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1 Introduction

The behaviour of passive scalar tracers moving in a prescribed velocity field can be described
using two equivalent formulations: (i) the passive scalar equation which in two dimensions
can be written as

0,0 + VIH -V =eAb, (1)

(i) probabilistic description in terms of stochastic differential equations
dX, = —0,H(X;,Y;) + V2 dW"); (2a)
dY; = 0, H(X,, Y;) + V2e dW, Y. (2b)

Here H(x,y) is a periodic stream function defined in such a way that the velocity field is
given by u = (=9, H,0,H). In what follows the velocity field will always be deterministic
and time-independent.

The subject of study in this report is the asymptotic behaviour of the process (2) in
the limit ¢ — 0. In fact, this question can be analyzed using the passive scalar equation
(1). Here the homogenization technique from the theory of partial differential equations is
applied which gives a description of the behaviour of solutions of (1) on large scales, see
[1]. Separating slow and fast variables and performing a multiscale analysis one obtains the
effective diffusion equation for the evolution of # on large scales

00 =V -DIVe. (3)
The effective diffusivity D} is a constant matrix given by the following expression
DZ(e) = (el +®)(Vx +e)-e), (4)
where x is the solution of the so called cell problem
V- [(el+ ®)(Vyx +e)] =0. (5)

Note that equation (5) has to be solved in the domain of periodicty of the streamfunction
H(z,y). One class of flows for which the cell problem (5) is amenable to analysis is a special
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case of the well known ABC flow, namely the case A =1, C = 0. The streamfunction is of
the form

1+ B 1-B
H(z,y) = —; cosxcosy + sinxsiny. (6)
The case B = 1 has been treated in [2] using boundary layer techniques where it was

shown that D = O(y/e). More precisely, the boundary layer analysis is performed in a
boundary layer of width O(y/e) which forms at the boundaries of the impermeable cells
of the underlying velocity field V- H (z,y). Heuristically, since the amount of the tracer
transported along the boundary layer is proportional to its area, the effective diffusivity
has to be proportional to /. An analytical solution of the cell problem in the boundary
layer approximation was given in [3] using Wiener—Hopf technique. In the case B < 1 the
effective diffusivity is anisotropic and as has been shown in [4] the effective diffusivity across
the streamlines is of order O(e) while along the stream lines of the flow it is of order O(1/¢).

The large-scale picture obtained by the homogenization approach as presented above
does not give any information on the microscale structure of the diffusion processes hap-
pening in the flow. However, small scales do play a major role in the form of boundary
layers which is typical for diffusion processes at high Péclet numbers.

In principle, stochastic differential equations (2) allow us to describe the diffusion of
particles in much more detail. But how much information can we obtain on the limit ¢ — 07
A standard approximating technique in this framework is the so called Wentzell-Freidlin
method. It describes the behaviour of randomly perturbed Hamiltonian systems on large
time scales at high Péclet numbers by means of continuous diffusion processes on graphs, as
is explained in Section 2. A priori, this technique works only only for Hamiltonians H (z,y)
such that H(x,y) — +oo when |(z,y)| — oo and does not allow for existence of heteroclinic
orbits.

If we try to apply this technique to the case of unbounded cellular flow with H (x,y) given
by (6) we arrive at a paradox. Namely, the transition from one cell to another will happen
instantaneously no matter how large the spatial separation between the cells. Furthermore,
the characteristic time scale of diffusion will be of order O(1/¢) which contradicts the results
obtained in the homogenization framework where the characteristic time scale is of order
O(1/Ve).

However, for bounded domains this technique works for sufficiently small £ such that
1/+4/€ is much larger that the domain size (therefore it is not in contradiction to the homog-
enization method). This gives us an indication that the Wentzell-Freidlin method remains
locally valid. In fact, it fails on unbounded domains because of its global structure which
is determined by the method of “gluing” together single cells.

Actually, by changing the “gluing” prescription between the processes obtained in single
cells we can make the Wentzell-Freidlin approach to be consistent with the results given
by the homogenization. The main ingredient here is the conservation of probability: the
probability current going out of a cell has to be matched with the probability current across
the cell boundary (dominated by the boundary layer effects) into the neighbouring cells.

The structure of the present report is as follows: Section 2 is entirely devoted to the
Wentzell-Freidlin technique. In Section 2.1 we explain the averaging principle for a single
cell and its deterministic background. Asymptotics ¢ — 0 of solutions to (2) on bounded
domains is described in Section 2.2. In Section 2.3 we discuss some simple models for
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diffusion in unbounded cellular flows. Furthermore, using results of numerical simulations
we argue that the approximating process on unbounded domain will be discontinuous. In
Section 3 we outline the procedure for obtaining this process and state the result. Possible
applications are discussed in Section 4.

2 Random perturbation of Hamiltonian systems

For small values of £ (i.e. for high Péclet numbers) equations (2) describe small random
perturbation of the determinstic system

&= =0y H(x(t), y(t)), (7a)
g = 0:H(x(t),y(t)) (7b)

which represents the limiting case € = 0. Heuristically one would expect that the behaviour
of solutions to (2) in the limit ¢ — 0 is to a large extent determined by the deterministic
solutions, i.e. solutions of (7). The simplest ansatz of this type consists in making a per-
turbative expansion of solutions to (2) in powers of \/¢ around the deterministic solutions®,
see [11, 12]. However, this approximation is of little use when we want to study long-time
behaviour. Indeed, it works well only for a finite period of time (which also remains true
when we include higher-order terms) and does not take into account the separation into
fast and slow variables. The latter point is of special interest to us because the underlying
structure of the deterministic case (to be described in Section 2.1.1) is at the basis of the

approximating method discussed in Section 2.1.

2.1 Slow-scale motion inside a cell
2.1.1 Case of vanishing viscosity

In terms of (1) the deterministic case corresponds to the passive scalar equation with van-
ishing viscosity € = 0
00 +VIH -VH=0 (8)

and an initial condition 6y. The charateristics of this equation are given by (7) so that
the solutions of the Cauchy problem for equation (8) can be constructed in terms of the
one-parametric flow (by taking the inverse Lagrangian mapping) generated by the velocity
field VX H(xz,y), see e.g. [5].

If we choose the streamfunction (6), then equations (7) can be solved explicitly, see [6].
For the particular case B = 1 the solution is given in terms of Jacobi elliptic functions (see

[7])
x(t, h) = arcsin (\/ 1—h%sn(t,vV1-— h2)> , (9a)
y(t, h) = arcsin (\/ 1—h2cd(t,V1— h2)) , (9b)

Tn the case of the Hamiltonian (6) with B = 1 the explicit solution of (7) given by (9) allows us to
compute analytically the first order term in the expansion. It turns out to be a stochastic integral the
integrand being a complicated expression involving Jacobi elliptic, hyperbolic and logarithmic functions.
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where 2(0) = 0 and H(x,y) = h is kept fixed along a trajectory. Obviously, a particle
initially located in one particlular cell will stay inside this cell. The period of motion along
a level line with H(x,y) = h is given by a complete elliptic integral 4K (/1 — h?). For the
special case h = 0 the equation of motion along the separatrix can be solved in terms of
elementary functions

x(t,0) = 2arctan e’ — g, (10)

where the initial conditions are specified as 2(0,0) = 0 and y(0,0) = 7/2. Note that in the
deterministic case it takes an infinite time to reach the equilibrium point (7/2,7/2).

It is crucial for the following analysis that we can interpret (7) as a Hamiltonian system
with one degree of freedom by identifying (z,y) — (p,q). The streamfunction H(z,y) —
H(p, q) is then identified with the Hamiltonian of the system. As usually, an action variable
I(h) can be introduced as

Iy =2 /hl K <\/1 - h’2> dn’, (11)

™

which is equal to the area inclosed inside the orbit H(p,q) = h divided by 27, see [§].

2.1.2 Effective Fokker-Planck equation

We will first study the behaviour of solutions to (2) with H given by (6) with B = 1
such that the particle is staying inside one cell. The typical technique for analyzing the
evolution of slow variables of such a system subject to small random perturbations is the
technique of averaging out the fast variables. Then an effective evolution equation for slow
variables inside a cell is obtained in a way similar to the analysis of small perturbations
in classical mechanics [8]. In the framework of stochastic differential equations this ansatz
was introduced by Wentzell and Freidlin, see [12] and references therein. For analogous
consideration in the framework of passive scalar equation see [17].

In our case the averaging principle can be briefly summarized as follows: Inside the cell
the deterministic system (7) can be described in terms of motion on invariant tori. We
parametrize these tori by the values of H(z,y) = h. In the perturbed system (at least
for small perturbations) particles will still rotate rapidly along the tori, however they will
slowly drift across the tori. To describe this slow drift we calculate dH (X¢,Y;). Using Ito’s
formula we obtain

dH(X,,Y;) = V2e VH(X,,Y;) - AW, + ¢ AH(X,,Y;)dt, (12)
where dW; = (th(m),th(y)) is the two-dimensional Brownian motion. Of course, we

cannot evaluate the terms VH (X, Y;) - dW; and AH(X;,Y;) explicitly without solving
equations (2). However, using the integral form of (12)

t t
H(X,,Yy) = H(Xo,Yo) + V22 / VH(X,Y,) - dW, + ¢ / AH(X,Y)ds,  (13)
0 0
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we see that because of the smallness of the perturbation (i) the second integral is approxi-
mately equal® to the integral fg(AH}H:h(XS, Ys)ds, where

—1
di > Al di (14)

(BH)r—n = ( o) femE

and the integrals are taken over the level set {(x,y) : H(x,y) = h}. Moreover, (ii) the first
(stochastic) integral in (13) can be represented as

/OtVH(XS,YS)-dWS:W</0t|VH(XS’YS)|2dS>, (15)

where W(-) is a one-dimensional Wiener process. With the same argument as before
fot |VH (X, Ys)|?ds can be approximated by the ergodic average of |V H|?

(I H )y = < %)1 frvma (16)

The obtained effective diffusion process is most conveniently formulated in terms of an
effective Fokker-Planck equation with time rescaled as t — &t

dip = Oj; (A(h)p) — O (B(h)p) (17)
The coefficients A(h) and B(h) given by
A(h) = (IVH*)n=n, B(h) = (AH)p=p. (18)
In the case of H given by (6) with B = 1 these coefficients can be calculated explicitly using
formulas (9)
QL V1-—h?) — 9K
K(V1—h?) ’
Here K (-) and E(-) are complete elliptic integrals of the first and second kind, see [7, 15].
Note that instead of the Hamiltonian we could have used the action variable (11). Indeed,

the formulation in terms of the action turns out to be very convenient for generalization of
the averaging principle to higher dimensions.

A(h) = B(h) = —2h. (19)

2.2 Construction of an approximating Feller process (Wentzell-Freidlin
technique)

In this subsection we study asymptotic behaviour of solutions of (2) constrained to a
bounded domain (with periodic boundary conditions) approximating them by a process
with essentially one-dimensional state space. We have seen that (17) specifies completely
the behaviour of the system up to the first exit time out of a cell. Once having left the
cell after some transitional time (during which it will stay in some neighbourhood of the
boundary of the original cell) the particle will again slowly diffuse, either in the original cell
or in another neighbouring cell.

2This is due to the averaging principle.
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H max Hmax
H>H;
H>0 H=Hc
H=0 H=0
H<O0 H=-H
H < -H¢
H min H min

B=1 0<B<1 B=0

Figure 1: Reeb graphs of the flow (6) for the cases B=1,0 < B < 1 and B = 0 on the
domain of width 27 x 2.

To describe the transition phase of the particle from one cell to another we need to (i)
give a geometrical description of the way in which the cells are connected to each other, (ii)
analyze in detail the behaviour of the diffusion process during this transition.

The geometrical description is given using the topological notion of a Reeb graph of
H(z,y) [9]. For a general Hamiltonian H(xz,y) it is defined in the following way: Let
(¢, yc) be a critical point, i.e. a point such that VH(z.,y.) = 0. Then each connected
component of the level set H~!(H (z.)) is identified with a vertex. The points on the edges
which connect the vertices are identified with connected components of the noncritical level
sets H~'(H(z,y)). Figure 1 shows the Reeb graphs of H(z,y) given by (6) on the domain
[0,27] x [0,27] for the cases B =0, 0 < B < 1, B = 1. Note that in the case B = 1 the
edges of the Reeb graph correspond to the interior of the cells.

The geometrical description above suggests that the appropriate state space of the pro-
cess approximating the solutions of (2) is the Reeb graph I' of the Hamiltonian H (x,y) with
edges denoted by e; and vertices denoted by Oj. In side each edge e; the approximating
process is governed by the evolution equation of the type (17)

Opi = 05 (Ai(h)pi) — O (Bi(h)pi) (20)

To determine the process completely we have to specify the boundary conditions at the
ends of each edge, “gluing” the edges together in a consistent way. This “gluing” procedure
determines the behaviour of the process during the passage through the vertices of the
graph. Physically it describes transitions of a particle from one cell to another.

Specifying boundary conditions for a stochastic process is in general a quite delicate
point. One possibility to specify the boundary conditions is to require the approximating
process to have “nice” mathematical properties.> In [13] all possible continuous Markov
processes with Feller property* on graphs were described such that the diffusion inside an
edge is governed by a second order elliptic operator (which can possibly depend on the
edge). In our case the ellpitic operator is given by the right hand side of (20). Furthermore,
at each edge the sum of the incoming probability currents has to vanish. This leads to the

3 As we shall see later, this requirement is not always consistent with the behaviour of solutions of (2).
4This means that in course of time continuous distributions of probability remain continuous.
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following boundary conditions at a vertex Oy

> Ji(Ok) =0, pi(Ok) =p;(Ok), i,j:ei~ Oy, e~ O (21)

i: e;~Op

where e;, e; ~ O} denote the edges incident to the vertex Oy.

Thus, the approximating technique (in the following referred to as Wentzell-Freidlin
technique) consists in (i) approximating the solutions of (2) inside of the cell by (17),
(ii) gluing together the cells by matching continuously the probability distributions at the
boundaries of the cells.

In the case of the Hamiltonian specified by (6) on bounded domain we expect that the
process on the graph approximates well solutions of (2). Furthermore, similarly to [12] a
particle spends a zero time (on the time scale et) at the vertex. From this follows that once
the particle reaches the cell (edge) boundary, it can hop instantaneously to any other cell.
Furthermore, the behaviour of the process after it reaches the vertex does not depend on
its prehistory, i.e. on the edge it came from. Thus, the transition probability from one edge
to another is not dependent on their spatial separation. Note that for € — 0 this does not
result in any contradiction, because of the very long relevant time O(1/¢) — oc.

Altogether the Wentzell-Freidlin technique yields the following picture for advection of
passive scalar in a bounded domain: Let us chose an initial coondition which corresponds
to the passive scalar being concentrated in the center of a cell at ¢t = 0. Then, as time goes
on, the passive scalar will slowly (i.e. on time scale O(1/¢)) diffuse untill it reaches the
cell boundary. As soon as it reaches the boundary it will very quickly (instantaneously on
time scale O(1/¢)) spread across the domain along the network of separatrices. After this
the passive scalar will penetrate the cells on slow time scale O(1/¢) untill the stationary
distribution is established.

However, the above implies immediately that the Wentzell-freidlin technique cannot be
applied in the unbounded case. Indeed, it would state that a transition from one edge to
another happens instantaneously, no matter how large the spatial distance. It can also be
readily seen from the structure of the Reeb graph corresponding to the unbounded case.
Indeed, in this case the Reeb graph consists of one vertex with infinitely many incoming
vertices.

2.3 Diffusion in cellular flows: unbounded case

As we have seen previously, the knowledge of the behaviour of solutions to (2) in the vicinity
of the cell boundaries is of crucial importance. To describe this behaviour one has to take
into account events such as a particle crossing of a separatrice and going to another cell.
Qualitatively, we can discribe them as follows: We artificially separate the cells by channels
(which play the role of the boundary layers along the separatrices) to take into account the
transport along the boundaries. Let d(¢) be the width of the channel. The motion of a
particle consists of two types of events: (i) slow motion across streamlines inside the cells
with typical time spent inside a cell te = O(1/€) and mean square displacement O(g?);
(ii) fast transport in the channels with velocity of order O(e?) and time spent inside the
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channel O(6%/¢). The effective diffusion is given by

=0 (Pt ) o () (22

Setting d(e) = 1 we obtain Keg = O(y/¢). However, the width of the channel is something
that we have to insert by hand into this model. Furthermore, for solution of the cell
problem the width of the boundary layer is usually assumed to be y/e. Nevertheless, this
simple model is usefull because it gives an additional intuition about the nature of diffusion
in the cellular flow. Indeed, numerical simulations of (2) show long flights along the cell
boundaries interupted by trapping of the particle inside the cells, see Fig. 2.
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-10 0 10 20 30 40 50 60 70

Figure 2: Random motion of a Brownian particle the cellular flow B = 1.

During the excursions the stochastique motion can be described by a very simple one-
dimensional model

dO; = | cos O] + V2edW;, (23)

where 6 € [0,47]. The backward Kolmogorov equation is given by

Op + | cos 0|Ogp = €03 p. (24)
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Solutions® are most easily found by writing the drift | cos ©| as the derivative of the following
continuous potential

V(0) = —4k —sin 6 . for x € [—Z +2km, 5 —1—21277]; (25)
—2(2k +1) +sinf for x € [-F + (2k + )7, § + (2k + 1)7],
such that |cosf| = —0yV(0). Note that this potential contains two parts: a periodic

part Vp(f) with period m and a tilting force F' = 2. Obviously, the function V(f) =

V(0) 4+ OF satisfies V(0 + ) = Vp(0). Stationary distributions are easily found which
allows to determine the mean velocity and the effective diffusion
21 2
EO] . E6}-(E6)
t t—00 2t

<v>= lim (26)
t—o0

It turns out that the mean velocity does not vanish and the effective diffusion is proportional

to 1/e, see [22]. The behaviour of the diffusion process in the neighbourhood of the cell

boundaries has been studied in [14] using boundary layer asymptotics. It turns out that

the time a particle spends in a cell is of order O(e).

Note that events (i) and (ii) have two different time scales: (i) is on time scale O(1/+/¢)
while (ii) is on time scale O(1/¢). A similar situation has been discussed in [18] for effective
diffusion along a pipe with semiinfinite pipes branching off the main pipe. The fast motion
happens inside the main pipe while trapping occurs inside the side branches.

Since the stochastic motion of a particle inside of the unbounded cellular flow is a
mixture of random walk on the lattice of cells (jump process) and slow diffusion inside
the cells (continuous process) we cannot expect the Wentzell-Freidlin technique to hold
on unbounded domains. Indeed, as Fig. 3 shows, in numerical simulations of diffusion of
passive tracer on the cellular flow (6) we find high gradients of the passive scalar accross
the cell boundaries.

3 Approximating process with jumps

In this section we propose a generalization of Wentzell-Freidlin method to the case of un-
bounded domains. The main idea is to give up the mathematical condition of continuity
of the process at the vertices of the Reeb graph which in the previous paragraph has been
shown to inconsistent and allow for processes which can have jumps at vertices. The conti-
nuity condition has to be replaced by another condition which takes into account processes
happening at the separatrices analyzing them more carefully than it has been done in Sec-
tion 2.2.

We begin by outlining the procedure which can be used for obtaining the approximating
process on the domain R?. We label each cell by a two-dimensional integer vector (ny,ng) €
Z2. The effective evolution equation inside each cell is given by

8€t p(nl,nz) = 8}% (A(h)p(nl,nz)) - ah (B(h)p(nl,nz)) (27)

Consider now, analogously to [20] a water-pipe network Q% = {(z,y) € Q : |H(z,y)| <
N/e} around the separatrices. The corresponding water-pipe approximation is

eAO5 — VTH - Vo5 =0, (z,y) € Qy, (28)

®Stochastic equations with periodic drift are intensively studied in [21].
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Figure 3: Diffusion in the cellular flow given by (6) with B = 1 for ¢ = 0.0009765625 at
t = 32.

however, instead of zero gradient von Neumann boundary conditions at the level set

Lnyng)(NVE) = {(z,y) € Q: [H(z,y)| = NVe, (2,y) lies in the cell (n1,n2)}  (29)
used in [20], we introduce the following conditions

005
on
The two descriptions, in the interior of the cells and at the cell boundary, have to be glued
together. It is here that the conservation of probability enters. We have to match probablity

current leaving the edge with the probablity current entering the water-pipe network. This
gives the equation

= (DH)(TL17TL2)7 (3:7 y) € ‘C(nhng)(N\/g) (30)

%;:k(Nﬁ)(De)kdl =€ [B(h)p(m,nz)(h) — O (A(h)p(m,nz))]h:]v\@' (31)
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The expression on the right hand side is just the probability current entering the boundary
of the cell.

Now we turn to description of the approximating process. First of all, in order to describe
the transport from one cell to another in the asymptotics € — 0 we find it convenient to
consider the network of lines connecting the neighbouring cells which is in fact a network
dual to the water-pipe network. In our case of H(x,y) given by (6) with B = 1 it is just the
two-dimensional lattice Z2. At each vertex of this network we specify a function ftnina) ()
This function serves as a boundary condition for the effective Fokker—Planck equation (27)
(with the original time) in the cell (n1,n2). For a particle the probability of leaving this
cell through the boundary adjacent to one of the neighbouring cell, e.g. the cell (nq,ns+1)
is proportional to f(u, ny41) = f(niny)- Therefore the discontinuous part of the process is
governed by the Laplace lattice operator on the lattice Z2

AZ2 f(nl,ng) (t) = f(nl—l—l,ng) (t) + f(n1 —1,n2) (t) + f(nl,ng-l-l) (t) + f(n1 ;n2—1) (t) - 4f(n1 ,n2) (t) (32)
The evolution equation for f(,, ,,)(t) is then given by

d d
Ef(nl,ng) + a /p(nl,ng)(h)dh = AZZf(nl,nz) (33)

In this way we obtain a coupled system of equations which yield the complete description
of the approximating process.%

4 Discusion

The generalization of the Wentzell-Freidlin technique proposed in the previous paragraph
is easily generalized to the cases of nonperiodic cellular flows. In fact, it suffices to replace
the Laplace operator on Z? by the Laplace operator on the network (graph) dual to the
network of separatrices of the original flow. Of course, the spectral properties of the graph
Laplacian then depend strongly on the topological structure of the dual network. Therefore
the cellular structure of the flow can nontrivially influence the solutions of (33).

One application of the Wentzell-Freidlin technique is connected to the study of reaction-
diffusion equations. However, as has been stated in [10], in its usual formulation it is not
applicable without any restrictions. The generalized form of this technique proposed in the
report seems to be suitable to a wider range of applications, including nonperiodic cellular
flows.
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