
Lecture 1: Introduction to ocean tides

Myrl Hendershott

1 Introduction

The phenomenon of oceanic tides has been observed and studied by humanity for centuries.
Success in localized tidal prediction and in the general understanding of tidal propagation
in ocean basins led to the belief that this was a well understood phenomenon and no
longer of interest for scientific investigation. However, recent decades have seen a renewal
of interest for this subject by the scientific community. The goal is now to understand
the dissipation of tidal energy in the ocean. Research done in the seventies suggested that
rather than being mostly dissipated on continental shelves and shallow seas, tidal energy
could excite far traveling internal waves in the ocean. Through interaction with oceanic
currents, topographic features or with other waves, these could transfer energy to smaller
scales and contribute to oceanic mixing. This has been suggested as a possible driving
mechanism for the thermohaline circulation.

This first lecture is introductory and its aim is to review the tidal generating mechanisms
and to arrive at a mathematical expression for the tide generating potential.

2 Tide Generating Forces

Tidal oscillations are the response of the ocean and the Earth to the gravitational pull of
celestial bodies other than the Earth. Because of their movement relative to the Earth,
this gravitational pull changes in time, and because of the finite size of the Earth, it also
varies in space over its surface. Fortunately for local tidal prediction, the temporal response
of the ocean is very linear, allowing tidal records to be interpreted as the superposition of
periodic components with frequencies associated with the movements of the celestial bodies
exerting the force. Spatial response is influenced by the presence of continents and bottom
topography, and is a less well established matter.

Figure 1 shows a two month tidal record from Port Adelaide, Australia. Even though
tidal records vary significantly for different coastal locations, this one in particular can be
considered typical in that it clearly shows characteristics of tidal oscillations that can be
directly related to astronomical forcings.

Perhaps the first feature to stand out is the semi-diurnal component, two high tides can
be seen to occur on each day. A closer look reveals a modulation of the amplitude of the
semi-diurnal oscillation, roughly over a one month period. Intervals of high amplitude are
known as spring tides while those of lower amplitudes are known as neap tides. As indicated
in the figure, the springs-neaps cycle is associated with the phases of the Moon. For a same
day, there is often a difference in the amplitude of the two high tides. This is known as the
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Figure 1: Two months of tidal data for Port Adelaide Australia. We can see in this record
some features that can be directly accounted for by the details of the astronomical tidal forc-
ing, such as the springs-neaps cycle, the daily inequality and the absence of daily inequality
when the Moon is on the Equator.
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“daily inequality” and, as indicated in the figure, disappears when the Moon is over the
equator.

We will try to clarify below the basic ideas underlying tidal forcing. We will also try
to explain the origin of the forcing terms responsible for causing the tidal record features
described above. Finally we will attempt to explain the derivation of the tide generating
potential.

3 Tidal Forcing

Even though small compared to the planets and especially to the sun, the Moon is by far
the celestial body closest to the Earth. Because gravitational pull decreases linearly with
mass and quadratically with distance, the Moon exerts the biggest influence over the Earth,
contributing the most to the formation of tides. We will begin by considering its effects.

The centres of mass of the Earth and the Moon orbit around the common centre of mass
of the Earth-Moon system. Their movements are such that centrifugal force counterbalances
gravitational attraction at the individual centres of mass. The Earth is a rigid body, so
every material point in it executes an identical orbit, and is therefore subject to the same
centrifugal force, as illustrated in figure 2. Gravitational force however will vary because
the distance between these points to the Moon may vary by up to one Earth diameter.
Gravitational force will prevail over centrifugal force on the hemisphere closest to the Moon
and centrifugal force will prevail on the hemisphere furthest to it. The opposite hemispheres
have net forces in opposite directions, causing the ocean to bulge on both sides. As the
Earth spins under this configuration, two daily tides are felt.

Figure 2: The centre of the Earth, shown as a filled dot, rotates about the centre of mass of
the Earth-Moon system, indicated by a ‘x’ mark. Dashed circles show the orbital movement
of the points shown by a ‘o’ mark on Earth’s surface and the center of the Earth.

A common source of confusion regarding the argument above is to suppose that the
centrifugal force relevant to the problem is due to the spinning of the Earth around its own
axis. This seems reasonable at first sight because this force is constant for every latitude
circle, allowing for an imbalance with lunar attraction, which is longitude dependent at
any given instant. However, the centrifugal force due to the Earth’s spin has permanently
deformed the Earth’s surface into a spheroid (as opposed to the spherical shape that would
ensue from self-gravitation only). That is to say, this centrifugal force is compensated by
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the Earth’s own gravitational field. A mnemonic phrase to keep in mind is that tides are
caused by the action of other celestial bodies over the Earth.

Another not entirely uncommon misconception is that tides are partly the result of the
variation of centrifugal force over the surface of the Earth. This kind of confusion arises
because the distance between the centre of the Earth-Moon system is smaller than one
Earth radius and therefore this point lies “within” the Earth. If this were a fixed material
point, like the centre of the Earth, around which the planet revolved, there would indeed
be a variation of centrifugal force with distance from it. However, the centre of mass of
the Earth-Moon system is just a point in space, and as the Earth revolves around it, as
indicated in figure 2 none of its material points are fixed.

Even though a constant field, the centrifugal force due to the revolution of the Earth
around the system’s centre of mass is essential to the semi-diurnality of the tides. We can
illustrate this by considering the situation in which the centre of the Earth is fixed. In this
case the only force acting upon it is lunar gravitational attraction. Although uneven over
the surface, it pulls every point on Earth towards the Moon, causing the water to bulge on
the hemisphere closer to it. The spinning of the Earth would therefore make every point on
it experience a diurnal tide cycle, instead of a semi-diurnal one. This situation is illustrated
in figure 3
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Figure 3: Tidal deformation that would ensue if from lunar attraction if the Earth’s centre
of mass were fixed.

We can calculate the surface elevation that would result from this forcing. The assump-
tion is that the elevation would be such that net terrestrial gravitational force would exactly
compensate for the lunar force at the point.
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where M is the mass of the Earth, r is the distance between Earth’s and Moon’s centres of
mass, a is the Earth’s radius, h is the sea surface deformation at the sub lunar point and
G is the universal gravitational constant. Equating the two forces and isolating h we get:
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a3
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m

M
= 10.7m. (1)
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This is an unrealistically high value.
If we now allow the Earth’s centre of mass to accelerate, the centrifugal force due to

this motion will compensate for the Moon’s gravity at that point. We can anticipate that
tidal deformation will be smaller, since it will be a response to a smaller resultant force.
As explained earlier, predominance of lunar attraction on the hemisphere facing the Moon
and of the centrifugal force on the one opposing deforms the surface into an ellipsoid. The
water will bulge around the sub-lunar and anti-sub lunar points.

For this case we can also calculate tidal elevation on the sub-lunar point.

Gm

(r − a)2
−

Gm

r2
'
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r2

2a

r
, (2)

where the first term on the right is lunar gravity, the second is the centrifugal force and the
term on the right is the net gravitational force of the Earth. Isolating h we get:

h =
a4

r3

m

M
= 35.8cm (3)

The Moon rotates around the Earth in the same direction as the Earth spins, and the
surface deformation must rotate with it. It takes slightly longer than a day for the Moon to
be directly over the same point on the Earth’s surface, as illustrated in figure 4 this is called
a lunar day. Likewise, the period between two high tides is half lunar day. Apart from the
semi-diurnal tides, we can expect the presence of the Moon to permanently deform the sea
surface. This is an order zero effect called the permanent tide.

N

Figure 4: The Earth-Moon system. The position of the Moon with respect to a fixed point
on the Earth’s surface after one revolution is illustrated.

Up to now, we have considered the orbit of the Moon circular. It is however elliptic,
with the Earth-Moon centre of mass being one of the foci. The Moon’s gravitational force
over the Earth will be modulated over the period of one anomalistic month (figure 5), as
will the tidal components it generates.
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In summary, tidal forcing by the Moon alone can be represented by the following har-
monics:

Lunar Semi-Diurnal Tide (M2) 2/LD 12h 25.236 min
Lunar Elliptical (N2) 2/LD − 1/perigee 12h 3.501 min
Lunar Monthly Elliptical (Mm) 1/perigee 27.5545 days (anomalistic month)

The 2/LD + 1/perigee term was left out because it has a small amplitude. Modulation
of the amplitude of M2 is represented by the interaction of M2 and N2, which is constructive
once each anomalistic month.

Figure 5: As the Moon rotates around the Earth, the Earth rotates around the Sun. For
this reason, after each orbital period (anomalistic month), the Moon is in different position
in its orbit with respect to the Sun. In the above picture, we represent on top an initial
position of the Earth and Moon, below it their position after one anomalistic month. The
black Moon in this case represents the position it would have to be in to exhibit the same
phase as in the initial configuration.

All arguments mentioned above are valid for any other celestial body which might be
reasonably considered to form a two body system with the Earth, for which the orbits are
elliptical. Another such body is the sun, whose tidal effect over the Earth (when the two
body system is considered in isolation) can be reduced to the harmonic components below.

Solar Semi-Diurnal Tide (S2) 2/SD 12h 25.236 min
Solar Elliptical (N2) 2/SD − 1/anom.yr. 12h 3.501 min
Solar Annual Elliptical () 1/perihelion 365.25964 days (anomalistic year)

When Moon and Sun are aligned with the Earth, their semi-diurnal components interfere
constructively, giving rise to tides of larger amplitude, known as spring tides. When they
are in quadrature, the interference is exactly destructive, giving rise to smaller amplitude
tidal variations, called neap tides. The relative arrangement of the Earth Sun and Moon
is perceived on the Earth as the phases of the Moon, and therefore the springs-neaps cycle
has a period of one lunar (synodic) month. A lunar month is the duration required for
the Moon to return to a fixed position in its orbit in relation to the Sun as illustrated in
figure 5.

Up to now we have assumed that the orbits of the Earth (around the Sun) and Moon are
coplanar to the spinning of the Earth at all instants of time. In reality these planes intersect
at an angle. The effect this has over the tide is illustrated in figure 6. As the Earth rotates,
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it perceives the tidal surface as being “tilted” in relation to latitude. In terms of harmonics,
this is represented by a daily component, which gives rise to the daily inequality. When
the tide generating bodies intersect the equatorial plane, the daily inequality disappears.
In the Port Adelaide record (figure 1), we can see that daily inequality disappears when the
Moon is on the Equator.

Figure 6: The Moon’s orbit is not coplanar with the Equator. The tidal surface is in general
“tilted” with respect to the Equator giving rise to the daily inequality.

The amplitude of the declinational components depends on the angle of the bodies orbit
to the equatorial plane. Both the lunar orbital plane and the ecliptic precess, modulating
the declinational tides. The Moon’s orbit precesses over 18.6 years, its angle to the Ecliptic
varying between −5◦08

′

and 5◦08
′

. In relation to the Earth’s equatorial plane the variation
is between 23◦27

′

− 5◦08
′

and 23◦27
′

+ 5◦08
′

.
As mentioned earlier, the usefulness of decomposing the tide generating force into har-

monics is due to the linearity of the oceans response to it in time. In fact, we have taken
this for granted in the preceding section when we explained the springs-neaps cycle purely
as the result of the interference of two forcing terms. This property allows for more precise
tidal prediction. Tidal records are not used to determine the important frequencies in their
harmonic expansions, these are known from astronomical considerations. Data is used only
to determine the amplitudes of local response to these terms.

4 Spatial Structure of the Tides

As the Earth’s spinning under the tide generating potential is felt as the propagation of
the tidal wave. However, this propagation is obstructed by the presence of continents and
bottom topography. Real co-tidal lines therefore look nothing like the constant phase lines of
the tide generating potential. As a plane wave enters a basin, it feels the effect of the Earth’s
rotation and propagates along its borders. The nodal line that would exist in the case with
no rotation degenerates into a nodal point, called amphidromic point.The irregularity of
the oceanic basins and of bottom topography disrupt the propagation and a precise map
of tidal propagation could only be obtained after the advent of satellite altimetry. This
data is harmonically analyzed to obtain maps for the different astronomical components.
Figure 7 shows a co-tidal map obtained in this manner. Although the amphidromic points
are eye catching, the less conspicuous anti-amphidromic points, for which tidal amplitude
is maximum and there is almost no phase variation, are probably more useful for testing
satellite altimetry.
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Figure 7: Cotidal map. Amphidromic points are the ones where cotidal lines cross. In
these points tidal amplitude is zero and phase speed infinite. Less conspicuous are the
anti-amphidromic points, where tidal amplitude is maximum and phase stationary.

In the following section we will formalize the ideas outlined above so as to arrive at an
expression for the tide generating potential.

5 The tide generating potential

We want to calculate the tidal force that the Moon or Sun exerts on the Earth, in particular
on the oceans. Remember that we are only interested in the effects of another body on the
Earth, not the effect of the Earth’s rotation and gravity on its shape and that of the oceans.

Consider the plane made up of the centre of the Earth, the tide generating body (the
Moon or the Sun), assumed to be a point mass, and an observer at P on the surface of the
Earth, as shown in figure 8. For the moment, we assume R is constant.

P , observer on surface

tide generating

body, mass M

x

ρ

centre of mass of

Earth-TGB system

O

centre of

Earth

r

ξ

R

Figure 8: The geometry for calculating the tidal force at P due to the tide generating body.

The tide generating body (TGB) exerts a force, F, on the centre of the Earth

F =
GM

R2
ı̂,
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where ı̂ is the unit normal along the x-direction and G is the universal gravitational constant.
From this, the potential at the centre of the Earth, O, due to the TGB is

V (O) =
GM

R2
x + const =

GM

R2
ρ cos ξ + const,

where the constant is arbitrary.
Then the resultant force at P is the gravitational force at P , less that at O, with

potential

V (P ) =
GM

r
−

GM

R2
ρ cos ξ. (4)

The sign is chosen as r is measured away from the TGB and the force should be towards
it. Note that the force on the Earth as a whole, F, is balanced by the centrifugal force due
to the motion of the Earth about the common centre of mass of the Earth–TGB system.

The parameters r, R, ρ and ξ are linked by r2 = R2 − 2ρR cos ξ + ρ2 from properties of
triangles. Hence

1

r
=

1

R

(

1 −
2ρ

R
cos ξ +

ρ2

R2

)−
1

2

=
1

R

∞
∑

n=0

( ρ

R

)n

Pn(cos ξ), (5)

where Pn(z) is the nth Legendre polynomial, with P0(z) = 1, P1(z) = z, P2(z) = (3z2−1)/2,
. . . . The final equality in (5) may be found in, for example, Morse and Feshbach [1].

Hence (4) becomes

V (P ) =
GM

R

[

1 +
∞

∑

n=2

( ρ

R

)n

Pn(cos ξ)

]

.

For the Moon, 0.0157 ≤ ρ/R ≤ 0.0180 and for the Sun ρ/R ∼ 10−4. Hence the potential
may be truncated at n = 2. Forgetting about the constant GM/R, which is unimportant
since ultimately we want to find the forces, it becomes

V (P ) '
GM

R

( ρ

R

)2
P2(cos ξ). (6)

Note that this potential is symmetric in ξ. This is consistent with the discussion in previous
sections, where we argued that the tide generating force is symmetrical with respect to the
plane that contains the Earth’s centre of mass and is orthogonal to the Earth-Moon axis.

5.1 The tide generating potential in geographical coordinates

It is more useful to express the tidal potential in geographical coordinates: actual latitude
and longitude of the observer on the Earth and the apparent latitude and longitude of
the TGB. This coordinate system is shown in figure 9. We call attention to the fact that
the longitudinal angles are measures with respect to the Equator. In this coordinate sys-
tem the tidal ellipsoid is “tilted”, and the tidal potential will therefore have asymmetrical
components.
From spherical trigonometry

cos ξ = sin θ sin δ + cos θ cos δ cos H.
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Pole
North

P , observer

TGB

Greenwich
Υ

λ

H

ω0t A

Greenwich
meridian

North Pole

Υ

TGB

P

H

δ

θ

ξ

(a) (b)

Figure 9: The geographical coordinates: (a) looking down from the North Pole and (b)
looking at the spherical Earth. Here λ is the geographic longitude of the observer and θ is
the geographic latitude. ξ is the angle between the TGB and the observer as in figure 8.
δ is the declination of the TGB and A is the right ascension of the TGB, or its apparent
longitude with respect to an origin Υ. Υ is a celestial reference point from which to measure
positions of the TGB: it is the northward crossing of the Sun at equinox, or equivalently the
point of intersection of the equatorial plane and the ecliptic, the plane of the Earth’s orbit
about the Sun, as the Sun travels northward. The point Υ is assumed fixed with respect to
the fixed stars for the current discussion. However, with respect to the rotating Earth, the
point Υ moves. If t = 0 is taken to be the time at which Υ lies on the Greenwich meridian,
then at time t, the Earth has rotated ω0t giving the angle between Υ and Greenwich, where
ω0 is the frequency associated with the period of rotation of the Earth about its axis so that
the TGB appears again in the same Earth–TGB orientation. H = ω0t + λ − A is referred
to as the hour angle.
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Figure 10: Equipotential lines for the long-period potential.

Substituting this in (6) gives

V (λ, θ) '
3GMρ2

4R3
0

(

R0

R

)3 [

4

3

(

1

2
−

3

2
sin2 θ

) (

1

2
−

3

2
sin2 δ

)

+ sin 2θ sin 2δ cos H + cos2 θ cos2 δ cos 2H
]

, (7)

where R0 is a reference value of the orbital distance R of the TGB. The coefficient 3GMρ2/4R3
0

is referred to as the Doodson constant, D. For the Moon, DMoon/g = 26.75 cm and for the
Sun, Dsun = 0.4605DMoon.

The first term in the square bracket in (7) has no dependence on the hour angle, H, and
gives rise to a long-period1 potential. The second term gives rise to a diurnal potential and
the final term to a semi-diurnal potential. Figures 10-12 show plots of the instantaneous
equipotential lines for the three components of (7) and plots of the cotidal2 and corange3

lines. The plots shown are in fact representative of the solid Earth tide, since the response
time of the Earth is of the order of an hour (deduced from earthquake measurements), much
quicker than the time period of the tidal potential and so the solid Earth can adjust to the
equipotential surfaces. The oceans have a much longer response time.

In reality, the declination and orbital distance in (7) vary in time. In the following
sections, we consider how these variations change the potential.

1In the present analysis, infinitely long. However we shall see that each term of the potential is modulated

and hence this becomes a long-period potential.
2A line passing through points at which high tide occurs at the same number of hours after the Moon

transits the Greenwich meridian.
3A line passing through points of equal tidal range.
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Figure 11: Equipotential lines (top) and cotidal, green, and corange, red, lines (bottom) for
the diurnal potential.The arrow indicates the direction of increasing cotidal time.
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Figure 12: Equipotential lines (top) and cotidal, green, and corange, red, lines (bottom) for
the semi-diurnal potential. The arrow indicates the direction of increasing cotidal time.
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5.2 Variation of the declination of the tide generating body

The angle δ in figure 9b and (7) varies in time, based on the location of the tide generating
body relative to the plane of the equator. This variation has a time period related to the
precession of the equinoxes for the Sun and to the precession of the lunar node for the
Moon.

5.2.1 Precession of the equinoxes

The Earth’s rotational axis is tilted, at present at 24◦27′, to the ecliptic.4 As the Earth
rotates about the Sun, this means that the declination of the Sun varies, as shown in
figure 13a. Hence only after a ‘year’ is the declination expected to return to its initial value.

N

N

N

Sun

Earth

δ = 0

δ = 0

δ < 0
δ > 0

Earth

current rotation
axis

future rotation
axis

(a) (b)

Figure 13: (a) The variation in declination due to the rotation of the Earth about the Sun.
(b) The precession of the equinoxes.

Lunar and solar gravity act on the oblate Earth, making it spin like a top, with its
rotation axis precessing as depicted in figure 13b. The celestial point where the Sun crosses
the plane of the equator, moving from south to north is known as the Point of Aries or the
vernal equinox and is the point Υ in figure 9 at which δ = 0. Due to precession, it moves
eastward relative to the fixed stars.5 The period of precession is 25570 years. The time
period of the revolution of the Earth about the Sun from vernal equinox to vernal equinox
is the tropical year and is 365.242199 mean solar days. This is the ‘year’ we are interested
in for the declination returning to its original value.

5.2.2 Precession of the lunar node

The plane of the Moon’s orbit around the Earth is inclined at 5◦08′ with respect to the
ecliptic. It precesses with a period of 18613 years due to the Earth’s gravity.

4The plane of the Earth’s orbit around the Sun.
5In antiquity, it was in the constellation Aries. Now it is in Pisces.
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The intersection of the plane of the Moon’s orbit with the equatorial plane as the Moon
goes from south to north is the ascending lunar node, Ω. The mean time period separating
adjacent passages through Ω is the tropical month of 27.321582 mean solar days. This is
the time period before the same declination of the Moon is again achieved.

5.3 Variation of the orbital distance of the TGB

In reality, R is not fixed in (7), since the Moon and Sun are not a constant distance from
the Earth. Here we consider how the orbital distance of the Moon varies in time. The same
analysis also applied for the Sun.

5.3.1 Kepler’s laws

The orbit of the Moon about the Earth is an ellipse (Kepler’s first law), as we now show.
Consider the geometry shown in figure 14. From Newton’s laws,

mẍ = −GmMx/R3,

where x is the position vector of the Moon relative to the Earth.

a ae
R

K

p

Ω

λ

ξ

η

body,
mass M

body,
mass m

Figure 14: The Moon of mass m in orbit about the Earth of mass M . Assume that the
Earth is fixed in space.

Rewriting this equation in polar coordinates, with x = R cos λe and y = R sin λe gives

R̈ − Rλ̇e
2

= −GM/R2, Rλ̈e + 2Ṙλ̇e = 0.

Integrating the second equation gives Kepler’s second law

R2λ̇e = constant = h, (8)

which says that the line joining the orbiting Moon and the Earth sweeps out equal areas in
equal intervals of time. Integrating the first equation, by setting u = 1/R, gives

1

R
= A′ cos K +

GM

h2
, (9)

where A′ is a constant of integration and we have used the fact that 1/R is symmetric about
the line η = 0. This is the equation of an ellipse with semi-major axis a and eccentricity e
satisfying A′ = e/a(1 − e2) and gM/h2 = 1/a(1 − e2).
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Figure 15: The definition of the eccentric anomaly E.

We now want to see how this modifies the potential given in (7). Instead of using the
true anomaly, K, it is more useful to write (9) in terms of the eccentric anomaly, E, defined
as shown in figure 15. Then it is possible to write

R = a(1 − e cos E) (10)

and the motion of the Moon in its orbit is given by Kepler’s equation

E − e sin E = ωkt, (11)

in which t = 0 at perigee6 and ωk =
√

GM/a3, the Kepler frequency. The mean anomaly,
E0 is related to E by

E0 = E − sin E

and increases uniformly in time: E0 = ωkt from (11).
In (7) we then have, assuming the eccentricity e is small,

R0/R ≡ a/R = (1 − e cos E)−1
∼ 1 + e cos E0 + e2 cos 2E0 + . . . ,

from (10) and
R0/R = a/R = (1 + e cos K)/(1 − e2),

from (9). Hence K ' E0 + 2e sin E0 + . . ..
Remembering from figure 14 that the ecliptic longitude, λe = p + K and setting the

mean longitude to be h = p + E0 we obtain

R/R0 = 1 + e cos(h − p) + e2 cos 2(h − p) + . . . ,

λe = h + 2e sin(h − p) + . . . .

This can be simply translated into geographical coordinates for the Sun as the tide
generating body. For the Sun

sin δ = sin λe sin ε, A = λe − tan2(ε/2) sin λe,

6The point in the orbit of the Moon nearest the Earth.
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where δ is the declination, λe is the ecliptic longitude, A is the right ascension of the Sun
and ε is the angle between the ecliptic and the equatorial plane.

For the Earth–Moon system it is actually more complex to write the solution in terms
of the geographical coordinates as the lunar node does not coincide with the point of Aries
and the Moon’s orbit is not in the ecliptic. Furthermore, there is a strong solar perturbation
to its orbit.

5.4 Tidal harmonics

The effect of the variations of declination and distances to the tide generating bodies is to
alter the coefficients for terms in (7). These variations may be Fourier decomposed and
result in modulations of the basic tidal frequencies: the long-period, diurnal and semi-
diurnal. Then the potential given in (7) may be written as

V (λ, θ) = V0(λ, θ) + V1(λ, θ) + V2(λ, θ), (12)

where
Vs(λ, θ) = DGs

∑

j

Cj cos(σjt + sλ + θj)

with G0 = (1 − 3 sin2 θ)/2, G1 = sin 2θ and G2 = cos2 θ; D the Doodson constant and Cj

the amplitude of the component. The harmonic frequency σj is a linear combination of the
angular velocity of the Earth’s rotation ω [already seen in (7) in the hour angle] and the sum
and the difference of angular velocities ωk with k = 1, . . . , 5 which are the five fundamental
astronomical frequencies, having the largest effect modifying the potentials (it is possible
to include many more). These five frequencies are given in table 1. Hence

σj = sω +
5

∑

k=1

mj
kωk,

where s = 0, 1, 2 for the long-period, diurnal and semi-diurnal respectively; mj
k = 0,±1,±2, . . .

and ω is either taken to be ω0 − ω1 for the Moon as the TGB, or ω0 − ω2 for the Sun with
ω0 the sidereal7 frequency. λ is the longitude of the observer.

All tidal harmonics with amplitudes C > 0.05 are given in table 2.

5.4.1 Doodson numbers

For convenience, the frequencies σj may be written as

Doodson number = s mj
1 mj

2 mj
3 mj

4 mj
5 + 0 5 5 5 5 5,

where the addition of 055555 is simply so that the Doodson numbers are all positive (since
in general the mj

i lie in the range −5 ≤ mj
i < 5). The Doodson numbers are also given in

table 2.
7The length of time between consecutive passes of a given ‘fixed’ star in the sky over the Greenwich

meridian. The sidereal day is 23 hr56min, slightly shorter than the ‘normal’ or solar day because the Earth’s

orbital motion about the Sun means the Earth has to rotate slightly more than one turn with respect to the

‘fixed’ stars in order to reach the same Earth–Sun orientation.
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Period Nomenclature

360◦/ω1 = 27.321582 days period of lunar declination
360◦/ω2 = 365.242199 days period of solar declination
360◦/ω3 = 8.847 years period of lunar perigee rotation
360◦/ω4 = 18.613 years period of lunar node rotation
360◦/ω5 = 20940 years period of perihelion rotation

Table 1: The fundamental periods of the Earth’s and the Moon’s orbital motion. From

Bartels [2].

5.4.2 Spectra of the tides

Figure 16 shows a plot of the spectrum of equilibrium tides with frequencies near twice per
day (the semi-diurnal tides). The spectrum is split into groups separated by a cycle per
month (0.55◦hr−1). Each of these is further split into groups separated by a cycle per year
(0.04◦hr−1). The finest splitting in the figure is at a cycle per 8.847 years (0.0046◦hr−1).

Figure 16: A spectrum for equilibrium tides. From oceanworld.tamu.edu/resources/.

Notes by Josefina Arraut and Anja Slim.
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Ampl., Frequency, σ Period Doodson Notation
C ◦ hr−1 360◦/σ number

Long period tides
0.2341 0 055555 S0 (solar constant)
0.5046 0 055555 M0 (lunar constant)
0.0655 ω4 = 0.00221 18.613 years 055565 – (nodal M0)
0.0729 2ω2 = 0.08214 182.621 days 057555 Ssa (declinational S0)
0.0825 ω1 − ω3 = 0.54437 27.555 days 065455 Mm (elliptical M0)
0.1564 2ω1 = 1.09803 13.661 days 075555 Mf (declinational M0)
0.0648 2ω1 + ω4 = 1.10024 13.663 days 075565 – (nodal M0)

Diurnal tides
0.0722 ω( − 2ω1 + ω3 = 13.39866 26.868 135655 Q1 (elliptical O1)

0.0710 −ω( + ω1 − ω4 = 13.94083 25.823 145565 – (nodal O1)

0.3769 ω( − ω1 = 13.94304 25.819 145555 O1 (basic lunar)

0.1755 ω� − ω2 = 14.95893 24.066 163555 P1 (basic solar)
0.1682 ω� + ω2 = 15.04107 23.934 165555 KS

1 (declinational P1)
0.3623 ω( + ω1 = 15.04107 23.934 165555 KM

1 (declinational O1)

0.0718 ω( − ω1 + ω4 = 15.04328 23.931 145565 – (nodal KM
1 )

Semi-diurnal tides
0.1739 2ω( − ω1 + ω3 = 28.43973 12.658 245655 N2 (elliptical M2)

0.9081 2ω( = 28.98410 12.421 255555 M2 (basic lunar)

0.4229 2ω� = 30.00000 12.000 273555 S2 (basic solar)
0.0365 2ω� + 2ω2 = 30.08214 11.967 275555 KS

2 (declinational S2)
0.0786 2ω( + 1ω2 = 30.08214 11.967 275555 KM

2 (declinational M2)

Combined tides
0.5305 ω0 = 15.04107 23.934 K1 (lunar-solar declinational)
0.1151 2ω0 = 30.08214 11.967 K2 (lunar-solar declinational)

Table 2: The tidal harmonics with amplitude coefficients C > 0.05. ω� is ω0−ω2, associated
with the Sun and ω( is ω0 − ω1, associated with the Moon. In the table, for the Doodson
numbers, ω = ω( and hence ω� = ω( + ω1 − ω2. Note that the table also includes the

KS
2 harmonic, even though it’s amplitude is less than 0.05. Its frequency coincides with

that of KM
2 and they are completely indistinguishable. They are combined into the single

lunar-solar semi-diurnal wave, K2. From Bartels [2].
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