rapidly and a chaotic structure of a kind of bimodal convection is realized when
the Prandtl number is sufficiently high (Pr # 10). The onset of oscillations in the form
of hot and cold blobs emerging from the thermal boundary layer occurs initially at a few
spots where the convection pattern deviates most strongly from the ideal periodic form.
Laboratory experiments thus exhibit in general a more turbulent situation in qualitatively
the same manner as in the case of the spatially and temporarily periodic solutions produced
by the sequence of bifurcation approach. The latter method thus provides a sensible way
toward an understanding of the processes occurring in turbulent convection as well as in
other cases of ßuid turbulence.
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Figure 7: Numerical results for simulations of steady knot convection.The views are planar.
The top two graphs show an average of the heat ßux over the entire depth, z of the convective
layer, the two graphs in the middle show a section through the centre of the layer, z = 0
and the bottom two graphs show a ßux of the heat through the bottom boundary. Left
hand column: R = 2.5 · 104, right hand column R = 8 · 104.

32



Figure 8: Digitally enhanced shadowgraph images of the convection patterns (taken from
[2]). The distance from the critical point for onset of convection is measured as ( = (R −
Rc)/Rc: (a) and (b) ( = 0.920; (c) ( = 2.986, (d) ( = 3.000, (e) and (f) ( = 5.082. The left
column shows the effect of increasing the Rayleigh number on a Þeld of rolls with uniform
orientation, while the initial state in the right column contains patches of rolls oriented in
arbitrary directions. As the Rayleigh number is increased the rolls undergo transition to
wavy rolls.
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