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1 Introduction

We investigate a thin layer of very viscous fluid that flows down a slope due to gravity.
However, instead of the usual free surface, the fluid is covered by an elastic plate. This
allows for interesting wrinkling patterns to develop on the fluid surface.

One motivation for considering this problem is lava flows. A pahoehoe lava flow could
be crudely considered an elastic-skinned gravity current. As a flow advances, it solidifies at
the surface, forming a crust whilst remaining molten in the interior. An interesting aspect
of these flows is the surface features that can be produced. One form, known as ‘ropy’
pahoehoe lava, is shown in figure 1(a). The traditional explanation for this phenomena is
that the fluid beneath the crust pulls at it, and drags it into folds (see Ollier [2]). However,
Fink and Fletcher [3] observed that the buckling was most prominent downstream of a
constriction or a sudden decrease in bottom slope. They proposed that the explanation for
buckling is that faster fluid pushes crust above it into crust above slower fluid. The resulting
compression causes buckling. They also modelled this assuming the lava was semi-infinite
and with a depth dependent viscosity.

A second motivation comes from experiments done by Clayton and Belmonte [1] with
micellar fluid. Instead of mixing the two components of micellar fluid (aqueous solutions
of surfactant and organic salt), they pumped one into the other. This resulted in a gravity
current forming with an elastic interface between the two components. Clayton and Bel-
monte performed experiments on a slope, and observed fingering similar to that seen in a
viscous fluid (see, for example, Huppert [4]). However when the volume flux was reduced
during an experiment, buckling was observed along the fingers, as seen in figure 1(b).

The aim of this report is to begin to understand elastic-skinned gravity currents and
buckling on their surfaces. It is organized as follows. In §2 we give a brief overview of previ-
ous work done on elastic-skinned gravity currents and general problems in hydro-elasticity.
In §3 we outline some simple experiments and results. These experiments were performed
to obtain a qualitative appreciation of the main features of these gravity currents. In §4 we
formulate the governing system of equations. In §5 we present some preliminary analysis on
three problems related to the currents. The first considers how the fluid influences buckling,
the second considers how fluid traction at the base of the elastic plate can induce buckling
and the final problem begins to combine these aspects to model the gravity current of the
experiments in §3. Finally, §6 presents some conclusions and discusses future work.
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(a) (b)

Figure 1: (a) Ropy pahoehoe lava. (b) Wrinkling observed on a gravity current finger
between aqueous surfactant and organic salt solutions. From Clayton and Belmonte [1].

2 Previous work on hydro-elasticity

There has been much work done on problems of interaction of elastic materials with flu-
ids. Major areas of application are to blood flow, flutter and drag reduction. Arteries are
modelled as elastic-walled tubes filled with fluid, see for example Grotberg and Jensen [5].
Flutter usually refers to high Reynolds number flow over thin objects which causes vi-
brations, for example on aeroplanes (see, for example, Gee [6]). The application to drag
reduction comes from an observation (for example Benjamin [7]) that replacing part of
a solid wall by an elastic membrane increases the background velocity at which a turbu-
lent boundary layer forms. Geophysical applications include modelling wave propagation
through ice sheets on the ocean surface as waves in an elastic plate above an inviscid fluid
(for example Chakrabarti et al. [8]). A further geophysical application is to magma flow
through elastic-walled volcanic conduits (Balmforth et al. 2004 [9]).

To our knowledge, the only work that has investigated elastic-skinned gravity currents
is the recent work of Hosoi and Mahadevan [10]. They studied the two-dimensional ‘peeling’
problem associated with fluid forced between an elastic plate and a rigid base, with which
the plate is initially in contact. They model this system using the lubrication equation
coupled with a linear plate equation.

3 Experiments

To investigate the behaviour of elastic-skinned gravity currents, we carried out experiments
with a set-up as shown in figure 2. An elastic plate, either cling-wrap or exercise stretch
band, was clamped to a rigid base and corn syrup was pumped between them.

The experiments were preliminary, although some qualitative observations can be made.
Figure 3(a) shows the system with no initial slack (the plate was initially flat on the rigid
base). Two important points about this configuration are that no wrinkles are visible
and that the black line, which was perpendicular to the clamped edges before the fluid
was pumped in, has not perceptively deformed. Figure 3(b) shows the system with an
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Figure 2: The experimental arrangement.

initial slack and with a fluid volume insufficient to fill it. Wrinkles are prominent and are
clearly oriented downstream. Some other general points are: for a given flux and slack, the
wavelength of the wrinkles increases with increasing width and increasing angle of slope;
and the wavelength increases as the material becomes stiffer.1

(a) (b)

Figure 3: (a) Advancing front of the fluid beneath the elastic plate (exercise stretch band)
for a case with no initial slack. No wrinkles are apparent. (b) A case with initial slack and
clear wrinkles in the elastic plate (cling wrap).

1The wavelength was also observed to increase downstream from the source, but this is possibly an
artefact of the way fluid was injected.
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Figure 4: The elastic plate in its (left) undeformed and (right) deformed configuration. The
undeformed coordinates are (X,Z) and the deformed (x, z). The horizontal length scale for
the deformation of the plate is L and the vertical L′. The half-thickness of the plate is d.

4 Governing equations

There are three aspects of the configuration that need to be modelled: the elastic plate, the
viscous fluid and the interaction between the two. We present equations for these in §§4.2,
4.3 and 4.4 respectively; together with boundary conditions on the plate and the fluid in
§4.5. For the elastic plate we use the generalized von Kármán plate equations, which are
nonlinear and include buckling terms. The fluid is described by the Stokes’ equations.

Before presenting the governing equations for each component of the system, we give
a derivation of the two-dimensional generalized von Kármán plate equations, to obtain an
idea of the conditions under which they may be applied.

4.1 Derivation of the two-dimensional generalized von Kármán equations

The elastic plate is assumed to be very thin compared to the typical plate dimension, hence
we derive the generalized two-dimensional von Kármán plate equations via asymptotics.
By ‘generalized’, we refer to the particular form of the equations that have extra terms for
in-plane forcings on the top and bottom of the plate: the original von Kármán equations
only included normal forcing (see Yu [11]).

The usual method of derivation is from force balances. For example, Fung [12] derives
the original von Kármán equations and Timoshenko [13] a generalized form with in-plane
forcings on the plate (although some terms that are included in Yu and the derivation
we present are not included there). An alternative method of derivation is a variational
approach. For example, Landau and Lifschitz [14] derive the original equations and Yu the
generalized.

Ciarlet [15] gave an asymptotic derivation for the original von Kármán equations. This
was extended by various authors, for example, Millet et al. [16], to the generalized equations.
In both cases, the authors assumed ‘dead’ loads: forcings that are independent of the
deformation of the plate. Here we give a very similar derivation: our scalings are slightly
different, but the expansion is essentially the same. We are also interested in forcings that
do depend on the deformation of the plate to enable the coupling of the plate and the fluid.

We first give a brief overview of non-linear elasticity, to put our asymptotics into context.
The system we are considering is shown in figure 4.

We may think of an elastic plate in two different coordinate systems. One is the unde-
formed, or Lagrangian, system in which everything is referred to the initial configuration
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of the plate. The other is the deformed, or Eulerian, system in which things are referred
to their current configuration. In two dimensions, the undeformed configuration is given by
X = (X,Z) and the deformed configuration by x = (x, z) with

x = X + ξ(X,Z), z = Z + ζ(X,Z), (1)

where ξ = (ξ, ζ) is the displacement.
The deformation gradient tensor converts between the two coordinate systems

Fij = ∂xi/∂Xj .

The equation for conservation of momentum applies in the interior of the plate. From
a fluid dynamics perspective, it may be considered most naturally in the deformed config-
uration and is given by

∇x · σ = 0, (2)

where ∇x· is the divergence and σ is the Cauchy stress tensor, both in the deformed coor-
dinates. Throughout the report, subscripts x and X emphasize quantities in the deformed
and undeformed configuration respectively. This equation assumes no body forces act on
the plate and that the plate is in equilibrium. In our fluid–plate interaction problem elastic
waves are fast compared to the viscous fluid flow and hence the plate at any instant may
be assumed in equilibrium.

The boundary conditions on the plate are

σ · n = tx (3)

on the upper and lower surfaces of the plate, z = ±d + ζ(X,±d), where d is the constant
half-thickness of the plate, n is the normal to the plate and tx is the surface traction imposed
on it.

It is easier to derive the plate equations in the undeformed configuration because then
the normal is simpler and we do not have to keep track of the location of the boundary of
the plate. Although, in order to couple the plate equations with the fluid, we ultimately
convert the derived equations back into the deformed coordinate system. Using the relation
(see, for example, Antman [17] pg. 405, 406)

σ = J−1FΣFT ,

where Σ is the second Piola–Kirchoff stress tensor for the stress referred to the undeformed
configuration, and J = det F , we translate (2) and (3) into the undeformed coordinate
system as

∇X · ΣFT = 0, (4)

FΣ · N =
√

(1 + ξ,X)2 + ζ2
,Xtx, (5)

where N is the normal in the undeformed configuration, tx is still the traction in the
deformed configuration2 and the boundary condition is now at Z = ±d. The “, ·” subscript

2Note that this forcing still depends on ξ. This means it should also be expanded and is something that
still needs to be cleaned up.
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refers to derivatives, a notation we use throughout the report. We introduce this notation
to avoid confusion because later we will use plain subscripts, such as ΣXX , to denote
components of tensors.

The stress tensor, Σ, may be related to the strain tensor, E, through the linear, isotropic
constitutive relation

Σ = 2µ̃E + λ̃EkkI, (6)

where λ̃, µ̃ are Lamé constants and E is the non-linear strain tensor given by

Eij =
1

2

(

∂ξi
∂Xj

+
∂ξj
∂Xi

+
∂ξk
∂Xi

∂ξk
∂Xj

)

. (7)

Note that using a linear constitutive model but non-linear strain is consistent provided that
the strains are small (Stoker [18]).

We now look for solutions of the system (4) and (5) for which ε = L′/L ¿ 1, where
L′ is a length-scale associated with the out-of-plane displacements and L is a horizontal
length-scale. Setting L′ = d is identical to Ciarlet [15] and Millet et al. [16]. We use the
scaling

ξ = εL′ξ̂, ζ = L′ζ̂, X = LX̂, Z = δL′Ẑ, tx = µ̃ε3t̂x, tz = µ̃ε4t̂z, (8)

where δ = d/L′ and ε is much less than δ in a way made precise below. These assumptions
are consistent with the scalings suggested in our experiments of §3. Scaling the momentum
equation (4), neglecting hats, then gives

(

ΣXX + ε2ξ,XΣXX +
1

δ
εξ,ZΣXZ

)

,X

+

(

1

ε

1

δ
ΣXZ +

1

δ2
ξ,ZΣZZ + ε

1

δ
ξ,XΣXZ

)

,Z

= 0 (9)

(

ζ,XΣXX + εΣXZ + ε
1

δ
ζ,ZΣXZ

)

,X

+

(

1

δ
ΣZZ +

1

δ2
ζ,ZΣZZ + ε

1

δ
ζ,XΣXZ

)

,Z

= 0, (10)

and the boundary conditions (5) gives

ε−1ΣXZ +
1

δ
ξ,ZΣZZ + εξ,XΣXZ =

{

0 on Z = 1

µ̃ε2tx on Z = −1
, (11)

(

1 +
1

δ
ζ,Z

)

ΣZZ + εζ,XΣXZ =

{

0 on Z = 1

µ̃ε4tz on Z = −1
. (12)

Into these equations, we substitute the formal expansion,

ξ = ξ0(X) + ε2ξ2(X) + ε4ξ4(X) + · · · , ζ = ζ0(X) + ε2ζ2(X) + ε4ζ4(X) + · · · ,

where only even order terms have been included, as odd order ones are irrelevant in the
results we present.
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Expanding E in powers of ε, from (7) and dropping the hats, gives

EXX = E
(0)
XX + ε2E

(2)
XX + · · ·

= 0 + ε2
(

ξ0,X +
1

2
ζ2
0,X

)

+ · · ·

EZZ = E
(0)
ZZ + ε2E

(2)
ZZ + · · ·

=

(

δ−1ζ0,Z +
1

2
δ−2ζ2

0,Z

)

+ ε2
(

δ−1ζ2,Z +
1

2
δ−2ξ20,Z + δ−2ζ0,Zζ2,Z

)

+ · · ·

for the normal strain components and

EXZ = εE
(1)
XZ + · · ·

= ε

(

1

2
δ−1ξ0,Z +

1

2
ζ0,X +

1

2
δ−1ζ0,Xζ0,Z

)

+ · · ·

for the shear strain. From these, the stresses may be written, using (6) as

Σ
(k)
XX = (λ̃+ 2µ̃)E

(k)
XX + λ̃E

(k)
ZZ , Σ

(k)
XZ = 2µ̃E

(k)
XZ , Σ

(k)
ZZ = λ̃E

(k)
XX + (λ̃+ 2µ̃)E

(k)
ZZ .

We can now begin with the asymptotics.
At order 1, the equations and boundary conditions (9), (11) and (10), (12) imply

Σ
(0)
ZZ

(

1 + δ−1ζ0,Z

)

= 0, Σ
(1)
XZ + δ−1ξ0,ZΣ

(0)
XX = 0,

respectively. The former of these gives three possible solutions and we choose the physically
most meaningful

Σ
(0)
ZZ = ζ0,Z = 0.

Hence to leading order the out-of-plane displacement is independent of Z. The second
equation then gives

Σ
(1)
XZ = 0, ξ0(X,Z) = −δζ0,XZ + ξ̃0(X),

where ξ̃0(X) may be interpreted as the in-plane displacement of the centre-line of the plate.
At order ε2, the equations become

Σ
(2)
XX,X + δ−1Σ

(3)
XZ,Z = 0, (13)

subject to Σ
(3)
XZ = 0 on Z = 1 and Σ

(3)
XZ = µ̃tz on Z = −1 from (9) and (11), and from (10)

and (12)

Σ
(2)
ZZ = 0.

This last equation may be solved for ζ2 to give

ζ2 =
λ̃

λ̃+ 2µ̃

(

δ2ζ0,XX
1

2
Z2 − δξ̃0,XZ

)

− δ
λ̃+ µ̃

λ̃+ 2µ̃
ζ2
0,X ,
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where constant terms of integration have been neglected because they are not relevant in
our derivation. Equation (13) gives

Σ
(3)
XZ = −µ̃δ

4(λ̃+ µ̃)

λ̃+ 2µ̃

[

−δζ0,XXX
1

2
Z2 + ξ̃0,XXZ +

1

2

(

ζ2
0,X

)

X
Z

]

+A(X),

where A(X) is a constant function (in Z) of integration. A(X) may be eliminated using
[

Σ
(3)
XZ

]1

−1
= −µ̃tx from the boundary conditions, to give the first of the generalized von

Kármán equations:
8(λ̃+ µ̃)

λ̃+ 2µ̃
δ

[

ξ̃0,XX +
1

2

(

ζ2
0,X

)

X

]

= tx. (14)

This equation governs the in-plane deformation of the plate. We will also require the solution

for A(X), which may be found by taking the sum Σ
(3)
XZ

∣

∣

∣

Z=1
+ Σ

(3)
XZ

∣

∣

∣

Z=−1
and is

2A(X) = µ̃tx − µ̃δ2
4(λ̃+ µ̃)

λ̃+ 2µ̃
ζ0,XXX .

At order ε4, equations (10) and (12) combine to give

∫ 1

−1

(

ζ0,XΣ
(2)
XX + Σ

(3)
XZ

)

X
dZ = −δ−1

[

ζ0,XΣ
(3)
XZ + Σ

(4)
ZZ

]1

−1
= −δ−1µ̃tz,

from which, provided δ3 À ε, the second generalized von Kármán equation becomes

8(λ̃+ µ̃)

3(λ̃+ 2µ̃)
δ3ζ0,XXXX = −tz +

8(λ̃+ µ̃)

λ̃+ 2µ̃
δ

(

ζ0,X ξ̃0,X +
1

2
ζ3
0,X

)

X

+ δtx,X , (15)

which governs the out-of-plane flexing of the plate. If δ3 ∼ ε, then the first term, the flexural
term, should be neglected and we obtain a membrane model. The previous orders appear
to be consistent in the asymptotic expansion provided δ2 À ε.

We now transform equations (14) and (15) back into the deformed coordinate system.
From (1) and the scalings (8), we have

∂

∂X
=

∂

∂x
+ O(ε).

Hence, by replacing all derivatives in X by derivatives in x, we obtain the generalized von
Kármán equations, on rescaling, in the deformed configuration.

We can also calculate the energy density for the elastic plate from the asymptotics. For
an elastic body, the energy density becomes

ψ =
1

2
ΣijEij = ε4

[

1

2
(λ̃+ 2µ̃)

(

E
(2)2
XX + E

(2)2
ZZ

)

+ λ̃E
(2)
XXE

(2)
ZZ

]

+ O(ε6) (16)

= ε4
4(λ̃+ µ̃)µ̃

λ̃+ 2µ̃

[

1

3
δ2ζ2

0,XX +

(

ξ̃0,X +
1

2
ζ2
0,X

)]

+ O(ε6). (17)

These equations, on rescaling, become the two-dimensional version of the energy equation
(see, for example, Landau and Lifschitz pg. 58 [14]).
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4.2 The three-dimensional generalized von Kármán equations

In three dimensions, the equations may be decomposed as follows.
For a displacement (ξ, η, ζ), the in-plane strains are given by

exx = ξx +
1

2
ζ2
,x, eyy = η,y +

1

2
ζ2
,y, exy =

1

2
(ξ,y + η,x + ζ,xζ,y) , (18)

from which the in-plane stresses may be obtained

Nx =
2dE

1 − ν2
(exx + νeyy), Ny =

2dE

1 − ν2
(νexx + eyy), Nxy =

2dE

1 + ν
exy, (19)

where E = µ̃(3λ̃+ 2µ̃)/(λ̃+ µ̃) is Young’s modulus, ν = λ̃/2(λ̃+ µ̃) is the Poisson ratio and
d is the half-thickness of the plate.

This gives the in-plane part of the generalized von Kármán equations as

Nx,x +Nxy,y = tx, Nxy,x +Ny,y = ty (20)

and the flexural part of the generalized von Kármán equations is described by

B∇4
Hζ = −tz + (Nxζ,x +Nxyζ,y),x + (Nxyζ,x +Nyζ,y),y + dtx,x + dty,y, (21)

where B = 2d3E/3(1 − ν2) is the flexural rigidity of the material, (tx, ty, tz) is the traction
on the base of the plate and ∇4

H = (∂2
x + ∂2

y)2.

4.3 Fluid equations

The fluid is assumed very viscous and so the Stokes’ equations are used as the governing
equations with

µ∇2u = ∇p+ ρg(− sin θ, 0, cos θ), ∇ · u = 0, (22)

where u = (u, v, w) is the fluid velocity, p pressure, µ fluid viscosity, ρ fluid density, g gravity
and θ the angle of the slope of the system. The x-axis is assumed to point downslope, y
across slope and z perpendicular to the slope.

4.4 Interface conditions

At the interface between the plate and the fluid, we require continuity of velocity

∂ξ

∂t

∣

∣

∣

∣

X

=
∂ξ

∂t
+ u · ∇xξ = u. (23)

It should be noted that this is the only place where there is time dependence in the governing
system of equations.

The tractions on the top of the plate are taken to be zero, and those on the bottom of
the plate are

tx = t̂1 · σf · n̂, ty = t̂2 · σf · n̂, tz = n̂ · σf · n̂,
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where σf is the fluid stress at the plate boundary, n̂ is the unit normal to the (base of the)
plate and t̂1, t̂2 are the tangents to the plate aligned with x- and y-axis respectively. To as
many terms as we need in our problems, these tractions become

tx = µ(u,z + w,x) − 2µ(u,x − w,z)ζ,x − µ(u,y + v,x)ζ,y (24)

ty = µ(v,z + w,y) − 2µ(v,y − w,z)ζ,y − µ(u,y + v,x)ζ,x (25)

tz = −p+ 2µw,z − 2µ(u,z + w,x)ζ,x − 2µ(v,z + w,y)ζ,y. (26)

4.5 Boundary conditions

The boundary conditions on the plate edges are given by fixed displacement, usually

ξ = η = ζ = 0 (27)

and a further condition on ζ, since the flexural equation (21) is fourth order. In our
problems, the edges of the plate are at y = const. and possibilities for the further boundary
condition on ζ include ζ,y = 0, ζ,yy = 0, ζ,yyy = 0 for clamped, freely-supported or
hinged respectively. For all the problems we study, we use a clamped boundary condition
at the edges:

ζ,y = 0. (28)

The fluid has zero velocity on rigid surfaces.

5 The problems

In this section, we consider three problems of fluid–plate interaction. The first problem,
in §5.1, is the buckling of a compressed beam in contact with a two-dimensional very
viscous fluid below it. This is a modification of the classical, purely elastic problem of
beam buckling. It was first studied by Huang and Suo [19] using the lubrication equation
to model the fluid. The motivation for considering this problem is to understand how the
fluid modifies buckling.

The second problem, in §5.2, looks at flow in a channel down a slope. In this case there
is no pre-compression on the system and the aim is to understand under what conditions
the fluid induced shear on the plate can cause buckling.

Finally, in §5.3, we bring aspects from both of the previous problems together to try to
begin to understand the wrinkles observed in our experiments of §3.

We use linear stability analysis to analyze our problems. This allows us to find when
and where wrinkling can occur and is a relatively simple method. Linear stability analysis
is not particularly relevant to pure elasticity cases because elastic waves are fast, and so the
system quickly passes the linear growth regime. However, for a viscous fluid controlling the
growth rate of any buckling instabilities in our problems, a linear stability analysis is more
useful.

Our notation throughout is subscript 0 for base states and no subscripts for the pertur-
bation flow. Derivatives are denoted as in §4 by subscript “, ·” for consistency.
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Figure 5: (a) The configuration for the buckling of a beam above a very viscous fluid. (b)
Growth rate, =(ω), versus wavenumber k. Note that one mode is very close to the negative
=(ω)-axis.

5.1 Two-dimensional simple buckling

In this subsection, we examine the buckling of a pre-compressed beam in contact with a two-
dimensional very viscous fluid of depth H, as shown in figure 5(a). This problem was first
investigated by Huang and Suo [19] in the context of the manufacture of semi-conductors.
Our problem formalism is very similar to theirs, however we use the Stokes’ equations for
the fluid whereas they used the lubrication equation. Our results are essentially identical
to theirs. In addition, Huang and Suo also performed a numerical simulation of the system.
For this problem, gravity is ignored and the fluid is passive.

5.1.1 Base state

In the base state, everything is assumed to be zero, except for the normal strain exx which is
non-zero. We refer to this as pre-strain, exx = ε0. Hence the system has a given pre-stress:
compressive if ε0 < 0 and tensile if ε0 > 0.

5.1.2 Linearized perturbation

We now add a perturbation and linearize the governing system of equations (18)–(28) about
the base state. In addition, we non-dimensionalize the equations using L = H for lengths,
U = 2dE/(1 − ν2)µ for velocities, L/U for times and µU/L for pressures. Note that the
time scale of the problem depends on the fluid. We set δb = d/H.

The governing equations then reduce to

ξ,xx = u,z + w,x,
1

3
δ2b ζ,xxxx = p− 2w,z + ε0ζ,xx,

∇2u = ∇p, ∇ · u = 0,

ξ,t = u, ζ,t = w on z = 1,

u = 0 on z = 0,
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Figure 6: Configuration for channel flow. The fluid is confined by rigid walls at y = ±y0,
and z = 0 and an elastic plate at z = H. The fluid flows due to gravity alone.

for the plate equations, fluid equations, interface conditions and boundary conditions re-
spectively.

If we now look for solutions proportional to eikx−iωt, these equations reduce to

det









sinh k + k cosh k + 2Ω(cosh k + k sinh k) −k2 sinh k − 2Ωk2 cosh k

(

1
3δ

2
bk

2 + ε0
)

sinh k
(

1
3δ

2
bk

2 + ε0
)

(sinh k − k cosh k)
−δb(sinh k + k cosh k) + 2Ω cosh k +δbk

2 sinh k + 2Ω(cosh k − k sinh k)









= 0,

where Ω = −iω/k, to give the dispersion relation. Figure 5(b) shows the two solution
branches for =(ω) against k, for the specific choice of parameters ε0 = −0.0156, δb = 0.075.
As can be seen, one root is negative for all k and hence the perturbation is stable, whereas
the other is positive for small k, and hence the perturbation is unstable. The short-wave
cut-off occurs at δ2

bk
2/3 + ε0 = 0 and is due to flexural rigidity preventing shorter waves.

The main contribution of the fluid is setting the time-scale: its presence reduces the rate
at which the instability grows, because it only slowly flows out of the way of the buckling
plate (Huang and Suo).

5.2 Channel flow

In this subsection we examine the flow of a very viscous fluid in a channel of half-width y0,
down a slope of angle θ. The side walls and base of the channel are rigid and the top, at
z = H, is an elastic plate, clamped at its edges across the slope. The fluid flow is due only
to gravity: there is no imposed pressure gradient. It is assumed that the volume flux of
fluid is exactly sufficient to keep the elastic plate flat in its base state. This configuration
is shown in figure 6.

This is closely related to a much studied classical problem in elasticity: a thin plate in
shear (see, for example, Wong and Pellegrino [20]). In this case the configuration is a plate
whose long edges are attached to rigid rods held a fixed distance apart, so that the plate is
just taut. One of the rods is then translated parallel to its length. Wrinkles are observed
between the rods, at 45◦, regardless of the amplitude of the displacement of the rod. This
is a result of the Poisson effect: although the plate is under tension in the direction of the
major principal stress, it is in compression in the direction of minor principal stress with the
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result that buckling occurs. This problem has been approached in a variety of ways. The
original method was using tension field theory, see for example Mansfield [21], which was
able to predict the 45◦ angle of the wrinkle.3 More recently, Wong and Pellegrino [22] found
simple analytic predictions using an assumed form for the out-of-plane displacement and
force or energy minimization arguments. In addition, experiments and many finite element
computations have been performed (see, for example Wong and Pellegrino [20]).

The aim of this section is to show that, in our problem, the traction of the fluid on the
bottom of the elastic plate, results in a similar buckling phenomenon.

5.2.1 Base flow

For the base state, we assume that the fluid flow is purely down-slope with v0 = w0 = 0.
We assume that the plate is not displaced in the cross-slope direction, so η0 = 0, and that
it suffers no out-of-plane displacement, hence ζ0 = H. The system is assumed independent
of the downslope coordinate, x, and time, t. Hence we take

u = u0(y, z), ξ = ξ0(y), p = p0(z).

The governing equations for the fluid (22) in the base state become

µ(u0,yy + u0,zz) = −ρg sin θ, 0 = p0,z + ρg cos θ, (29)

with boundary conditions

u0 = 0 on z = 0, H; y = ±y0. (30)

This system is identical to that for flow in a rigid rectangular duct: the fact that the upper
surface is elastic is immaterial (except for the pressure being known at the upper surface,
see below).

The in-plane deformation equations for the plate (20) reduce to

dE

1 + ν
ξ0,yy = µu0,z, (31)

with boundary condition ξ0 = 0 at y = ±y0. The flexure equation (21) reduces to p0 = 0
on z = H, completing the pressure equation (29b).

Using Fourier series for u0, this system can be solved giving

p0 = ρg cos θ (H − z), (32)

u0 = ρg sin θH2/µ U(Y,Z;α), (33)

ξ0 = y2
0ρg sin θH(1 + ν)/dE Ξ(Y ;α), (34)

where Y = y/y0, Z = z/H, α = H/y0 and

U(Y,Z;α) =
16

π4

∞
∑

n,m=0

(−1)m sin[(2n+ 1)πZ] cos[(2m+ 1)πY/2]

(2n+ 1)(2m+ 1)[(2n+ 1)2 + α2(2m+ 1)2/4]
,

Ξ(Y ;α) =
64

π5

∞
∑

n,m=0

(−1)m cos[(2m+ 1)πY/2]

(2m+ 1)3[(2n+ 1)2 + α2(2m+ 1)2/4]
.

3Unfortunately, we cannot use tension field theory, as it relies on the existence of an Airy stress function:
one no longer exists for the generalized von Kármán equations.
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Figure 7: (a) Velocity profile, U , against Y = y/y0 and Z = z/H and (b) downstream
displacement of the plate, Ξ, against Y for α = 0.25.

Plots of solutions for U and Ξ are shown in figure 7 for α = 0.25. As can be clearly
seen, the fluid pulls the plate downstream.

To be compatible with the scalings assumed to obtain the generalized von Kármán plate
equations, we must be in a regime in which the displacement is small. For this we use the
strict scaling ξ ∼ d2/L and hence we require

Ec =
Ed3

ρg sin θHy3
0

∼ 1. (35)

5.2.2 Linearized perturbation

We now add a small perturbation to the base state and consider the linearized equations
governing the system.

The linearized perturbation equations for the plate then become

2dE

1 − ν2
(ξ,xx + νη,xy) +

dE

1 + ν
(ξ,yy + η,xy) = µu0,zzζ − µu0,yζ,y + µ(u,z + w,x), (36)

dE

1 + ν
(ξ,xy + η,yy) +

2dE

1 − ν2
(νξ,xy + η,yy) = −µu0,yζ,x + µ(v,z + w,y), (37)

for the in-plane deformation equations (20) and

B∇4
Hζ = p0,zζ + 2µu0,zζ,x + p− 2µw,z + 2

dE

1 + ν
ξ0,yζ,xy +

dE

1 + ν
ξ0,yyζ,x

+ d[−µu0,yζ,xy + µu0,zzζ,x + µ(u,xz + w,xx) − µu0,yyζ,x − µu0,yζ,xy + µ(v,yz + w,yy)], (38)

for the flexural equation (21). The boundary conditions for the plate, from (27) and (28),
are

ξ = η = ζ = ζ,y = 0 at y = ±y0. (39)

The linearized perturbation equations for the fluid, from (22), become

µ∇2u = p,x, µ∇2v = p,y, µ∇2w = p,z, u,x + v,y + w,z = 0, (40)
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with boundary conditions

u = v = w = 0 on z = 0; y = ±y0. (41)

The condition of continuity of velocity at the interface (23) becomes

ξ,t + vξ0,y = u+ u0,zζ, η,t = v, ζ,t = w. (42)

These equations appear fairly complex, however we can make some significant simplifi-
cations by neglecting terms which are order d/L smaller than the leading order terms (in
fact, we must do this as it not consistent to keep them). Here L is the horizontal length scale
for the perturbation, assumed to satisfy L ¿ y0. We scale according to (8) in the deriva-
tion and bear in mind the different length-scale for the base state. We also scale vertical
derivatives with L as we would like vertical and horizontal length scales to be similar. We
then have from tz ∼ Ed4/L4 in (8), as E ∼ µ, that p ∼ Ed4/L4, from which u ∼ E/µ d4/L3

using (40). Substituting these into (36)–(38) and (42) we obtain the reduced system

2dE

1 − ν2
(ξ,xx + νη,xy) +

dE

1 + ν
(ξ,yy + η,xy) = µu0,zzζ, (43)

dE

1 + ν
(ξ,xy + η,yy) +

2dE

1 − ν2
(νξ,xy + η,yy) = 0 (44)

for the in-plane equations,

B∇4
Hζ = p0,zζ + 2µu0,zζ,x + p− 2µw,z + 2

dE

1 + ν
ξ0,yζ,xy +

dE

1 + ν
ξ0,yyζ,x (45)

for the flexural equation and

0 = u+ u0,zζ, 0 = v, ζ,t = w on z = H (46)

for the interface conditions. The fluid remains as in (40) and boundary conditions remain
(39) and (41).

To gain an understanding of the instability, we look for small wavelength solutions
and we assume the background variation is slow in comparison. This allows us to Fourier
decompose the perturbation in both the x- and the y-direction. Ultimately, this could be
made rigorous using WKB.

Therefore we assume the perturbation is proportional to eikx+ily−iωt and we ignore
cross-stream boundary conditions.

Solving (40) subject to u = v = w = 0 on z = 0, and (46) on z = H, we obtain

p− 2µw,z = 2µKiω
coshKH sinhKH +KH

sinh2KH −K2H2
ζ + u0,z

2µikK2H2

sinh2KH −K2H2
ζ,

where K2 = k2 + l2. Hence (45) becomes

BK4ζ = −ρg sin θ ζ + 2µKiω
coshKH sinhKH +KH

sinh2KH −K2H2
ζ + 2µiku0,z

sinh2KH

sinh2KH −K2H2
ζ

−
2dE

1 + ν
ξ0,yklζ +

dE

1 + ν
ikξ0,yyζ.
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Figure 8: Cartoon (plan view) of the observed instability for the channel flow. The angled
lines represent wrinkle crests. The interior area is wrinkle free.

This relation only depends on ζ and hence the dispersion relation becomes

−2µK
coshKH sinhKH +KH

sinh2KH −K2H2
iω = −BK4 − ρg cos θ

−2y0ρg sin θH Ξ′(Y ;α)kl + ik
3 sinh2KH −K2H2

sinh2KH −K2H2
ρg sin θHΞ′′(Y ;α), (47)

using (31) and (34).
From the dispersion relation some of the properties of the instability may be deduced.

We consider =(ω), and note that the coefficient of iω is positive for all (k, l). The first
two terms on the right hand side of (47) result from the flexural term and hydrostatic
pressure. Both are always negative and hence stabilizing. The third term results from the
base displacement of the plate due to fluid traction on the base and can be destabilizing.
A necessary condition for instability is klΞ′(Y ;α) < 0. Hence any observed crests will be
oriented downstream, as shown in figure 8. In the interior Ξ′ = 0 and close by it is too small
to overcome the stabilizing flexural and hydrostatic pressure terms. Hence, in an interior
region, no wrinkles are observed. The final term of (47) is imaginary and hence not directly
important to the stability.

Finally, if we look at a fastest growing mode, then the observed modes have k = ±l.
This suggests that even for a small displacement due to fluid traction, the wrinkles will
have a significant angle.

There is much that needs to be done to complete this analysis, and check for its consis-
tency with scalings.

5.3 Rivulet flow

In this subsection we study the flow of a very viscous fluid, contained between a rigid base
and an elastic plate clamped to the base along lines y = ±y0. This configuration is shown
in figure 9. It is close to the physical situation we wish to model and is equivalent to our
experiments of §3. In this scenario, there is a combination of pre-strain, as in §5.1, and
fluid traction on the base of the plate, as in §5.2, to produce buckling; bringing together
the features of the previous two problems.

First consider the elastic plate in the absence of the fluid. It has approximate unstressed
length 2(1− ε0)y0, or equivalently a pre-strain eyy = ε0, where |ε0| ¿ 1. If ε0 > 0, then the
plate is in tension and is flat against the base. If ε0 < 0, then the plate is in compression
and will buckle. Hence this pre-compression may be conceptualized as slack.
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Figure 9: Configuration for the rivulet problem. An elastic plate is clamped to a rigid base
along lines y = ±y0 and fluid is introduced into the gap between.

If fluid is now introduced between the rigid base and the taut plate for ε0 > 0, then it
forces the plate out of the plane of the base, and increases the tension on it, and no instability
is found. For ε0 < 0, the situation is more complex. If sufficient fluid is introduced, then
the increased out-of-plane displacement is sufficient for the plate to be taut. However, if a
small volume of fluid is introduced, some compressive sress may remain and the plate still
buckles. In any case, the plate is forced out of the plane of the base by the fluid, stretched
across stream to accommodate the fluid and pulled downstream by the fluid.

5.3.1 Base flow

We use the governing system of equations (18)–(28), non-dimensionalizing the variables by
y0 for lengths, ρg cos θ y0 for pressures and elastic stresses and ρg sin θ y2

0/µ for velocities. We
also set Er = 2dE/(1− ν2)ρg cos θ y2

0, representing a ratio of elastic stress to fluid pressure,
and put δr = d/y0.

The base state is assumed independent of down-stream coordinate, x, and v0 = w0 = 0
is assumed.

The in-plane plate equations (20) reduce to

1

2
(1 − ν)Erξ0,yy = u0,z − u0,yζ0,y, Er

(

ε0 + η0,y +
1

2
ζ2
0,y

)

= const. = ErN0, (48)

where ε0 is the imposed pre-strain and the dependent variable N0 may be interpreted as the
remaining pre-stress. Note that, unlike in Euler’s elastica problem, the stress is a dependent
variable whereas the displacement is a parameter. The flexure equation (21) becomes

1

3
δ2rErζ0,yyyy = p0 + ErN0ζ0,yy, (49)

and the boundary conditions on the plate are

ξ0 = η0 = ζ0 = ζ0,y = 0 at y = ±1. (50)

The fluid equations (22) become

u0,yy + u0,zz = −1 (51)
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for the downstream flow and
p0 = p̃0 − z (52)

for hydrostatic pressure, where p̃0 is a constant of integration. The boundary conditions on
the plate are

u0 = 0 on z = 0, ζ0(y). (53)

The final condition on the system is constant imposed volume flux4

1

6
Q =

∫ 1

−1

∫ ζ0(y)

0
u0(y

′, z) dz dy′, (54)

where the flux has been non-dimensionalized by ρg sin θ y4
0/6µ.

Equation (51) subject to the boundary condition (53) is a complex system to solve, more
so as the solution for ζ0 depends on condition (54). However, in view of the scalings (8)
used to obtain the von Kármán equations, the vertical length-scale for the fluid must be
much less than the horizontal. Hence a lubrication-like approximation may be made and
(51) replaced by

u0,zz = −1,

with solution satisfying (53) given by

u = z[ζ0(y) − z].

Condition (54) thus becomes

Q =

∫ 1

−1
ζ3
0 (y) dy. (55)

We now look at solutions for the governing system of equations (48)–(53) and (55). First
we consider the solution for ζ0. Substituting (52) into (49) and solving for ζ0 subject to the
boundary conditions (50c,d) we obtain

ζ0(y) = p̃0

(

−m2 sinhm2 coshm1y +m1 sinhm1 coshm2y

m2 sinhm2 coshm1 −m1 sinhm1 coshm2
+ 1

)

, (56)

where

m1,2 =

√

√

√

√

ErN0 ±
√

E2
rN

2
0 − 4

3δ
2
rEr

2
3δ

2
rEr

.

The behaviour of this solution depends on the sign and magnitude of ErN0. For ErN0 <
−
√

4δ2rEr/3, mi are purely imaginary, and the hyperbolic cosine terms in (56) become
cosines, giving an oscillating solution for ζ0. For ErN0 >

√

4δ2rEr/3, mi are real and the
solution consists of hyperbolic cosine terms, and lacks oscillations. For |ErN0| <

√

4δ2rEr/3,

4If the system were on a flat base, then this final condition would be a fixed volume constraint

V =

Z

1

−1

ζ0(y) dy.

The analysis for this case is similar to that presented for the fixed flux. It is also related to work by Riera
and Mahadevan [23] on the drying of sessile drops.
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the solution for ζ0, (56), becomes a sum of products of hyperbolic cosines and cosines. Note
that, regardless of the value of ErN0, the form in (56) is real.5

N0 and p̃0 are still unknowns that must be specified. If we assume N0 is known, then
p̃0 may be found from (55) to give

p̃0 =

(

Q

/∫ 1

−1
(ζ0/p̃0)

3 dy

)

1

3

. (57)

This eliminates the singularity in the denominator of ζ0 in (56) atm1 tanhm1 = m2 tanhm2,
however it introduces a new one where

∫ 1
−1(ζ0/p̃0)

3 dy = 0.
Finally, N0 may be found by solving (48b) for η0. Subject to boundary condition (50b),

the solution is

η0 =
y + 1

4

∫ 1

−1
ζ2
0,y dy −

1

2

∫ y

−1
ζ2
0,y′ dy′,

from which we obtain

N0 = ε0 +
1

4

∫ 1

−1
ζ2
0,y dy. (58)

Hence we may treat the problem as an inverse one: we fix the dependent variable N0,
which provides the full solution for ζ0, and calculate the imposed parameter ε0 as a function
of N0 using (58).

We may write this relation

Erε0 = ErN0 −
(E

3/2
r Q)2/3

∫ 1
−1(ζ0,y/p̃0)

2 dy
(

∫ 1
−1(ζ0,y/p̃0)3 dy

)2/3
.

Hence note that by scaling the parameters, ε0, Q and δr, and the dependent variables, N0,
p̃0 and ζ0, appropriately, we eliminate explicit dependence on the parameter Er.

Figure 10(a) shows a contour plot of the scaled pre-strain, Erε0, against ErN0 and

the scaled volume flux, E
3/2
r Q. For a given Erε0 < 0, and a given value of E

3/2
r Q, there

are multiple possible values of ErN0. The system has non-unique solutions: a feature of
buckling.

Figure 10(b) shows the full set of solutions for the choice of parameters E
3/2
r Q = 1 and

Erε0 = −3. Solutions which go below the y-axis are physically not allowed, however there
still remain several valid solutions. The green curve (plotted with ζ0(−1) = 4.5) is the
solution we choose for the system, based on an energy minimization argument, as discussed
below.

There are some other notable features of the plot. The solid, black vertical lines satisfy

∫ 1

−1
(ζ0/p̃0)

3 dy = 0, (59)

5There are a couple of other points to note. Firstly, the form of the solution (56) is single-valued although
this is not necessarily physically correct. Secondly, if δr becomes too small, then the flexural term should be
neglected from the plate equations (21). Note also, that if there are too many wiggles, then the assumption
that the horizontal length-scale for the plate is much larger than the vertical also fails.
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Figure 10: (a) Contours of the imposed parameter Erε0 against the dependent variable ErN0

and parameter E
3/2
r Q. For a given value of Erε0 there corresponds a contour. Then, for a

given value of E
3/2
r Q there are multiple possible values of ErN0, and hence multiple possible

solutions for ζ0. The solid and dashed vertical lines satisfy (59) and (60) respectively. (b)

Solutions of ζ0 for the choice of parameters E
3/2
r Q = 1 and Erε0 = −3. The lowest solution

corresponds to the smallest solution for ErN0, and higher up solutions correspond to larger
values of ErN0. The green curve (plotted with ζ0(−1) = 4.5) is the curve chosen on the
basis of minimum energy.

Figure 11: (a) Contours of plot of energy against ErN0 and E
3/2
r Q together with the con-

tour Erε0 = −3. The solid and dashed lines again satisfy (59) and (60) respectively. (b)

Solutions of η0 for the choice of parameters E
3/2
r Q = 1 and Erε0 = −3. The lowest solution

corresponds to the smallest solution for ErN0, and higher up solutions correspond to larger
values of ErN0. The green curve is the curve chosen on the basis of minimum energy.
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or equivalently are where p̃0 is infinite from (57). Across these lines, the solution ζ0 is
reflected in the y-axis. The dashed black lines satisfy

1

m1
tanhm1 =

1

m2
tanhm2 (60)

and occur when ζ0,yy/p̃0 = 0 at y = ±1. In regions with solid lines to the left and dashed
lines to the right, ζ0,yy < 0 at y = ±1 and in regions with dashed lines to the left and solid
lines to the right, ζ0,yy > 0 at y = ±1. Hence only the latter are physically acceptable. At
dashed lines, as EN0 increases, two extra down-wiggles are created. At the next solid line,
the shape is reflected so the down-wiggles become up-wiggles. Hence, beginning with one
up-wiggle and zero down-wiggles in the right-most finger of figure 10(a), there is one more
up-wiggle in each finger to the left.

The choice of solution for a given set of parameters must still be made. We select the
minimum energy solution.

The total energy of the system is divided into two parts: the internal (stretching and
bending) energy of the elastic plate and the potential energy of the fluid. The two compo-
nents of the plate energy per unit area are given by (16)

ψbending =
1

3
δ2rErζ

2
0,yy, ψstretching = Er

[

1

2
(1 − ν)ξ2

0,y +N2
0

]

respectively, where the energies have been non-dimensionalized by ρg cos θ y2
0/2. The po-

tential energy of the fluid per unit area is

ψpotential = ζ2
0 .

For zero Reynolds’ number flows, the kinetic energy is negligible. Hence the total energy
per unit length becomes

ErΨtotal =
1

3
δ2rEr

∫ 1

−1
Erζ

2
0,yy dy + 2(ErN0)

2 +
1

2
(1 − ν)

∫ 1

−1
E

2
rξ

2
0,y dy +

∫ 1

−1
Erζ

2
0 dy.

Note that this expression again has no explicit dependence on Er.

Figure 11(a), shows a plot of energy contours against ErN0 and E
3/2
r Q, together with the

contour Erε0 = −3. In this case, the solution with minimum energy is seen to correspond
to the one with least wiggles. This is because there is little compressive stress remaining in
this case. This analysis is perhaps not quite correct though: the cross-stream displacement
η0 is shown in figure 11(b) and it is seen to increase as the number of wiggles decreases. It
might have been expected that more wiggles would be preferable so that the plate fits more
easily over a given volume of fluid.

5.3.2 Linearized perturbation

We now consider the stability of this base state to small perturbations. The linearized
perturbation equations for the plate are

2dE

1 − ν2
(ξ,xx + νη,xy + νζ0,yζ,xy) +

dE

1 + ν
(ξ,yy + η,xy + ζ0,yyζ,x + ζ0,yζ,xy) = µu0,zzζ,

dE

1 + ν
(ξ,xy + η,yy + ζ0,yζ,xx) +

2dE

1 − ν2
(νξ,xy + η,yy + ζ0,yyζ,y + ζ0,yζ,yy) = 0
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for the in-plane plate equations (20) and

B∇4
Hζ = p0,zζ + 2µu0,zζ,x + p− 2µw,z + ρg cos θ y2

0N0(νζ,xx + ζ,yy) + 2
dE

1 + ν
ξ0,yζ,xy

+
2dE

1 − ν2
ζ0,yy(νξ,x + η,y + ζ0,yζ,y) +

dE

1 + ν
ξ0,yyζ,x

for the flexural equation (21), with boundary conditions (27) and (28)

ξ = η = ζ = ζ,y = 0 at y = ±y0.

The linearized perturbation equations for the fluid (22) are

µ∇2u = p,x, µ∇2v = p,y, µ∇2w = p,z, u,x + v,y + w,z = 0,

with boundary conditions

u = v = w = 0 on z = 0; y = ±y0.

Finally, the linearized interface conditions (23) are

0 = u+ u0,zζ, 0 = v, ζ,t = w on z = H.

We set L′

p < ζ0(0) and Lp < y0 to be the out-of-plane and in-plane length-scales of the
perturbation repectively. Then we have neglected terms that are O(L′

p/Lp), smaller than
the leading order terms in each of these equations, as in §5.2.2.

Assuming perturbations are small wavelength and background variation of the base state
is slow, we substitute solutions proportional to eikx+ily−iωt into the above equations and
derive a dispersion relation with real part

2µK
coshKζ0 sinhKζ0 +Kζ0

sinh2Kζ0 −K2ζ2
0

=(ω) = −BK4 − ρg cos θ

− ρg cos θ y2
0N0(νk

2 + l2) − 2
dE

1 + ν
ξ0,ykl −

dE

K2(1 − ν2)
ζ2
0,yy[(1 − ν)k2 + 2l2],

where K2 = k2 + l2.
This has similar properties to the displacement relation (47) of §5.2.2. The first two

terms arise from the flexural and hydrostatic terms respectively and are stabilizing. The
third term arises from ‘remaining’ slack in the system, and can be destabilizing provided
the solution for N0 in the base state is negative. If N0 is sufficiently large and positive
(the system is very taut), then it may eliminate all instability. As in §5.2.2, the base state
downstream stretching can be destabilizing and is responsible for symmetry breaking. Much
more work must be done to complete this analysis.

6 Conclusions and future work

We have presented some preliminary analysis on an elastic-skinned gravity current and the
wrinkling phenomenon that may be observed, under certain conditions, on the surface. This

202



wrinkling is most prominent due to a combination of a compressive pre-strain on the plate
and fluid traction pulling at the base of the plate. The pulling is what is responsible for
symmetry breaking. We have tried to remain consistent with the scalings under which the
von Kármán plate equations hold. Some experimental observations have been explained
from our analysis: the necessity of slack for wrinkles to be observed and the downstream
orientation of the wrinkles.

There is still very much that can be done. The stability analyses can be completed in
a WKB sense and can be considered numerically. Beyond that, quantitative experiments
and numerical simulations using finite elements could be performed. Formulating boundary
conditions for real elastic-skinned gravity currents should also be done.
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