Lecture 6: Internal tides

Myrl Hendershott and Chris Garrett

1 Introduction

So far, we have only considered barotropic tides, which have no vertical structure. In this
lecture we turn our attention to baroclinic modes, which do have vertical structure. These
are also referred to as internal tides.

Internal tides are internal waves forced by the interaction of the barotropic tides with
the bottom topography of the oceans. To understand how internal tides can be generated
in the ocean, it is useful to go through the properties of internal waves.

2 Internal waves

Internal waves in the ocean are the response of a rotating, density stratified, incompressible
fluid to small perturbations. To derive the governing equations for these waves, we begin
with the equations of motion for a fluid on a rotating Earth (see lecture 2), use the Boussi-
nesq approximation and linearize about a base state of rest given by u = 0, p = po(z) and
p = po(z) where u is the velocity vector, p the pressure and p the density. Incompressibility
is then
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where f is the Coriolis parameter and p and p are the perturbations to the density and
pressure fields respectively. The continuity equation becomes
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And, from the momentum equations, it is also possible to find the energy equation
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where k is the unit normal in the z-direction.
From (1)-(5), the equation for internal waves may be derived
2 2
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where N = (—g/po dpo/dz)~/? is the Brunt-Viisili frequency, assumed constant for sim-
plicity in this lecture unless otherwise stated. Subscript h refers to derivatives in the hori-
zontal plane. We refer the reader to [1] for a derivation and we observe as a reminder that
we are considering the situation where the hydrostatic approximation is not valid, since
gravitational (or buoyancy) force is essential for the motion.

In the process of obtaining (7), the continuity equation (1) is used to substitute the
vertical velocity for the horizontal velocities in the horizontal momentum equations (2) and
(3). The result is an equation in w with a forcing term dependent on the horizontal variation
of pressure
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If the disturbance is allowed no horizontal dependence, the above equation describes a
harmonic oscillation with frequency f.
Another equation for w of second order in time can be obtained by differentiating in
time the vertical momentum equation (4) giving
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Here a harmonic oscillation of frequency N is obtained if the perturbation has no vertical
dependence.

The wave equation (7) is obtained by eliminating pressure between these two expressions,
and the above remarks suggest that there will be two limiting cases for the motion. This
also calls our attention to the fact that (7) has the structure of a double uncoupled harmonic
oscillator. We anticipate that the frequencies of these wave motions will depend only on
their angle with respect to the z-y plane and to the vertical direction and not on their
amplitude. This ‘azimuthal” angle determines how the horizontal and vertical forces at play
combine to make the restoring force, while the amplitude has no effect on the frequency of
a harmonic oscillator.

(9)

Equation (7) has an interesting spatial property, which can be better appreciated if we
eliminate the temporal dependence by substituting w = W (z,y, z)e ™" into (7). We obtain

2 2
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If the term in square brackets is positive, then the vertical and horizontal derivatives have
different signs, which reflects the anisotropy in space introduced by the vertical stratifi-
cation. Furthermore the equation is hyperbolic, which allows for energy propagation. If
however the term is negative, then (10) is simply Laplace’s equation, but for a scale trans-
formation, and does not allow propagation of energy. This is another way of acknowledging
the two limiting cases for the motion pointed out earlier: the equation allows for traveling

waves with frequencies between f and N.
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2.1 Internal wave solutions

We now consider solutions of (10) in an infinite fluid. The equation may be solved in
two ways. Firstly, we may solve it assuming a plane wave form of solution and hence we
substitute the trial solution

W = Whei(k:c+ly+mz) (11)

into (10). This leads to the dispersion relation
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Substituting the wave solution (11) into the continuity equation we get

k-u=0, (13)

where k is the wave vector and u the velocity vector. That is to say, the wave vector is
perpendicular to the displacement of the particles.

To simplify calculations from now on we assume, without loss of generality, that we have
orientated the z-axis in the direction of the horizontal component of the wave vector. The
dispersion relation (12) then becomes
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and from it we can calculate the group velocity ¢y = (cga, gz)
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and we observe that k- c, = 0. Hence the group velocity is also perpendicular to the
wave vector. Furthermore we can see that the group velocity and wave vector always have
opposite vertical components. This means that if phase propagates downwards energy
propagates upwards and vice versa.

If we suppose that x(t) = (z(t), 2(¢)) is the trajectory of the energy carried by the wave,
then dx/dt = ¢, and so the trajectory is the curve that satisfies
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This means that the energy trajectories are curves along which the independent variables
are related by an ordinary differential equation. They are therefore also the characteristics
of the wave equation.

Equation (10) may also be solved using characteristics. The solution, in two dimensions,
is given by W(z, z) = F(x + az) + G(z — az) where F' and G are arbitrary functions and
« is the ray slope, given by
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Figure 1: Schlieren image of internal waves, generated in a stratified fluid of constant
N, by oscillation of a horizontal cylinder. Note that energy is propagating away along
characteristics and surfaces of constant phase stretch out radially from the source. From
Mowbray and Rarity [2].

If we substitute for w from the dispersion relation (14) into the expression for a2, then we
find that it reduces to k2/m? and so the result found through this procedure is equivalent
to that found in the preceding paragraph.

The unusual properties of internal waves described in this section were observed experi-
mentally by Mowbray and Rarity [2]. They placed an oscillating wave maker in a stratified
fluid and observed the wave pattern shown in figure 1.

2.2 Internal waves in a finite depth of fluid

Equation (10) can also be solved for a rigid-lid upper surface and a planar bottom. A rigid-
lid is an acceptable approximate boundary condition to use in place of a free surface, as it
may be shown that internal waves only have a small surface displacement (see, for example,
Pedlosky [1]). The solution is similar to (11), except that the vertical wavenumber is now
quantized as

W = Wyethe =t gin (%), (18)

in two dimensions, where H is the depth of the fluid.

This theory predicts the paths of propagation of energy for small perturbations in the
ocean, and we see that it depends on the depth of the ocean and on the Brunt—Vaisala
frequency. In this analysis, we have assumed that IV is constant, however it can be shown
(see, for example, Pedlosky [1]) that characteristics are also the ray paths for the WKB
approximation for slowly varying N, the case for the ocean.
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2.3 Interaction of internal waves with bottom topography

A final interesting property of internal waves is the way in which they interact with a
sloping boundary. We refer the reader to Pedlosky [1] for a derivation of the reflection laws.
Here we will limit ourselves to stating the results. Frequency is preserved by reflection, but
not wavelength. If the slope of the boundary is less than that of the characteristics, the
horizontal component of the wave vector is conserved under reflection. In other words, there
is no back reflection from a boundary with slope inferior to that of the characteristics. Since
all the energy is being transmitted forward, energy density must increase as the waves reach
shallower water up the slope. If the slope goes all the way to the surface, energy density
would be expected to be infinite at the apex. However, with each reflection the vertical
wavenumber gets larger and the waves shorter. Group and phase velocities go rapidly to
zero with the depth, so the wave never reaches the apex. In practice, as wavelengths become
too small, the linearity assumption breaks and dissipative process come into play. Note also
that the closer the slope of the surface is to that of the characteristics, the more intense the
focusing effect, as can be seen in figure 2a.

(a) (b)

Figure 2: (a) Internal wave characteristics approaching a sloping boundary. After reflection,
the energy in the waves is concentrated into a narrower band. If the boundary has slope
equal to that of the characteristics, then all characteristics after reflection lie on the same
line. (b) A barotropic velocity profile impinging on a sloping boundary. On the boundary,
the velocity vector can only have a component tangential to it and hence over the slope,
the velocity profile is no longer barotropic.

This behaviour of internal waves in interaction with a sloping boundary was observed in
Sandstrom’s [3] experiments: the amplification from a sloping bottom was clearly demon-
strated.

3 Internal waves in the oceans

It is nowadays accepted that the interaction of the barotropic tide with bottom topography
in the oceans is one source of internal waves, in this case the waves are referred to as
internal tides. One way to conceptualize this generation is to imagine that, instead of a
tidally oscillating ocean with a fixed bottom, the water of the ocean is fixed and the bottom
oscillates with tidal frequency. The oscillations of topography then behave as oscillating
wave makers, as in the experiment of Mowbray and Rarity described in §§2.1.
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However, in the past, the curious behaviour found for the solutions of (7) led to doubts
about whether it was in fact a suitable equation to describe the response of the oceans
to small perturbations. Another question of interest was whether these waves could be
generated in the ocean by the barotropic tides. It was imagined that a sloped boundary
could act as a source of internal waves, in the case of a barotropic impinging disturbance. As
illustrated in figure 2b, a barotropic disturbance cannot meet the zero normal component
requirement at the slope and remain barotropic. Its energy must go into generating internal
waves, and propagate away along characteristics. These two questions motivated a number
of numerical and observational efforts, some of which we will briefly be described below.

Figure 3 shows the result of a numerical calculation where a barotropic tide was made to
impinge on a step-like slope. No specific mode structure can be recognized in the reflected
perturbation, because a composition of many is necessary to conform to such an abrupt
boundary. However, the results clearly show that the reflected perturbation is baroclinic
and propagates along the characteristics.

Regal and Wunsch [5] attempted an observational verification of propagation of energy
along characteristics for a real slope, shown in figure 4a, with the measured profile of N
shown in figure 4b. They found that the shape of the boundary coincided with that of the
characteristics. This meant that intense focusing of energy would occur along the slope.
After bottom reflection, this energy would travel to point D on the surface. An energy
profile below point D does in fact show concentration near the surface.

Even once it was reasonably established that internal waves can be generated by the
interaction of the barotropic tides with topographic features, it remained to be clarified
whether these motions had only local influence over ocean dynamics or if they could propa-
gate away for large distances and be ubiquitous in the ocean. This question was addressed
using data of an experiment originally designed to study mesoscale circulation in the ocean.

The Mid-Ocean Dynamics Experiment (MODE) provided data that proved very useful
for the study of internal waves. The setup consisted of a two dimensional array of current,
temperature and pressure profiling moorings as shown in figure 5a. These were arranged
in three concentric circles with radii 50, 100 and 180 km, situated over a smooth abyssal
plane of depth 5400 km. Being 700 km away from the nearest large topographic feature,
this array was far from any source of internal tides. If significant signals of internal waves
were detected, then they would have traveled far to get there.

The two dimensional arrangement of moorings could be used as an antenna, the differ-
ence in arrival times of a given phase surface in different moorings could be used to infer
the direction of propagation of the signal. Internal waves with My and So frequencies were
detected coming from the general direction of the nearest major topographic feature, 700 km
away. The period and direction of incidence of these signals were strong indications that
they were in fact internal tides generated at the Blake Escarpment. Averages over the whole
data collecting period for each mooring showed very significant baroclinic contribution to
their structure in some cases, indicating that the internal waves were an important part of
the local dynamics, as shown in figure 5b.

These results showed that internal tides, once generated, could travel large distances
and have a significant influence over the dynamics of the open ocean. They also suggested
that a significant portion of the barotropic tidal energy was going into baroclinic tides, since
baroclinic and barotropic contributions seemed to have comparable amplitudes in some of
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Figure 3: Depth distribution of horizontal internal tidal currents at increasing distances
away from a step shelf (top) at two times (centre and bottom) separated by a quarter-wave
period. The profile is seen to follow the rays (arrows in bottom) away from the slope. From

Rattray et al. [4].
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Figure 4: (a) Profile of relief along 70° W together with selected semi-diurnal characteristics
passing near site D. (b) Admittance amplitude x for semi-diurnal tidal currents together
with Brunt—Viisala frequency N(z), solid line, at site D. Near surface admittances are
strongly intensified. From Regal and Wunsch [5].
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the mooring averages.

Probably the main reason why the role of baroclinic tides in ocean dynamics was only
recently fully acknowledged is their small effect on surface elevation. Typically of only a
few centimetres, surface elevation due to internal tides was historically dismissed as noise
in satellite data. However the shortcomings in the attempts to infer underwater currents
from surface displacement, illustrated in figure 6 are evidence of their role.

Surprisingly it is the small effect on surface elevation that has recently made global
coverage possible in internal tide observation, because these small displacements have been
successfully observed by satellites, as shown in figure 7.

4 Mixing and internal tides

Internal tides are currently receiving renewed attention due to their role in ocean mixing. In
the absence of mixing, the temperature and salinity profiles of the ocean would be uniform,
barring a thin surface layer heated by the Sun. Cold, dense water generated at the poles
would sink and flow equatorward and upwell. Eventually, water of this property would fill
the oceans up to the depth at which solar radiation penetrates. However, the real ocean
does not have this structure, as shown in figure 8: vertical mixing prevents its realization.

Internal tides are one possible source of mixing. Two studies whose results support this
statement were carried out in the Brazil Basin and the Monterey Canyon off the coast of
California. Figure 9a shows levels of turbulent diffusivity across the Brazil Basin. Enhanced
diffusivity, and hence mixing, is seen over the rough topography compared to over the
smooth topography. This suggests the involvement of bottom topography in ocean mixing,
at least at abyssal depths. Both tidal flow, and mean or eddy flows, over topography
generate internal waves. However, in this data, a modulation of the dissipation rate over
the spring-neap cycle suggests the waves are internal tides.

Figure 9b shows levels of turbulent dissipation along a section extending off the slope
of the continental shelf. Enhanced levels are seen along the ray path of a semi-diurnal tide
beam, out to more than 4km away from the topography. Where internal waves dissipate
and cause mixing is not really known. It is thought that non-linear wave-wave interactions
and scattering when internal waves reflect off the ocean floor cause low vertical wavenumber
modes to cascade to higher wavenumbers. At higher vertical wavenumbers, there is increased
vertical shear and eventually a shear instability, and hence mixing, results.

However, low wavenumber modes are relatively stable to wave-wave interactions. In
scattering also, much of the low modes are preserved and so low modes tend to survive
many bottom encounters. This results in a general persistence of low mode internal tides,
and they have been observed to propagate to O(1000km) from their source, as described
in §3.

5 Conversion of energy from barotropic to internal tides

As a first step towards understanding the contribution of internal tides to ocean mixing,
research has been conducted into finding the amount of energy converted from barotropic
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Figure 5: (a) Chart of the MODE area, showing the array of fixed moorings. Bathymetric
contours are in metres. (b) Vertical profile of the squared horizontal current (cm?s~2) for U
(east) and V' (north) in the (a) Sy and (b) Mg band, average at depth levels over the entire
array. Estimates for the squared amplitude for the barotropic current components Uy and
Vo are also given. For the So band, the current is seen to be dominated by internal waves
at all depths. For the My band, the deep currents are greatly influenced by the barotropic

mode. From Hendry [6]. 36



Figure 15. Predicted and eomputod @ oornponent (% downshore ™ foward
140 °T} of eurrent (in emfsec) at elotion. T7E 8W, Josim cepsule, starting 2
August 1968, 0000 GMT., The solid line is the pediction basad on the
bottom pressure at the seos position snel Lime, The dots erc half-hourly
averages of the obecrved valias, 5

Figure 6: Observed (dotted) and predicted barotropic (solid) longshore bottom velocity off
the southern California coast. From Munk et al. [7]
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Figure 7: High-pass filtered estimates of My tidal amplitudes plotted along Topex—Poseidon
ground tracks. Background shading corresponds to bathymetry, with darker denoting shal-
lower water. From Ray and Mitchum [8]
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Figure 8: (a) Potential temperature and (b) salinity profiles along a section of the Pacific
Ocean from approximately 70° S to 20° N. Red indicates high values and blue low. The high
salinity values at the surface are due to evaporation. From the World Ocean Circulation

Experiment.
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Figure 9: (a) A section of turbulent diffusivity across the Brazil Basin. The bottom
bathymetry is shown from a representative transect with the apex of the Mid-Atlantic
Ridge at 12° W. From Toole et al. [9]. (b) A section of turbulent dissipation rate € off the
shelf break slope in Monterey Bay, California. The solid black lines are the ray paths of
semi-diurnal tide beams. From Lien and Gregg [10].
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to baroclinic tides. As discussed in §3, the interaction of the barotropic tide with bottom
topography in the oceans results in the generation of internal tides.

Cox and Sandstrom [11] and Bell [12] developed linear! theories to model the generation
of internal tides from the barotropic tide. Rough estimates originally suggested that the
energy flux from barotropic to internal tides (contributing to energy loss in the deep oceans)
was much less than the energy dissipated in shallow seas, as shown in figure 10. However,
even if only 10% of the total energy loss of the barotropic tides took place in the deep
oceans, it would contribute significantly to abyssal mixing.

(1)Hudson Bay g
(2)European Shelf - - | e |
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Figure 10: Area-integrated dissipation for various shallow seas and deep-ocean areas. From
Egbert and Ray [13]

Egbert and Ray [13, 14] examined least-squares fits of Topex—Poseidon altimetry data
to models for the global barotropic tide. They interpreted model residuals in terms of ‘tidal
dissipation’ with this referring to any mechanism that transfers energy out of the barotropic
tides: they were not able to distinguish whether barotropic energy is lost to baroclinic modes
or to bottom friction. Figure 11 shows the regions of significant ‘tidal dissipation’.

About 0.7 TW of power is lost from Ms barotropic tides in the deep ocean. The fraction
of this associated with frictional dissipation can be estimated from the drag force pcp|u|u
where c¢p = 0.0025 is the drag coefficient. For typical open ocean tidal speeds of u =~
0.03ms™ !, the frictional dissipation is less than 0.1 mWm ™2, or less than 30 GW globally.
Thus nearly all barotropic tidal loss in the deep ocean must occur as internal tide generation.

One possible location for significant internal tide generation is at continental slopes. In
some places, such as the north-western Australian shelf and the Bay of Biscay, generation

Linear will be defined more precisely in §§5.1. Essentially, it assumes that the heights and slopes of
topographic features are small.
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Figure 11: Global distribution of barotropic energy loss. The estimates were made using ob-
servations of sea surface elevation from the Topex—Poseidon altimeter. Positive values (red)
show energy loss. Negative values (blue) indicate regions where noise prevented accurate
estimates. From Egbert and Ray [14].

at the continental shelf is significant because the tidal flow is perpendicular to the shelf, as
in figure 12a. However, in many places tidal flow is parallel to the coast, as in figure 12b
and hence internal tide generation is small. For a few decades, this area was the main focus
of research into internal tides.

V/ V/
coast / coast /
/ slope / slope
tidal flow tidal flow
_
shelf abyssal plain shelf abyssal plain
_

(a) (b)

Figure 12: The approximate flow of the barotropic tide close across the continental shelf.
(a) Flow perpendicular to the slope and (b) flow parallel to the slope.

The other main possibility for significant internal tide generation is at mid-ocean ridges
and ocean island chains such as the Hawaiian Ridge. Recently, research has focused on this
aspect of internal tide generation. Following this work, we calculate the energy conversion
between the barotropic tide and the internal tides for different topographies. For this, we
consider two approaches: linear theory for small slope, small height topography and a full
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theory for infinitely steep topography. In both approaches, the Brunt-Vaisald frequency is
assumed constant and we restrict ourselves to two-dimensional problems.

5.1 Linear theory for energy conversion

Consider a barotropic tide Uy coswt, where w is an astronomically determined forcing fre-
quency (for example the frequency of the Mg or Sy tide), over rough topography as shown
in figure 13.

ocean surface

Uy coswt

z=—H+ h(z)

z=-H

Figure 13: A barotropic tide Up coswt across a rough bottom z = —H + h(z) where h(x) is
a bottom topography relative to a deep constant depth level z = —H.

We first look at the three key dimensionless parameters of the problem.

tidal excursion _ Uk
horizontal scale of topography ~— w

tal scale of the topography;

where k is a wavenumber associated with the horizon-

maximum bottom slope __ - .y
slope of characteristics with € < 1 referred to as subcritical as the rays have steeper

slope than the bottom topography, e = 1 is critical and € > 1 is supercritical;

o § — maximum topographic helght _ ho wpere ) is an amplitude associated with the bottom
ocean depth H

topography and H is the depth of the ocean.

® € —

In addition there are two dimensionless numbers w/ f and w/N which specify the time-scale
of the tide relative to the inertial and buoyancy time scales.

5.1.1 Assumptions

Firstly, it is assumed that the tidal excursion is much smaller than the horizontal scale of
the bottom topography. If this were not the case, then the topography would essentially
see a nearly constant current across it, although switching direction over the tidal cycle.
Quasi-steady lee waves would then form on the downstream side of the topography. For
Ms, and with deep ocean currents of the order 1072 ms™!, the tidal excursion is of the order
of 100 m and so Upk/w is indeed small.

Secondly, the linear theory requires that ¢ and 0 are also small. Note that as the
wavenumber k associated with the bottom topography gets higher, € increases since the
characteristic slope, a from (17) is fixed by fixing w but the slope of the topography is
proportional to k. Hence, for sufficiently high wavenumbers, the linear theory will always
get into trouble. From observations by St. Laurent and Garrett [15], over 90% of the energy
flux is accounted for in wavenumbers below critical at mid-ocean ridges.
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5.1.2 Energy flux

At the bottom, the boundary condition of zero normal flow, in linearized form, becomes

dh
dz’
where w is the vertical component of the baroclinic wave response, and so w o« k. From

the dispersion relation for internal waves (14), it can be seen that the vertical component
of the group velocity for a rigid-lid solution (18) is

Lo \/(w? S PPN -
957 9(nm/H) w?(N?2 — f2)2 ’

W|=—g =Up

and so ¢, o< k! since w is a fixed forcing frequency.
Hence the kinetic energy is proportional to k2 and the vertical energy flux to internal
tides has the form

Finear X €gz X w? & k x bottom topography spectrum,

where the subscript ‘linear’ implies we are considering the linear regime. We can use Fourier
decomposition and superposition to obtain solutions for arbitrary topography.

Llewellyn Smith and Young [16] showed that the horizontal energy flux away from the
topography is in fact

Finear = F‘OCWTI—-[i3 Z knh(kn)ﬁ*(kjn)v (19>
n=1

where the Fourier transform is defined as
Fkn) = / h(z)e= e da,

and the modes are given by k,, = amn/H, from (14), where « is the ray slope given in (17)
and

1
Fy = %pgw_l\/(N2 —w?)(w? — fRUZH?.

We now consider two different forms for the topography and calculate the associated energy
fluxes.

5.1.3 A small, subcritical ridge

Assume a bottom topography given by a Witch of Agnesi curve?
2

h(z) = ho <1 + 9;—2>_1,

as shown in figure 14a. Here b parameterizes the width of the topography.

2Originally this curve was given the Latin name versoria which means ‘rope that turns a sail’ from the
construction resulting in this curve. This became the Italian la versiera, but on translation into English, of
a textbook by Maria Agnesi, it was mistaken for [’aversiera, or ‘witch’.
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Figure 14: The profiles for (a) a small, subcritical ridge and (b) a small, subcritical step.

Provided that § < 1 and the maximum slope of the Witch, (33/2/8)(ho/b), is sufficiently
small so that € < 1, the problem is linear. The Fourier transform of the Witch is h(k) =
bhome *® and hence

7T2 ad

2 2 _—nc

-Flinear:FO45 § nc-e )
n=1

where ¢ = (3%/%7/4)(5/¢) and € = a~1(33/2/8)(ho/b). Hence we have an expression for the
energy loss to internal tides.

One further question which may be asked is how strongly the result depends on the
width of the topographic feature. In the small 6/ limit Fipear ~ Fom262/4, hence in the
deep ocean the flux is independent of the ridge width.

This type of profile is appropriate for mid-ocean ridges which have subcritical slopes
and are relatively small compared with the overall depth of the ocean.

5.1.4 A small, subcritical step
The bottom topography is given by

h(z) = n 'hgtan™! %,

as shown in figure 14b. It should be noted that the derivative is proportional to the Witch
profile and, using this fact and integration by parts, the Fourier transform becomes h(k) =
—ihok~Ye %, The flux is now

0
2 —1_-—2né
ﬂinear = FO(S E n_e " /67

n=1

where € = hy/(brav).
For small ¢ /e, we obtain
Flinear ~ -FO(S2 10g(6/25) (20)

Hence, unlike the ridge in §§5.1.3, the flux remains dependent on the width of the sloping
region, even in a deep ocean.

It should be noted, that it is not possible to approximate arbitrary topography by a
series of independent steps, as was done by Sjoberg and Stigebrandt [17]. The flux at each
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step, if isolated and independent, is proportional to 62logé as this will be shown later to
apply even for an abrupt step. If there are n steps, then § o ho/n and the total energy flux
i8S Flipear X 1 X h%n_2 log n, which tends to 0 as n tends to infinity.

5.2 Energy conversion at supercritical topography

For supercritical topography, e > 1 and the linear theory of the previous section is no longer
valid. In this case, it is possible to use a Fourier series decomposition and matching to study
some limiting cases: a knife-edge ridge and a Heaviside step.

5.2.1 A knife-edge ridge

The topography in this case is assumed to consist of a knife-edge of height hg, as shown in
figure 15a.

k7 ocean surface z

Uocoswt Uy cos wt 2= —H + h©O(z)
_——z=-H+h (

ocean surface

Figure 15: The profiles for (a) a knife-edge ridge and (b) a Heaviside step.

Note that the ratio of the tidal excursion to the horizontal scale of the topography will
now necessarily be infinite, and quasi-steady lee waves should be expected. However we
ignore these as the same analysis with a top-hat ridge gives very similar results (see St.
Laurent et al. [18]).

The barotropic tidal current is given by Upcoswt, perpendicular to the ridge. When
incident on the knife-edge, it produces waves propagating to the left and to the right, at the
same frequency as the barotropic tide. The form for the velocities in the reflected baroclinic
modes are taken as

o oo
up = Uy nz:l ap, COS <%> cos(kpzr + wt), wi = aly ; an sin (%) sin(kpx +wt) (21)

to the left of the knife and

ug = Uy i by, cos (%) cos(—knpz +wt), we = —aly i_o:l by, sin (%) sin(—kpx + wt)

(22)
to the right, where « is the characteristic slope from (17). The form for w; is assumed from
(18) and the form for w; follows from continuity equation (1). The form for the pressures
may be derived using (21) and (22) and the linearized momentum equations (2) and (4)
with f = 0.
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There are matching conditions at x = 0 given by

wy = wa, —H+hy<2<0, (23)
u1 + Uy = ug + Uy, —H+hy<2<0, (24)
uy + Uy = 0, _H<z<—H+ho, (25)
ug + Uy = 0, — H<z<—H+ hy. (26)

The latter three conditions combine to give

o oo

nmz nmz
Elancos(T): Elbncos<F), —-H <2<0,
n= n=

which implies, from orthogonality of cosines, that a,, = b,,.
The remaining conditions then become

o0
Zansin(@):(), —H +hy <2z<0,
H
n=1
from (23) and
> nmwz
Zancos (F) = -1, —H < z< —H + hy,
n=1

from (25) or (26).
Multiplying by cos(mmz/H) and integrating vertically gives

i </H+h0 cos (mrz) cos (mwz) dz + /0 sin <mrz> cos (mwz) > dz
z in{— =
_H H H H-+ho H H

0
—/ cos (mﬂz) dz.
H-+hg H

Curtailing the summation at M and taking m =0,1,2,..., M — 1 gives a matrix equation
to solve for a, of the form A,,,a, = ¢, which may be solved numerically.

The flux of energy into the baroclinic modes may now be calculated. The conversion
rate is equal to the energy flux away from the topography. From (6), this may be written
as

0
Frnite = / <pu> dZ,
—-H

where < - > is the average in time. Hence Fipire = Fo Zzozl na%.This flux is appropriate for
calculating the flux from ocean island chains, such as Hawaii, since slopes at such features
are supercritical.

The linear theory for a Witch profile gives a flux that is half that of a knife-edge in the
deep ocean case, as shown in figure 16a (see St. Laurent et al. [18] and Llewellyn Smith
and Young [19]). Various authors (see, for example, Balmforth et al. [20] and Pétrélis et al.
[21]) have also considered the energy flux for other topographies and different values of the
slope parameter e. They find results that do not differ significantly when taking different

95



1

stapa

@
"

F a8/ F g (Bie=1)
=l
o B F L lBE

F
g

o 02 04 06 o8 1 L] 0.05 o1 0.15 02 025 0.3

() (b)

Figure 16: The energy flux ratio for (a) the knife compared to the Witch and (b) the steep
step compared to the inverse tan with € = 1 against 0. From St. Laurent et al. [18].

values of e. The importance of this is that, in the deep ocean case, the slope (and hence the
precise shape) of the topography is not the significant factor: the depth of the topography
is the more important parameter.

It is also possible to use a similar technique to that given above to consider flow over a
top hat ridge. Figure 17a shows the horizontal velocity profile for a steep step, similar to
that for a top hat ridge, and figure 17b compares the energy flux from the top hat ridge to
that from the knife edge.

5.2.2 A steep step

This is the extension of §35.1.4 to an infinitely steep slope and is shown in figure 15b. We use
the same procedure as in the previous subsection, however some modifications are required.
The lack of symmetry across x = 0 implies that the wavenumbers to the left and right are
not the same, and also a, # b,. Hence we set

up = Uy Z ay, cos (%) cos(knz + wt), w; = aly Z ap sin (%) sin(kpz + wt) (27)
n=1

n=1

on the deep side and

= > cos(—k},z + wt),
ho

T > sin(—kl,x + wt) (28)
ho

on the shallow side.
The boundary conditions are similar to (23)-(26). Noting that the barotropic tide, by
continuity, must scale by H/(H — hg) to the right of the step, the boundary conditions
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Figure 17: (a) The baroclinic horizontal velocity profile resulting from a barotropic tide
impinging on a steep step profile (the black rectangle). This profile is very similar to part
of the profile seen for a top hat ridge. (b) Comparison between the energy flux of a top hat
ridge with that of a knife edge. The fact that the curves become identical at anL/H = m,
where L is the width of the ridge, is because the characteristic manages to fit into the ridge
perfectly at this length. The worse agreement as § become small is because the topography
profile begins to look increasingly like two separate steps. From St. Laurent et al. [18].

become

ggmﬁm(%?):§:%ﬁn<;TZ), —H+hy<2z<0, (29)

n=1

(o]
nmwz
1+T;ancos(H) H— o

o
1+ Zancos (%)

n=1

—H+hy<2<0, (30)

I
=
+
[]¢
s
@)
2
VR
mi
BE
:.t\z
o
N———

I
o

— H<z<—H + hy.
(31)

Multiplying (30) and (31) by cos(nmz/H) and (29) by sin[nmwz/(H — hg)] and integrating
the equations vertically gives a matrix equation to solve for a,, and b, of the form

am = Apnbn + Cpy, bn, = Byiay,

which may be solved numerically. Again, the flux may be found, and comparing it to the
flux from the slope profile in §§5.1.4, we see, as for the ridge/knife edge comparison, that
the difference is relatively small between supercritical and critical slope topography (see
figure 16b).

Overall the conclusion is that, in the deep ocean, increasing the steepness of topographic
features beyond the critical slope of the internal tide rays does not lead to a dramatic
increase in energy flux into internal tides. However, increasing the height of the features,
relative to the ocean depth, leads to a greater than quadratic increase in flux.
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6

Open questions

There are many possible directions for research in internal tides:

1.

Theoretical and numerical models for three-dimensional obstacle of finite slope and
height.

. The fate of low mode internal tides generated at bottom topography. Do they

(a) Break down in the ocean interior?
(b) Cascade to higher modes and turbulence on re-encounter with the sea floor?
(c) Break as ‘internal surf’ on distant continental slopes?

3. Develop mixing parameterizations for use in ocean models.

4. Paleo-tides.

Notes by Josefina Arraut and Anja Slim.
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