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1 Introduction

Chemical reactions are very often modelled by ordinary differential equations, where the
concentration of a particular particle evolves according to a deterministic law. But, in order
to be able to answer several questions where the discreteness, hence the intrinsic fluctua-
tions play a role, one needs to describe the system by a stochastic model. We assume
the chemical system to be well-stirred, so that all the particles are distributed in space
appropriately uniformly. Also we assume the number of reactions occurred to be Poisson-
distributed, i.e. the waiting times between different reactions are distributed exponentially
with given rates. This is, in a nutshell, the essence of the Kinetic Monte Carlo (KMC) mod-
els of chemical reactions. These models are discrete and non-deterministic, as opposed to
the deterministic, continuous models governed by Ordinary Differential Equations (ODE),
and the non-deterministic, continuous ones, governed by Stochastic Differential Equations
(SDE). The last two models, are simpler and can be obtained from the KMC in certain
limits.

The drawbacks of the deterministic description are well-known. It leads to no fluctua-
tions, a very important characteristics in certain cases. The model governed by SDE is the
so-called diffusion approximation of the original system. It is a non-deterministic model,
hence it detects the intrinsic fluctuations. However, it may not be good enough, if we are
concerned in the exponentially large (small) variables and/or we deal with exponentially
unlikely events. We will consider the Schlögl model as the simplest model with bistability
(two stable equilibriums predicted by the deterministic description) and, as an example of
an exponentially large observable, we will consider the switching times between two stable
states. On that example it will become clear why the diffusion approximation governed by
SDE is not satisfactory.

This report is organized as follows: first, in Sec. 2 the Schlögl model is introduced as a
deterministic one. Next, in Sec. 3, we will introduce the KMC model, where the number
of particles evolves as a Markov jump process. In the Sec. 4 we will show how to get the
simpler descriptions (ODE and SDE) as large system volume limits of the Markov jump
process. Also, in order two motivate the use of the exponentially large observables, we will
introduce the simplest theorem in the large deviations theory, in Sec. 5. Afterwards, in Sec.
6, we will apply the introduced ideas to the Schlögl model, emphasizing the calculations of
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the mean first passage times, that are exponentially large, hence reveal the the drawbacks
of the diffusion approximation. Finally, the Sec. 7 will be devoted to a short discussion and
conclusions, as well as future work.

2 The Schlögl model and its deterministic description

Consider the following chemical reaction, introduced by Schlögl [1] as a catalysis model:

2X + A
k1

⇋
k2

3X

X
k3

⇋
k4

B.

(1)

We denote the number of particles X, A and B by the corresponding letters. Then, keeping
A and B fixed and of the order of the system volume V , we are interested in the evolution
of X. ki are the rates of the corresponding reactions in (1).

The simplest description of the system is the deterministic one, where the concentration
x = X/V is a deterministic, continuous variable, time evolution of which is governed by the
ODE:

dx

dt
= u(x) − d(x). (2)

Here we denoted u(x) = k1x
2 + k4 and d(x) = k2x

3 + k3x.
For appropriate choice of parameters, the function f(x) = u(x) − d(x) has three real

roots: the middle one corresponds to the unstable equilibrium, while two others are the
stable equilibrium values. See Fig. 1. Hence, depending on the initial value, x will expo-
nentially approach to one of the two stable equilibriums, see Fig. 2. In a certain sense, the
Schlögl model is the simplest one that leads to the bistability. Third order polynomial is
normally the first choice, if we want to have a function of three real roots.

Although the deterministic model is simple to analyze, it is a good approximation to
the real, discrete system only in the limit of large volume and for finite time intervals [2, 3].
It is not able to answer to questions related to the stochastic behaviour of the system,
namely, the intrinsic fluctuations of the system are not detected. Consequently, it leaves
open the question of relative stability: near which of the two stable equilibrium states we
are more likely to find the system at a randomly chosen time? The system spends most
of the time near one of the equilibrium states, but fluctuations can sporadically drive it
to the neighborhood of the other equilibrium. In order to analyze the intrinsic fluctuative
behaviour of the system, we will next introduce the discrete stochastic model (Kinetic
Monte-Carlo scheme) according to which the chemical reaction happens.
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Figure 1: The deterministic rate u(x) − d(x) for u(x) = 6x2 + 6 and d(x) = x3 + 11x, i.e.
k1 = k4 = 6, k2 = 1 and k3 = 11.
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Figure 2: The time evolution of x(t). Depending on the initial value, it approaches one or
the other equilibrium state.
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3 Discrete model as a Markov jump process (Kinetic Monte

Carlo)

The reaction (1) can be rewritten as:

X
U(X)
−→ X + 1

X
D(X)
−→ X − 1.

(3)

Here the rates of moving “up” and “down” are, correspondingly,

U(X) =
k1

V
X(X − 1) + k4V and D(X) =

k2

V 2
X(X − 1)(X − 2) + k3X. (4)

Recall that, without loss of generality, we absorbed A and B into the system volume V .
Hence, our model is one-step Markov jump process (see [4]) and is governed by the

following Master Equation (forward Kolmogorov equation) for the probabilities P (n, t) =
P{X(t) = n}:

∂P (n, t)

∂t
= U(n − 1)P (n − 1, t) + D(n + 1)P (n + 1, t) − (U(n) + D(n))P (n, t) =

= (L∗P )(n, t), (5)

where L∗ is the adjoint of the generator L of the process. The generator of a Markov process
X(t), by definition, is the operator

(Lf)(n) = lim
t→0

E{f(X(t)) − f(X(0))|X(0) = n}

t
, (6)

which for one-step Markov jump processes takes the form

(Lf)(n) = U(n)[f(n + 1) − f(n)] + D(n)[f(n − 1) − f(n)]. (7)

The generator defines the Markov process completely. Also, if we define

v(n, t) = E[f(X(t))|X(0) = n] (8)

for any observable f(n), then v(n, t) solves the partial differential equation (backward Kol-
mogorov equation)

vt = Lv (9)

with initial condition v(n, 0) = f(n), see [5].

4 Large system volume limits

In order to analyze large system size limits, let us pass to intensive variable x = n/V = ǫn.
In terms of x, the generator has the form

(Lǫf)(x) = ǫ−1uǫ(x)[f(x + ǫ) − f(x)] + ǫ−1dǫ(x)[f(x − ǫ) − f(x)]. (10)
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Here
uǫ(x) = ǫU(x/ǫ) = k1x(x − ǫ) + k4 = u(x) + ǫu1(x)

and
dǫ(x) = ǫD(x/ǫ) = k2x(x − ǫ)(x − 2ǫ) + k3x = d(x) + ǫd1(x) + O(ǫ2).

Hence, the leading order rates are, correspondingly, u(x) = k1x
2+k4 and d(x) = k2x

3+k3x.
The Markov process corresponding to the generator (10) is the same as in the original

model, only with the rates and jump sizes rescaled by ǫ. Instead of working with the Master
equation, we will explore the generator Lǫ itself, i.e. the backward form

vt = Lǫv. (11)

Expanding the generator (10) in the small ǫ limit leads to

(Lǫf)(x) = [u(x) − d(x)]f ′(x) + ǫ[u1(x) − d1(x)]f ′(x) +
ǫ

2
[u(x) + d(x)]f ′′(x) + o(ǫ2).

To the leading order, we get the differential operator

(L0f)(x) = [u(x) − d(x))]f ′(x) (12)

corresponding to the deterministic description (2), discussed in Sec. 2.
To the next order O(ǫ) we obtain the backward form of the Fokker-Planck equation (see

[6])

(LFP f)(x) = [u(x) − d(x)]f ′(x) + ǫ[u1(x) − d1(x)]f ′(x) +
ǫ

2
[u(x) + d(x)]f ′′(x), (13)

which leads to a stochastic differential equation for x(t):

dx = [u(x) − d(x) + ǫ(u1(x) − d1(x))]dt +
√

ǫ(u(x) + d(x))dW. (14)

This corresponds to the diffusion approximation of the process, with drift u(x) − d(x) +
ǫ(u1(x) − d1(x)) and diffusion ǫ[u(x) + d(x)]/2.

In contrast with the deterministic description, the diffusion approximation takes the
fluctuations into account, but it is not good enough if we are dealing with rare events, that
arise when we calculate exponentially large (small) observables. In the next section we will
introduce basic large deviations ideas, in order to qualify “rare events” in a more formal
way.

5 Large deviations principles

5.1 Large deviations principle for random variables

Let us start off with the large deviations principle for the random variables. Suppose we have
independent, identically distributed random variables xi with the common mean Exi = m
and moment generating function M(θ) = E eθxi .
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The well-known law of large numbers states that the average of these variables goes to
m in probability as the ensemble size goes to infinity:

x1 + ... + xn

n
P

−→ m as n → ∞, (15)

hence, for any a > m,

P

{

x1 + ... + xn

n
> a

}

−→ 0 as n → ∞. (16)

The natural question arises: what is the convergence rate in (16)? Since eθx is a monotone
function, we have

P {x1 + ... + xn > na} = P

{

eθ(x1+...+xn) > eθna
}

≤ e−θna
E eθ(x1+...+xn). (17)

The last step is just an application of the Chebyshev’s inequality. By independence, we get

P {x1 + ... + xn > na} ≤ e−θnaM(θ)n = e−n(θa−log M(θ)) for all θ. (18)

Since (18) works for all θ we can define the action (rate) function l(a) = sup
θ
{θa− log M(θ)}

to obtain a stronger inequality:

P {x1 + ... + xn > na} ≤ e−nl(a). (19)

The basic theorem in the large deviations theory states that the bound in (19) is sharp,
namely,

1

n
log P

{

x1 + ... + xn

n
> a

}

∼ −l(a) (20)

as n → ∞. See, say, [7, 8]. We say that the exponentially unlikely event {x1 + ... + xn > na}
satisfies the large deviations principle with the action function l(a).

5.2 Large deviations expansion

We will look at an observable v(x, t) = E[f(X(t))|X(0) = x] with f(x) = eg(x)/ǫ for some
function g(x). This motivates the ansatz v(x, t) = eφ(x,t)/ǫ. We plug it into (11) and expand
the nearby values of the exponent φ(x, t) to obtain, in the highest order ǫ−1, the partial
differential equation

φt = u(x)(eφx − 1) + d(x)(e−φx − 1) (21)

with initial condition φ(x, 0) = g(x).
¿From the other hand, if we used the diffusion approximation with its generator LFP

before applying the WKB ansatz above, then we would get, again in the leading order ǫ−1,
a wrong PDE for the exponent function φ(x, t), namely,

φt = [u(x) − d(x)]φx +
u(x) + d(x)

2
φ2

x. (22)
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Therefore, if we are interested in exponentially large observables with the exponent of
O(ǫ−1) = O(V ), then the diffusion approximation, hence the corresponding SDE (14) lead
to a systematic error in the exponent function φ(x, t).

We may go to the next order by taking φ(x, t) = φ0(x, t) + ǫφ1(x, t). Then φ0(x, t)
satisfies (21), whereas φ1(x, t) can be expressed as φ1(x, t) = ln z(x, t) with z(x, t) satisfying

zt = zx(u(x)e(φ0)x + d(x)e−(φ0)x) +
z (φ0)xx

2
(u(x)e(φ0)x − d(x)e−(φ0)x) , (23)

which can be solved, as soon as φ0(x, t) is found explicitely.

5.3 Moderate deviations expansion

Let us now look at an observable of the form f(x) = eg(x)/δ with 1 ≫ δ ≫ ǫ, so we are
dealing with moderate deviations, as opposed to the large deviations, where we had δ = ǫ.
One can think of δ = ǫα with 0 < α < 1. This will motivate the moderate deviation
ansatz v(x, t) = eφ(x,t)/δ which, with both the correct generator Lǫ and the Fokker-Planck
generator LFP in the backward equation, leads, in the first two orders, to the same equation
for the exponent function φ(x, t)

φt + (u(x) − d(x))φx +
ǫ

δ

u(x) + d(x)

2
φ2

x = 0 (24)

with initial condition φ(x, 0) = g(x), as before.
Therefore, we can claim that the diffusion approximation is good enough in describing

up to moderate deviation events. At least, it gives the correct exponent (action) function.

6 Solving for the action function

6.1 Classical mechanics interpretation

We will focus on the large deviations case v(x, t) = eφ(x,t)/ǫ leading to the equation for the
action function φ(x, t)

φt = u(x)(eφx − 1) + d(x)(e−φx − 1) (25)

with initial condition φ(x, 0) = g(x).
Notice that this equation is of the Hamilton-Jacobi form φt + H(x, φx) = 0, hence

can be solved by the method of characteristics. The (x, t)-plane is being covered by the
characteristics (rays), and the evolution of φ(x, t), as well as x, is tracked along these
characteristics according to a system of ODE, see [9, 10].

First, we read off the formal Hamiltonian H(x, p) = u(x)(ep−1)+d(x)(e−p−1), and the
momentum is introduced by p = φx The corresponding Lagrangian can also be calculated:

L

(

x,
dx

dt

)

=
dx

dt
log

dx
dt +

√

(

dx
dt

)2
+ 4u(x)d(x)

2u(x)
+u(x)+d(x)−

√

(

dx

dt

)2

+ 4u(x)d(x). (26)
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Figure 3: The phase portrait of the Hamiltonian system corresponding to the Hamilton-
Jacobi equations for the action function φ(x, t).

The system evolves along the characteristics H = const according to the Hamiltonian
system of ODE







dx
dt = u(x)ep − d(x)e−p

dp
dt = −u′(x)(ep − 1) − d′(x)(e−p − 1)

(27)

while φ(x, t) evolves by

dφ

dt
= φt + φx

dx

dt
= −H(x, p) + p

dx

dt
=

= L

(

x,
dx

dt
(x, p)

)

= u(x)(pep − ep + 1) − d(x)(pe−p + e−p − 1). (28)

Also, by Hamilton’s principle, φ(x, t) solves the variational problem

φ(x, t) = inf

{
∫ t

0
L(x, dx/ds)ds + g(x(0))

}

, (29)

where the infimum is taken over all C1[0, t] functions x(·) with x(t) = x.

6.2 Switching times in the Schlögl model

For the Schlögl model, H = const paths are shown in Fig. 3. Using the phase portrait of the
corresponding Hamiltonian system, the solution φ(X,T ) of Hamilton-Jacobi equation with
an initial condition φ(x, 0) = g(x) is obtained in the following way. We take the vertical
line x = X and trace all the points backward for time T . That will give an “initial” profile
f(x, p) = 0 of the points that lead to X at time T . The intersection of this profile with the
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real initial curve p = g′(x) will give the initial value (in fact, there could be more than one
intersection points), therefore, the correct characteristics, leading to the point X in time T .
This is the essence of the “shooting” method [9].

As mentioned in Sec. 2, one of the most important questions for bistable systems is:
which of the stable states is more stable? To answer it, we should compare the mean first
passage times (called switching times) from one stable state to the other.

Mean first passage time T (x) from a state x to a fixed state xf solves the backward
equation −1 = LT (x) with the appropriate boundary conditions [4, 5]. For the one-step
jump Markov processes the mean first passage times can be calculated exactly from the
backward master equation and it leads to the large deviations asymptotics of the form eφ(x)/ǫ

for some action function φ(x). In general, deterministically forbidden switches between two
states (in the deterministic case, see Fig. 2, switches that have to pass through x = 2
are not allowed) are large deviation events. The large deviation analysis applied to the
−1 = LT (x) (as opposed to (9), discussed above) now will lead to the time-independent
Hamilton-Jacobi equation

0 = u(x)(eφx − 1) + d(x)(e−φx − 1) = H(x, φx). (30)

Therefore, large deviation paths on the phase portrait are the ones corresponding to H(x, p) =

0. These are the heteroclinic connections, and they correspond to p = 0 and p = log d(x)
u(x) ,

as can be seen in Fig. 4. From (27) one can see that p = 0 leads to the deterministic
description ẋ = u(x) − d(x), where the switches between the first and third equilibria x1

and x3 are not allowed (in order to go from one to the other, the path necessarily leaves
the axis p = 0). To switch from x1 to x3, while staying on the H = 0 curves, the system
has to “climb” the non-deterministic path x1-to-x2 and then follow the deterministic one,
x2-to-x3 on the x-axis. Similarly, the switch from x3 to x1 has to go through the “valley”
x3-to-x2 and then follow the deterministically allowed path on the x-axis, x2-to-x1.

By (28), the exponent (action) φ13 = ǫ log T13 for the switching time T13 from x1 to x3

can be found by

φ13 =

∫
(

−H + p
dx

dt

)

dt =

∫ x2

x1

p dx =

∫ x2

x1

log
d(x)

u(x)
dx = the area S1, (31)

since p = 0 on the second part of the path and H = 0 throughout the whole path. Similarly,

φ31 =

∫ x2

x3

p dx =

∫ x3

x2

log
u(x)

d(x)
dx = the area S2. (32)

For instance, from the Fig. 4 we can see that in this particular parameter regime
S1 > S2, hence T13 > T31. Since it takes longer to switch from x1 to x3 than vice-versa, we
can conclude that the first equilibrium is the more stable one.

The important point here is that if we used SDE to model the chemical reaction (or,
equivalently, if we used the diffusion approximation before the large deviation ansatz), it
would not give the correct Hamiltonian, hence the switching times would be miscalculated.

Also, the parameters ki can be tuned so that the two stable equilibriums are equally
stable, and there are certain parameter regimes where the diffusion approximation gives the
opposite, wrong answer to the relative stability question.
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Figure 4: The H = 0 curves are heteroclinic connections. They correspond to p = 0 and
p = log d(x)

u(x) . Parameters are picked so that xi = i for i=1,2,3 are the equilibrium states.

7 Conclusion and future work

In this report we have introduced the Kinetic Monte Carlo modeling of chemical reactions,
paying particular attention to the benchmark bistable system - the Schlögl model. The
main reason of using KMC is that the simplest, deterministic model of a chemical reaction
is not satisfactory at all as we are interested in fluctuations in concentrations. We have
also discussed the SDE approach to the problem and have shown that it is not able to cor-
rectly answer questions concerning large deviation events/observables. If we are interested
in exponentially large observables (e.g., switching times between two states that are nor
reachable from each other in the deterministic case) with the exponent proportional to the
volume of the system, then SDE approach gives a systematic error in the exponent function.
The reason is hidden in (10): we need to plug the exponential ansatz into it first and then
expand the exponent function, as opposed to the SDE approach, where we expanded (10)
to arrive to (13), and then plugged in the exponential ansatz.

In fact, the work can be carried out for general Markov jump processes with generator

(Lf)(n) =

k
∑

i=1

λi(n)[f(n + ei) − f(n)] (33)

and its rescaled version

(Lǫf)(x) =

k
∑

i=1

ǫ−1λi(x)[f(x + ǫei) − f(x)], (34)

189



where ei are the jump sizes (there are k possible ones) and λi(n) are the ǫ-independent
propensity functions (rates) corresponding to these jumps. Then the deterministic gen-

erator is (L0f)(x) =
[

∑k
i=1 λi(x)ei

]

f ′(x) and the Fokker-Planck one is (LFP f)(x) =
[

∑k
i=1 λi(x)ei

]

f ′(x) + ǫ
2

[

∑k
i=1 λi(x)e2

i

]

f ′′(x). Finally, the Hamilton-Jacobi equation (25)

will be generalized as

φt =

k
∑

i=1

λi(x)(eeiφx − 1). (35)

For the particular model, the Schlögl’s bistable system, we answered the question of
relative stability, pointing out again, that SDE approach does not answer it correctly, while
the deterministic description can not address that question at all. We have found the exact
formulae for the switching times from one stable state to the other and vice versa.

Similar questions may be posed for 2D models. The further work may include exploring
the competition models from population dynamics in a manner of KMC. Here, the SDE
approach is even more widely used, hence it is important to understand that it may not be
good enough explaining the rare events, such as, in some cases, the competitive exclusion
of one species.
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